Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add paddle/memory/README.md #2552

Merged
merged 8 commits into from
Jun 26, 2017
139 changes: 139 additions & 0 deletions paddle/memory/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,139 @@
## Design

### Usage

To allocate 4KB CPU memory:

```cpp
p = memory::Alloc(platform::CPUPlace(), 4*1024);
```

To allocate 4KB memory on the 3rd GPU:

```cpp
p = memory::Alloc(platform::GPUPlace(2), 4*1024);
```

To free memory and check the so-far used amount of memory on a place:

```cpp
auto pl = platform::GPUPlace(0);
p = memory::Alloc(pl, 4*1024);
cout << memory::Used(pl);
memory::Free(pl, p);
```

### API

In `paddle/memory/memory.h` we have:

```cpp
namespace memory {
template <typename Place> void* Alloc(Place, size_t);
template <typename Place> void Free(Place, void*);
template <typename Place> size_t Used(Place);
} // namespace memory
```

These function templates have specializations on either `platform::CPUPlace` or `platform::GPUPlace`:

```cpp
template<>
void* Alloc<CPUPlace>(CPUPlace p, size_t size) {
return GetCPUBuddyAllocator()->Alloc(size);
}
```

and

```cpp
template<>
void Alloc<GPUPlace>(GPUPlace p, size_t size) {
return GetGPUBuddyAllocator(p.id)->Alloc(size);
}
```

Similar specializations exist for `Free` and `Used`.

### Implementation

`GetCPUBuddyAllocator` and `GetGPUBuddyAllocator` are singletions.

```cpp
BuddyAllocator* GetCPUBuddyAllocator() {
static BuddyAllocator* a = NULL;
if (a == NULL) {
a = new BuddyAllocator(new CPUAllocator /*backup allocator*/, ...);
}
return a;
}

BuddyAllocator* GetGPUBuddyAllocator(int gpu_id) {
static BuddyAllocator* as = NULL;
if (as == NULL) {
as = new BuddyAllocator*[platform::NumGPUs()];
for (int gpu = 0; gpu < platform::NumGPUs(); gpu++) {
as[gpu] = new BuddyAllocator(new GPUAllocator(gpu) /* backup allocator */, ...);
}
}
return as[gpu_id);
```

#### `BuddyAllocator`

`BuddyAllocator` implements the buddy allocation algorithm. Its constructor takes parameters only related with the algorithm:

```cpp
BuddyAllocator::BuddyAllocator(initial_pool_size, max_pool_size) {
...
}
```

Please be aware that **`BuddyAllocator` always allocate aligned memory**, aligned on 32-bytes, which can hold a `BuddyAllocator::Block` object:

```cpp
class BuddyAllocator {
private:
struct Block {
size_t size;
Block* left, right;
};
...
};
```

Because BuddyAllocator has the meta-data of each block, it can trace the used memory -- record the amount returned by `Alloc` freed in `Free`. Instead, `CPUAllocator` and `GPUAllocator` doesn't know the size of freed memory block and cannot do the trace.

#### System Allocators

The `GPUAllocator` and `CPUAllocator` are calls *system allocators*. They work as the fallback allocators of `BuddyAllocator`.

## Justification

I got inspiration from Majel and Caffe2, though above design look different from both.

### Caffe2

In Caffe2, `Tensor<Context>::mutable_data()` allocates the memroy. In particular, [`Tensor<Context>::mutable_data`](https://github.com/caffe2/caffe2/blob/v0.7.0/caffe2/core/tensor.h#L523) calls [`Tensor<Context>::raw_mutable_data`](https://github.com/caffe2/caffe2/blob/v0.7.0/caffe2/core/tensor.h#L459), which in turn calls [`Context::New`](https://github.com/caffe2/caffe2/blob/v0.7.0/caffe2/core/tensor.h#L479).

There are two implementations of `Context`:

1. [`CPUContext`](https://github.com/caffe2/caffe2/blob/v0.7.0/caffe2/core/context.h#L105), whose [`New` method](https://github.com/caffe2/caffe2/blob/v0.7.0/caffe2/core/context.h#L131) calls [`g_cpu_allocator.get()->New(size_t)`](https://github.com/caffe2/caffe2/blob/v0.7.0/caffe2/core/context.cc#L15) to allocate the memory.

1. [`CUDAContext`](https://github.com/caffe2/caffe2/blob/v0.7.0/caffe2/core/context_gpu.h#L99), which has a data member [`int gpu_id_`](https://github.com/caffe2/caffe2/blob/v0.7.0/caffe2/core/context_gpu.h#L202). This looks very similar to class `majel::GPUPlace`, who also has an `int id_` data member. `CUDAContext::New(size_t)` calls [`g_cub_allocator->DeviceAllocate(&ptr, nbytes)`](https://github.com/caffe2/caffe2/blob/v0.7.0/caffe2/core/context_gpu.cu#L355) to allocate the memory.

### Majel

In Majel, there are basically two allocator types:

1. `cpu::SystemAllocator`, which has similar functionality to `caffe2::CPUContext::New/Delete`.
1. `gpu::SystemAllocator`, which has similar functionality to `caffe2::CUDAContext::New/Delete`.

However, memory allocation is not via these two allocators. Instead, these two allocators are defined in hidden namespaces.

In Majel there are hidden global variables like:

1. `cpu::SystemAllocator g_cpu_allocator`, and
1. `vector<gpu::SystemAllocator*> g_gpu_allocators(NUM_GPUS)`.

Programs allocate memory via a BuddyAllocator, which can take the `g_cpu_allocator` or a `g_gpu_allocators[gpu_id]` as its *fallback allocator*, so that if BuddyAllocator cannot find a block in its memory pool, it extends its memory pool by calling the fallback allocator's `New(size_t)`.