Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[xpu] add dropout & amp ops in xpu place #33891

Merged
merged 2 commits into from
Jul 7, 2021
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion cmake/external/xpu.cmake
Original file line number Diff line number Diff line change
Expand Up @@ -35,7 +35,7 @@ ELSE ()
ENDIF()

SET(XPU_BASE_URL_WITHOUT_DATE "https://baidu-kunlun-product.cdn.bcebos.com/KL-SDK/klsdk-dev")
SET(XPU_BASE_URL "${XPU_BASE_URL_WITHOUT_DATE}/20210625")
SET(XPU_BASE_URL "${XPU_BASE_URL_WITHOUT_DATE}/20210701")
SET(XPU_XRE_URL "${XPU_BASE_URL}/${XPU_XRE_DIR_NAME}.tar.gz" CACHE STRING "" FORCE)
SET(XPU_XDNN_URL "${XPU_BASE_URL}/${XPU_XDNN_DIR_NAME}.tar.gz" CACHE STRING "" FORCE)
SET(XPU_XCCL_URL "${XPU_BASE_URL_WITHOUT_DATE}/20210623/${XPU_XCCL_DIR_NAME}.tar.gz" CACHE STRING "" FORCE)
Expand Down
170 changes: 170 additions & 0 deletions paddle/fluid/operators/amp/check_finite_and_unscale_op_xpu.cc
Original file line number Diff line number Diff line change
@@ -0,0 +1,170 @@
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#ifdef PADDLE_WITH_XPU
#include "paddle/fluid/operators/amp/check_finite_and_unscale_op.h"
#include "paddle/fluid/operators/amp/fp16_type_traits.h"
#include "paddle/fluid/platform/float16.h"
namespace paddle {
namespace operators {
template <typename T>
class CheckFiniteAndUnscaleXPUKernel : public framework::OpKernel<T> {
using MPDType = typename details::MPTypeTrait<T>::Type;
using XPUTyp = typename XPUTypeTrait<T>::Type;

public:
void Compute(const framework::ExecutionContext& ctx) const {
auto& dev_ctx = ctx.template device_context<platform::XPUDeviceContext>();
const auto xs = ctx.MultiInput<framework::Tensor>("X");
const auto* scale = ctx.Input<framework::Tensor>("Scale");
auto outs = ctx.MultiOutput<framework::Tensor>("Out");
auto* found_inf = ctx.Output<framework::Tensor>("FoundInfinite");

const MPDType* scale_data = scale->data<MPDType>();
bool* found_inf_data = found_inf->mutable_data<bool>(dev_ctx.GetPlace());

// cpy to cpu
bool cpu_found_inf_data = false;

MPDType cpu_scale_data;
if (platform::is_xpu_place(scale->place())) {
xpu_memcpy(&cpu_scale_data, scale_data, sizeof(MPDType),
XPUMemcpyKind::XPU_DEVICE_TO_HOST);
} else {
cpu_scale_data = (*scale_data);
}
MPDType inverse_scale = 1.0 / cpu_scale_data;
for (size_t i = 0; i < xs.size(); ++i) {
const auto* x = xs[i];
auto* out = outs[i];
out->mutable_data<T>(dev_ctx.GetPlace());
framework::Tensor is_finite =
ctx.AllocateTmpTensor<bool, platform::XPUDeviceContext>(x->dims(),
dev_ctx);
framework::Tensor is_nan =
ctx.AllocateTmpTensor<bool, platform::XPUDeviceContext>(x->dims(),
dev_ctx);
framework::Tensor is_finite_and_nan =
ctx.AllocateTmpTensor<bool, platform::XPUDeviceContext>(x->dims(),
dev_ctx);
if (cpu_found_inf_data == false) {
int r = xpu::isfinite(dev_ctx.x_context(),
reinterpret_cast<const XPUTyp*>(x->data<T>()),
is_finite.data<bool>(), x->numel());
PADDLE_ENFORCE_EQ(r, XPU_SUCCESS, platform::errors::External(
"XPU API(isfinite) return wrong "
"value[%d %s]",
r, XPUAPIErrorMsg[r]));
r = xpu::logical_not(dev_ctx.x_context(), reinterpret_cast<const bool*>(
is_finite.data<bool>()),
is_finite.data<bool>(), x->numel());
PADDLE_ENFORCE_EQ(
r, XPU_SUCCESS,
platform::errors::External("XPU API(logical_not) return wrong "
"value[%d %s]",
r, XPUAPIErrorMsg[r]));
r = xpu::isnan(dev_ctx.x_context(),
reinterpret_cast<const XPUTyp*>(x->data<T>()),
is_nan.data<bool>(), x->numel());
PADDLE_ENFORCE_EQ(r, XPU_SUCCESS, platform::errors::External(
"XPU API(isnan) return wrong "
"value[%d %s]",
r, XPUAPIErrorMsg[r]));
r = xpu::logical_or(dev_ctx.x_context(), is_finite.data<bool>(),
is_nan.data<bool>(), is_finite.data<bool>(),
x->numel());
PADDLE_ENFORCE_EQ(
r, XPU_SUCCESS,
platform::errors::External("XPU API(logical_or) return wrong "
"value[%d %s]",
r, XPUAPIErrorMsg[r]));
r = xpu::any(dev_ctx.x_context(), is_finite.data<bool>(),
found_inf_data, x->numel());
PADDLE_ENFORCE_EQ(r, XPU_SUCCESS, platform::errors::External(
"XPU API(any) return wrong "
"value[%d %s]",
r, XPUAPIErrorMsg[r]));
memory::Copy(platform::CPUPlace(), &cpu_found_inf_data,
BOOST_GET_CONST(platform::XPUPlace, dev_ctx.GetPlace()),
found_inf_data, sizeof(bool));
}

if (cpu_found_inf_data) {
inverse_scale = 0.0;
}
auto dev_env = XPUEnv::getenv("XPUSIM_DEVICE_MODEL");

if (std::is_same<T, paddle::platform::float16>::value &&
(dev_env == nullptr || std::strcmp(dev_env, "KUNLUN1"))) {
framework::Tensor float_x;
framework::Tensor float_out;
float_x.mutable_data<MPDType>(dev_ctx.GetPlace(),
x->numel() * sizeof(MPDType));
float_out.mutable_data<MPDType>(dev_ctx.GetPlace(),
out->numel() * sizeof(MPDType));
int r = xpu::cast_v2(dev_ctx.x_context(),
reinterpret_cast<const float16*>(x->data<T>()),
float_x.data<MPDType>(), x->numel());
PADDLE_ENFORCE_EQ(r, XPU_SUCCESS, platform::errors::External(
"XPU API(cast_v2) return wrong "
"value[%d %s]",
r, XPUAPIErrorMsg[r]));

r = xpu::scale(dev_ctx.x_context(), float_x.data<MPDType>(),
float_out.data<MPDType>(), x->numel(), false,
inverse_scale, 0.0);
PADDLE_ENFORCE_EQ(r, XPU_SUCCESS, platform::errors::External(
"XPU API(scale) return wrong "
"value[%d %s]",
r, XPUAPIErrorMsg[r]));

r = xpu::cast_v2(dev_ctx.x_context(), float_out.data<MPDType>(),
reinterpret_cast<float16*>(out->data<T>()),
out->numel());

PADDLE_ENFORCE_EQ(r, XPU_SUCCESS, platform::errors::External(
"XPU API(cast_v2) return wrong "
"value[%d %s]",
r, XPUAPIErrorMsg[r]));
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

加xpu_wait

if (dev_ctx.x_context()->xpu_stream) {
dev_ctx.Wait();
}

} else {
int r = xpu::scale(dev_ctx.x_context(),
reinterpret_cast<const XPUTyp*>(x->data<T>()),
reinterpret_cast<XPUTyp*>(out->data<T>()),
x->numel(), false, inverse_scale, 0.0);
PADDLE_ENFORCE_EQ(r, XPU_SUCCESS, platform::errors::External(
"XPU API(scale) return wrong "
"value[%d %s]",
r, XPUAPIErrorMsg[r]));
}
}
memory::Copy(BOOST_GET_CONST(platform::XPUPlace, dev_ctx.GetPlace()),
found_inf_data, platform::CPUPlace(), &cpu_found_inf_data,
sizeof(bool));
}
};

} // namespace operators
} // namespace paddle

namespace ops = paddle::operators;
namespace plat = paddle::platform;
REGISTER_OP_XPU_KERNEL(check_finite_and_unscale,
ops::CheckFiniteAndUnscaleXPUKernel<float>,
ops::CheckFiniteAndUnscaleXPUKernel<plat::float16>);

#endif
166 changes: 166 additions & 0 deletions paddle/fluid/operators/amp/update_loss_scaling_op_xpu.cc
Original file line number Diff line number Diff line change
@@ -0,0 +1,166 @@
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#ifdef PADDLE_WITH_XPU
#include "paddle/fluid/operators/amp/update_loss_scaling_op.h"
#include <cstring>
#include <string>
#include <vector>
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/amp/fp16_type_traits.h"
#include "paddle/fluid/platform/float16.h"

namespace paddle {
namespace operators {

template <typename T>
class UpdateLossScalingXPUKernel : public framework::OpKernel<T> {
using MPDType = typename details::MPTypeTrait<T>::Type;
using XPUTyp = typename XPUTypeTrait<T>::Type;

public:
void Compute(const framework::ExecutionContext& ctx) const override {
auto& dev_ctx = ctx.template device_context<platform::XPUDeviceContext>();

const auto xs = ctx.MultiInput<framework::Tensor>("X");
auto outs = ctx.MultiOutput<framework::Tensor>("Out");
const auto* found_inf = ctx.Input<Tensor>("FoundInfinite");
PADDLE_ENFORCE_EQ(found_inf->numel(), 1,
platform::errors::InvalidArgument(
"FoundInfinite must has only one element."));
const bool* found_inf_data = found_inf->data<bool>();
bool cpu_found_inf_data = false;
if (platform::is_xpu_place(found_inf->place())) {
xpu_memcpy(&cpu_found_inf_data, found_inf_data, sizeof(bool),
XPUMemcpyKind::XPU_DEVICE_TO_HOST);
} else {
cpu_found_inf_data = (*found_inf_data);
}

for (size_t i = 0; i < xs.size(); ++i) {
auto* out = outs[i];
T* out_data = out->mutable_data<T>(dev_ctx.GetPlace());
int num = out->numel();
if (cpu_found_inf_data) {
VLOG(1) << "-- UpdateLossScaling: Find infinite grads. --";
int r = 0;
r = xpu::constant(dev_ctx.x_context(),
reinterpret_cast<XPUTyp*>(out_data), num,
XPUTyp(0.0));
PADDLE_ENFORCE_EQ(r, XPU_SUCCESS, platform::errors::External(
"XPU API(constant) return wrong "
"value[%d %s]",
r, XPUAPIErrorMsg[r]));
}
}
const bool stop_update = ctx.Attr<bool>("stop_update");
if (stop_update) {
return;
}

const auto* pre_loss_scaling = ctx.Input<Tensor>("PrevLossScaling");
const auto* good_in = ctx.Input<Tensor>("InGoodSteps");
const auto* bad_in = ctx.Input<Tensor>("InBadSteps");
auto* updated_loss_scaling = ctx.Output<Tensor>("LossScaling");
auto* good_out = ctx.Output<Tensor>("OutGoodSteps");
auto* bad_out = ctx.Output<Tensor>("OutBadSteps");
const MPDType* pre_loss_scaling_data = pre_loss_scaling->data<MPDType>();
const int* good_in_data = good_in->data<int>();
const int* bad_in_data = bad_in->data<int>();

MPDType* updated_loss_scaling_data =
updated_loss_scaling->mutable_data<MPDType>(dev_ctx.GetPlace());
int* good_out_data = good_out->mutable_data<int>(dev_ctx.GetPlace());
int* bad_out_data = bad_out->mutable_data<int>(dev_ctx.GetPlace());

const int incr_every_n_steps = ctx.Attr<int>("incr_every_n_steps");
const int decr_every_n_nan_or_inf =
ctx.Attr<int>("decr_every_n_nan_or_inf");
const float incr_ratio = ctx.Attr<float>("incr_ratio");
const float decr_ratio = ctx.Attr<float>("decr_ratio");

int cpu_bad_in_data;
int cpu_good_in_data;
MPDType cpu_pre_loss_scaling_data;
if (platform::is_xpu_place(bad_in->place())) {
xpu_memcpy(&cpu_bad_in_data, bad_in_data, sizeof(int),
XPUMemcpyKind::XPU_DEVICE_TO_HOST);
} else {
cpu_bad_in_data = (*bad_in_data);
}

if (platform::is_xpu_place(good_in->place())) {
xpu_memcpy(&cpu_good_in_data, good_in_data, sizeof(int),
XPUMemcpyKind::XPU_DEVICE_TO_HOST);
} else {
cpu_good_in_data = (*good_in_data);
}

if (platform::is_xpu_place(pre_loss_scaling->place())) {
xpu_memcpy(&cpu_pre_loss_scaling_data, pre_loss_scaling_data,
sizeof(MPDType), XPUMemcpyKind::XPU_DEVICE_TO_HOST);
} else {
cpu_pre_loss_scaling_data = (*pre_loss_scaling_data);
}

int cpu_good_out_data = 0;
int cpu_bad_out_data = 0;
MPDType cpu_updated_loss_scaling_data;

if (cpu_found_inf_data) {
cpu_good_out_data = 0;
cpu_bad_out_data = cpu_bad_in_data + 1;
if (cpu_bad_out_data == decr_every_n_nan_or_inf) {
MPDType new_loss_scaling = cpu_pre_loss_scaling_data * decr_ratio;
cpu_updated_loss_scaling_data =
(new_loss_scaling < static_cast<MPDType>(1))
? (static_cast<MPDType>(1))
: (new_loss_scaling);
cpu_bad_out_data = 0;
}
} else {
cpu_bad_out_data = 0;
cpu_good_out_data = cpu_good_in_data + 1;
if (cpu_good_out_data == incr_every_n_steps) {
MPDType new_loss_scaling = cpu_pre_loss_scaling_data * incr_ratio;
cpu_updated_loss_scaling_data = (std::isfinite(new_loss_scaling))
? new_loss_scaling
: cpu_pre_loss_scaling_data;
cpu_good_out_data = 0;
}
}

// copy to host
memory::Copy(BOOST_GET_CONST(platform::XPUPlace, dev_ctx.GetPlace()),
bad_out_data, platform::CPUPlace(), &cpu_bad_out_data,
sizeof(int));
memory::Copy(BOOST_GET_CONST(platform::XPUPlace, dev_ctx.GetPlace()),
good_out_data, platform::CPUPlace(), &cpu_good_out_data,
sizeof(int));
memory::Copy(BOOST_GET_CONST(platform::XPUPlace, dev_ctx.GetPlace()),
updated_loss_scaling_data, platform::CPUPlace(),
&cpu_updated_loss_scaling_data, sizeof(MPDType));
}
};

} // namespace operators
} // namespace paddle

namespace ops = paddle::operators;
namespace plat = paddle::platform;

REGISTER_OP_XPU_KERNEL(update_loss_scaling,
ops::UpdateLossScalingXPUKernel<float>,
ops::UpdateLossScalingXPUKernel<plat::float16>);
#endif
Loading