Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add DetectionMAPEvaluator #2467

Merged
merged 3 commits into from
Jun 23, 2017
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
9 changes: 9 additions & 0 deletions doc/api/v2/config/evaluators.rst
Original file line number Diff line number Diff line change
Expand Up @@ -99,3 +99,12 @@ value_printer
.. automodule:: paddle.v2.evaluator
:members: value_printer
:noindex:

Detection
=====

detection_map
-------------
.. automodule:: paddle.v2.evaluator
:members: detection_map
:noindex:
308 changes: 308 additions & 0 deletions paddle/gserver/evaluators/DetectionMAPEvaluator.cpp
Original file line number Diff line number Diff line change
@@ -0,0 +1,308 @@
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "Evaluator.h"
#include "paddle/gserver/layers/DetectionUtil.h"

using std::map;
using std::vector;
using std::pair;
using std::make_pair;

namespace paddle {

/**
* @brief detection map Evaluator
*
* The config file api is detection_map_evaluator.
*/
class DetectionMAPEvaluator : public Evaluator {
public:
DetectionMAPEvaluator()
: evaluateDifficult_(false), cpuOutput_(nullptr), cpuLabel_(nullptr) {}

virtual void start() {
Evaluator::start();
allTruePos_.clear();
allFalsePos_.clear();
numPos_.clear();
}

virtual real evalImp(std::vector<Argument>& arguments) {
overlapThreshold_ = config_.overlap_threshold();
backgroundId_ = config_.background_id();
evaluateDifficult_ = config_.evaluate_difficult();
apType_ = config_.ap_type();

MatrixPtr detectTmpValue = arguments[0].value;
Matrix::resizeOrCreate(cpuOutput_,
detectTmpValue->getHeight(),
detectTmpValue->getWidth(),
false,
false);

MatrixPtr labelTmpValue = arguments[1].value;
Matrix::resizeOrCreate(cpuLabel_,
labelTmpValue->getHeight(),
labelTmpValue->getWidth(),
false,
false);

cpuOutput_->copyFrom(*detectTmpValue);
cpuLabel_->copyFrom(*labelTmpValue);

Argument label = arguments[1];
const int* labelIndex = label.sequenceStartPositions->getData(false);
size_t batchSize = label.getNumSequences();

vector<map<size_t, vector<NormalizedBBox>>> allGTBBoxes;
vector<map<size_t, vector<pair<real, NormalizedBBox>>>> allDetectBBoxes;

for (size_t n = 0; n < batchSize; ++n) {
map<size_t, vector<NormalizedBBox>> bboxes;
for (int i = labelIndex[n]; i < labelIndex[n + 1]; ++i) {
vector<NormalizedBBox> bbox;
getBBoxFromLabelData(cpuLabel_->getData() + i * 6, 1, bbox);
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

和layout相关6,7常量后续的PR需要重新设计,避免固定死,这里标记下

int c = cpuLabel_->getData()[i * 6];
bboxes[c].push_back(bbox[0]);
}
allGTBBoxes.push_back(bboxes);
}

size_t n = 0;
const real* cpuOutputData = cpuOutput_->getData();
for (size_t imgId = 0; imgId < batchSize; ++imgId) {
map<size_t, vector<pair<real, NormalizedBBox>>> bboxes;
size_t curImgId = static_cast<size_t>((cpuOutputData + n * 7)[0]);
while (curImgId == imgId && n < cpuOutput_->getHeight()) {
vector<real> label;
vector<real> score;
vector<NormalizedBBox> bbox;
getBBoxFromDetectData(cpuOutputData + n * 7, 1, label, score, bbox);
bboxes[label[0]].push_back(make_pair(score[0], bbox[0]));
++n;
curImgId = static_cast<size_t>((cpuOutputData + n * 7)[0]);
}
allDetectBBoxes.push_back(bboxes);
}

for (size_t n = 0; n < batchSize; ++n) {
for (map<size_t, vector<NormalizedBBox>>::iterator it =
allGTBBoxes[n].begin();
it != allGTBBoxes[n].end();
++it) {
size_t count = 0;
if (evaluateDifficult_) {
count = it->second.size();
} else {
for (size_t i = 0; i < it->second.size(); ++i)
if (!(it->second[i].isDifficult)) ++count;
}
if (numPos_.find(it->first) == numPos_.end() && count != 0) {
numPos_[it->first] = count;
} else {
numPos_[it->first] += count;
}
}
}

// calcTFPos
calcTFPos(batchSize, allGTBBoxes, allDetectBBoxes);

return 0;
}

virtual void printStats(std::ostream& os) const {
real mAP = calcMAP();
os << "Detection mAP=" << mAP;
}

virtual void distributeEval(ParameterClient2* client) {
LOG(FATAL) << "Distribute detection evaluation not implemented.";
}

protected:
void calcTFPos(const size_t batchSize,
const vector<map<size_t, vector<NormalizedBBox>>>& allGTBBoxes,
const vector<map<size_t, vector<pair<real, NormalizedBBox>>>>&
allDetectBBoxes) {
for (size_t n = 0; n < allDetectBBoxes.size(); ++n) {
if (allGTBBoxes[n].size() == 0) {
for (map<size_t, vector<pair<real, NormalizedBBox>>>::const_iterator
it = allDetectBBoxes[n].begin();
it != allDetectBBoxes[n].end();
++it) {
size_t label = it->first;
for (size_t i = 0; i < it->second.size(); ++i) {
allTruePos_[label].push_back(make_pair(it->second[i].first, 0));
allFalsePos_[label].push_back(make_pair(it->second[i].first, 1));
}
}
} else {
for (map<size_t, vector<pair<real, NormalizedBBox>>>::const_iterator
it = allDetectBBoxes[n].begin();
it != allDetectBBoxes[n].end();
++it) {
size_t label = it->first;
vector<pair<real, NormalizedBBox>> predBBoxes = it->second;
if (allGTBBoxes[n].find(label) == allGTBBoxes[n].end()) {
for (size_t i = 0; i < predBBoxes.size(); ++i) {
allTruePos_[label].push_back(make_pair(predBBoxes[i].first, 0));
allFalsePos_[label].push_back(make_pair(predBBoxes[i].first, 1));
}
} else {
vector<NormalizedBBox> gtBBoxes =
allGTBBoxes[n].find(label)->second;
vector<bool> visited(gtBBoxes.size(), false);
// Sort detections in descend order based on scores
std::sort(predBBoxes.begin(),
predBBoxes.end(),
sortScorePairDescend<NormalizedBBox>);
for (size_t i = 0; i < predBBoxes.size(); ++i) {
real maxOverlap = -1.0;
size_t maxIdx = 0;
for (size_t j = 0; j < gtBBoxes.size(); ++j) {
real overlap =
jaccardOverlap(predBBoxes[i].second, gtBBoxes[j]);
if (overlap > maxOverlap) {
maxOverlap = overlap;
maxIdx = j;
}
}
if (maxOverlap > overlapThreshold_) {
if (evaluateDifficult_ ||
(!evaluateDifficult_ && !gtBBoxes[maxIdx].isDifficult)) {
if (!visited[maxIdx]) {
allTruePos_[label].push_back(
make_pair(predBBoxes[i].first, 1));
allFalsePos_[label].push_back(
make_pair(predBBoxes[i].first, 0));
visited[maxIdx] = true;
} else {
allTruePos_[label].push_back(
make_pair(predBBoxes[i].first, 0));
allFalsePos_[label].push_back(
make_pair(predBBoxes[i].first, 1));
}
}
} else {
allTruePos_[label].push_back(make_pair(predBBoxes[i].first, 0));
allFalsePos_[label].push_back(
make_pair(predBBoxes[i].first, 1));
}
}
}
}
}
}
}

real calcMAP() const {
real mAP = 0.0;
size_t count = 0;
for (map<size_t, size_t>::const_iterator it = numPos_.begin();
it != numPos_.end();
++it) {
size_t label = it->first;
size_t labelNumPos = it->second;
if (labelNumPos == 0 || allTruePos_.find(label) == allTruePos_.end())
continue;
vector<pair<real, size_t>> labelTruePos = allTruePos_.find(label)->second;
vector<pair<real, size_t>> labelFalsePos =
allFalsePos_.find(label)->second;
// Compute average precision.
vector<size_t> tpCumSum;
getAccumulation(labelTruePos, &tpCumSum);
vector<size_t> fpCumSum;
getAccumulation(labelFalsePos, &fpCumSum);
std::vector<real> precision, recall;
size_t num = tpCumSum.size();
// Compute Precision.
for (size_t i = 0; i < num; ++i) {
CHECK_LE(tpCumSum[i], labelNumPos);
precision.push_back(static_cast<real>(tpCumSum[i]) /
static_cast<real>(tpCumSum[i] + fpCumSum[i]));
recall.push_back(static_cast<real>(tpCumSum[i]) / labelNumPos);
}
// VOC2007 style
if (apType_ == "11point") {
vector<real> maxPrecisions(11, 0.0);
int startIdx = num - 1;
for (int j = 10; j >= 0; --j)
for (int i = startIdx; i >= 0; --i) {
if (recall[i] < j / 10.) {
startIdx = i;
if (j > 0) maxPrecisions[j - 1] = maxPrecisions[j];
break;
} else {
if (maxPrecisions[j] < precision[i])
maxPrecisions[j] = precision[i];
}
}
for (int j = 10; j >= 0; --j) mAP += maxPrecisions[j] / 11;
++count;
} else if (apType_ == "Integral") {
// Nature integral
real averagePrecisions = 0.;
real prevRecall = 0.;
for (size_t i = 0; i < num; ++i) {
if (fabs(recall[i] - prevRecall) > 1e-6)
averagePrecisions += precision[i] * fabs(recall[i] - prevRecall);
prevRecall = recall[i];
}
mAP += averagePrecisions;
++count;
} else {
LOG(FATAL) << "Unkown ap version: " << apType_;
}
}
if (count != 0) mAP /= count;
return mAP * 100;
}

void getAccumulation(vector<pair<real, size_t>> inPairs,
vector<size_t>* accuVec) const {
std::stable_sort(
inPairs.begin(), inPairs.end(), sortScorePairDescend<size_t>);
accuVec->clear();
size_t sum = 0;
for (size_t i = 0; i < inPairs.size(); ++i) {
sum += inPairs[i].second;
accuVec->push_back(sum);
}
}

std::string getTypeImpl() const { return "detection_map"; }

real getValueImpl() const { return calcMAP(); }

private:
real overlapThreshold_; // overlap threshold when determining whether matched
bool evaluateDifficult_; // whether evaluate difficult ground truth
size_t backgroundId_; // class index of background
std::string apType_; // how to calculate mAP (Integral or 11point)

MatrixPtr cpuOutput_;
MatrixPtr cpuLabel_;

map<size_t, size_t> numPos_; // counts of true objects each classification
map<size_t, vector<pair<real, size_t>>>
allTruePos_; // true positive prediction
map<size_t, vector<pair<real, size_t>>>
allFalsePos_; // false positive prediction
};

REGISTER_EVALUATOR(detection_map, DetectionMAPEvaluator);

} // namespace paddle
17 changes: 17 additions & 0 deletions paddle/gserver/tests/test_Evaluator.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -138,6 +138,23 @@ void testEvaluatorAll(TestConfig testConf,
testEvaluator(testConf, testEvaluatorName, batchSize, false);
}

TEST(Evaluator, detection_map) {
TestConfig config;
config.evaluatorConfig.set_type("detection_map");
config.evaluatorConfig.set_overlap_threshold(0.5);
config.evaluatorConfig.set_background_id(0);
config.evaluatorConfig.set_ap_type("Integral");
config.evaluatorConfig.set_evaluate_difficult(0);

config.inputDefs.push_back({INPUT_DATA, "output", 7});
config.inputDefs.push_back({INPUT_SEQUENCE_DATA, "label", 6});
config.evaluatorConfig.set_evaluate_difficult(false);
testEvaluatorAll(config, "detection_map", 100);

config.evaluatorConfig.set_evaluate_difficult(true);
testEvaluatorAll(config, "detection_map", 100);
}

TEST(Evaluator, classification_error) {
TestConfig config;
config.evaluatorConfig.set_type("classification_error");
Expand Down
9 changes: 9 additions & 0 deletions proto/ModelConfig.proto
Original file line number Diff line number Diff line change
Expand Up @@ -489,6 +489,15 @@ message EvaluatorConfig {
// Used by ClassificationErrorEvaluator
// top # classification error
optional int32 top_k = 13 [default = 1];

// Used by DetectionMAPEvaluator
optional double overlap_threshold = 14 [default = 0.5];

optional int32 background_id = 15 [default = 0];

optional bool evaluate_difficult = 16 [default = false];

optional string ap_type = 17 [default = "11point"];
}

message LinkConfig {
Expand Down
Loading