-
Notifications
You must be signed in to change notification settings - Fork 5.6k
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Add DetectionMAPEvaluator #2467
Merged
Merged
Changes from all commits
Commits
File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,308 @@ | ||
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. | ||
|
||
Licensed under the Apache License, Version 2.0 (the "License"); | ||
you may not use this file except in compliance with the License. | ||
You may obtain a copy of the License at | ||
|
||
http://www.apache.org/licenses/LICENSE-2.0 | ||
|
||
Unless required by applicable law or agreed to in writing, software | ||
distributed under the License is distributed on an "AS IS" BASIS, | ||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
See the License for the specific language governing permissions and | ||
limitations under the License. */ | ||
|
||
#include "Evaluator.h" | ||
#include "paddle/gserver/layers/DetectionUtil.h" | ||
|
||
using std::map; | ||
using std::vector; | ||
using std::pair; | ||
using std::make_pair; | ||
|
||
namespace paddle { | ||
|
||
/** | ||
* @brief detection map Evaluator | ||
* | ||
* The config file api is detection_map_evaluator. | ||
*/ | ||
class DetectionMAPEvaluator : public Evaluator { | ||
public: | ||
DetectionMAPEvaluator() | ||
: evaluateDifficult_(false), cpuOutput_(nullptr), cpuLabel_(nullptr) {} | ||
|
||
virtual void start() { | ||
Evaluator::start(); | ||
allTruePos_.clear(); | ||
allFalsePos_.clear(); | ||
numPos_.clear(); | ||
} | ||
|
||
virtual real evalImp(std::vector<Argument>& arguments) { | ||
overlapThreshold_ = config_.overlap_threshold(); | ||
backgroundId_ = config_.background_id(); | ||
evaluateDifficult_ = config_.evaluate_difficult(); | ||
apType_ = config_.ap_type(); | ||
|
||
MatrixPtr detectTmpValue = arguments[0].value; | ||
Matrix::resizeOrCreate(cpuOutput_, | ||
detectTmpValue->getHeight(), | ||
detectTmpValue->getWidth(), | ||
false, | ||
false); | ||
|
||
MatrixPtr labelTmpValue = arguments[1].value; | ||
Matrix::resizeOrCreate(cpuLabel_, | ||
labelTmpValue->getHeight(), | ||
labelTmpValue->getWidth(), | ||
false, | ||
false); | ||
|
||
cpuOutput_->copyFrom(*detectTmpValue); | ||
cpuLabel_->copyFrom(*labelTmpValue); | ||
|
||
Argument label = arguments[1]; | ||
const int* labelIndex = label.sequenceStartPositions->getData(false); | ||
size_t batchSize = label.getNumSequences(); | ||
|
||
vector<map<size_t, vector<NormalizedBBox>>> allGTBBoxes; | ||
vector<map<size_t, vector<pair<real, NormalizedBBox>>>> allDetectBBoxes; | ||
|
||
for (size_t n = 0; n < batchSize; ++n) { | ||
map<size_t, vector<NormalizedBBox>> bboxes; | ||
for (int i = labelIndex[n]; i < labelIndex[n + 1]; ++i) { | ||
vector<NormalizedBBox> bbox; | ||
getBBoxFromLabelData(cpuLabel_->getData() + i * 6, 1, bbox); | ||
int c = cpuLabel_->getData()[i * 6]; | ||
bboxes[c].push_back(bbox[0]); | ||
} | ||
allGTBBoxes.push_back(bboxes); | ||
} | ||
|
||
size_t n = 0; | ||
const real* cpuOutputData = cpuOutput_->getData(); | ||
for (size_t imgId = 0; imgId < batchSize; ++imgId) { | ||
map<size_t, vector<pair<real, NormalizedBBox>>> bboxes; | ||
size_t curImgId = static_cast<size_t>((cpuOutputData + n * 7)[0]); | ||
while (curImgId == imgId && n < cpuOutput_->getHeight()) { | ||
vector<real> label; | ||
vector<real> score; | ||
vector<NormalizedBBox> bbox; | ||
getBBoxFromDetectData(cpuOutputData + n * 7, 1, label, score, bbox); | ||
bboxes[label[0]].push_back(make_pair(score[0], bbox[0])); | ||
++n; | ||
curImgId = static_cast<size_t>((cpuOutputData + n * 7)[0]); | ||
} | ||
allDetectBBoxes.push_back(bboxes); | ||
} | ||
|
||
for (size_t n = 0; n < batchSize; ++n) { | ||
for (map<size_t, vector<NormalizedBBox>>::iterator it = | ||
allGTBBoxes[n].begin(); | ||
it != allGTBBoxes[n].end(); | ||
++it) { | ||
size_t count = 0; | ||
if (evaluateDifficult_) { | ||
count = it->second.size(); | ||
} else { | ||
for (size_t i = 0; i < it->second.size(); ++i) | ||
if (!(it->second[i].isDifficult)) ++count; | ||
} | ||
if (numPos_.find(it->first) == numPos_.end() && count != 0) { | ||
numPos_[it->first] = count; | ||
} else { | ||
numPos_[it->first] += count; | ||
} | ||
} | ||
} | ||
|
||
// calcTFPos | ||
calcTFPos(batchSize, allGTBBoxes, allDetectBBoxes); | ||
|
||
return 0; | ||
} | ||
|
||
virtual void printStats(std::ostream& os) const { | ||
real mAP = calcMAP(); | ||
os << "Detection mAP=" << mAP; | ||
} | ||
|
||
virtual void distributeEval(ParameterClient2* client) { | ||
LOG(FATAL) << "Distribute detection evaluation not implemented."; | ||
} | ||
|
||
protected: | ||
void calcTFPos(const size_t batchSize, | ||
const vector<map<size_t, vector<NormalizedBBox>>>& allGTBBoxes, | ||
const vector<map<size_t, vector<pair<real, NormalizedBBox>>>>& | ||
allDetectBBoxes) { | ||
for (size_t n = 0; n < allDetectBBoxes.size(); ++n) { | ||
if (allGTBBoxes[n].size() == 0) { | ||
for (map<size_t, vector<pair<real, NormalizedBBox>>>::const_iterator | ||
it = allDetectBBoxes[n].begin(); | ||
it != allDetectBBoxes[n].end(); | ||
++it) { | ||
size_t label = it->first; | ||
for (size_t i = 0; i < it->second.size(); ++i) { | ||
allTruePos_[label].push_back(make_pair(it->second[i].first, 0)); | ||
allFalsePos_[label].push_back(make_pair(it->second[i].first, 1)); | ||
} | ||
} | ||
} else { | ||
for (map<size_t, vector<pair<real, NormalizedBBox>>>::const_iterator | ||
it = allDetectBBoxes[n].begin(); | ||
it != allDetectBBoxes[n].end(); | ||
++it) { | ||
size_t label = it->first; | ||
vector<pair<real, NormalizedBBox>> predBBoxes = it->second; | ||
if (allGTBBoxes[n].find(label) == allGTBBoxes[n].end()) { | ||
for (size_t i = 0; i < predBBoxes.size(); ++i) { | ||
allTruePos_[label].push_back(make_pair(predBBoxes[i].first, 0)); | ||
allFalsePos_[label].push_back(make_pair(predBBoxes[i].first, 1)); | ||
} | ||
} else { | ||
vector<NormalizedBBox> gtBBoxes = | ||
allGTBBoxes[n].find(label)->second; | ||
vector<bool> visited(gtBBoxes.size(), false); | ||
// Sort detections in descend order based on scores | ||
std::sort(predBBoxes.begin(), | ||
predBBoxes.end(), | ||
sortScorePairDescend<NormalizedBBox>); | ||
for (size_t i = 0; i < predBBoxes.size(); ++i) { | ||
real maxOverlap = -1.0; | ||
size_t maxIdx = 0; | ||
for (size_t j = 0; j < gtBBoxes.size(); ++j) { | ||
real overlap = | ||
jaccardOverlap(predBBoxes[i].second, gtBBoxes[j]); | ||
if (overlap > maxOverlap) { | ||
maxOverlap = overlap; | ||
maxIdx = j; | ||
} | ||
} | ||
if (maxOverlap > overlapThreshold_) { | ||
if (evaluateDifficult_ || | ||
(!evaluateDifficult_ && !gtBBoxes[maxIdx].isDifficult)) { | ||
if (!visited[maxIdx]) { | ||
allTruePos_[label].push_back( | ||
make_pair(predBBoxes[i].first, 1)); | ||
allFalsePos_[label].push_back( | ||
make_pair(predBBoxes[i].first, 0)); | ||
visited[maxIdx] = true; | ||
} else { | ||
allTruePos_[label].push_back( | ||
make_pair(predBBoxes[i].first, 0)); | ||
allFalsePos_[label].push_back( | ||
make_pair(predBBoxes[i].first, 1)); | ||
} | ||
} | ||
} else { | ||
allTruePos_[label].push_back(make_pair(predBBoxes[i].first, 0)); | ||
allFalsePos_[label].push_back( | ||
make_pair(predBBoxes[i].first, 1)); | ||
} | ||
} | ||
} | ||
} | ||
} | ||
} | ||
} | ||
|
||
real calcMAP() const { | ||
real mAP = 0.0; | ||
size_t count = 0; | ||
for (map<size_t, size_t>::const_iterator it = numPos_.begin(); | ||
it != numPos_.end(); | ||
++it) { | ||
size_t label = it->first; | ||
size_t labelNumPos = it->second; | ||
if (labelNumPos == 0 || allTruePos_.find(label) == allTruePos_.end()) | ||
continue; | ||
vector<pair<real, size_t>> labelTruePos = allTruePos_.find(label)->second; | ||
vector<pair<real, size_t>> labelFalsePos = | ||
allFalsePos_.find(label)->second; | ||
// Compute average precision. | ||
vector<size_t> tpCumSum; | ||
getAccumulation(labelTruePos, &tpCumSum); | ||
vector<size_t> fpCumSum; | ||
getAccumulation(labelFalsePos, &fpCumSum); | ||
std::vector<real> precision, recall; | ||
size_t num = tpCumSum.size(); | ||
// Compute Precision. | ||
for (size_t i = 0; i < num; ++i) { | ||
CHECK_LE(tpCumSum[i], labelNumPos); | ||
precision.push_back(static_cast<real>(tpCumSum[i]) / | ||
static_cast<real>(tpCumSum[i] + fpCumSum[i])); | ||
recall.push_back(static_cast<real>(tpCumSum[i]) / labelNumPos); | ||
} | ||
// VOC2007 style | ||
if (apType_ == "11point") { | ||
vector<real> maxPrecisions(11, 0.0); | ||
int startIdx = num - 1; | ||
for (int j = 10; j >= 0; --j) | ||
for (int i = startIdx; i >= 0; --i) { | ||
if (recall[i] < j / 10.) { | ||
startIdx = i; | ||
if (j > 0) maxPrecisions[j - 1] = maxPrecisions[j]; | ||
break; | ||
} else { | ||
if (maxPrecisions[j] < precision[i]) | ||
maxPrecisions[j] = precision[i]; | ||
} | ||
} | ||
for (int j = 10; j >= 0; --j) mAP += maxPrecisions[j] / 11; | ||
++count; | ||
} else if (apType_ == "Integral") { | ||
// Nature integral | ||
real averagePrecisions = 0.; | ||
real prevRecall = 0.; | ||
for (size_t i = 0; i < num; ++i) { | ||
if (fabs(recall[i] - prevRecall) > 1e-6) | ||
averagePrecisions += precision[i] * fabs(recall[i] - prevRecall); | ||
prevRecall = recall[i]; | ||
} | ||
mAP += averagePrecisions; | ||
++count; | ||
} else { | ||
LOG(FATAL) << "Unkown ap version: " << apType_; | ||
} | ||
} | ||
if (count != 0) mAP /= count; | ||
return mAP * 100; | ||
} | ||
|
||
void getAccumulation(vector<pair<real, size_t>> inPairs, | ||
vector<size_t>* accuVec) const { | ||
std::stable_sort( | ||
inPairs.begin(), inPairs.end(), sortScorePairDescend<size_t>); | ||
accuVec->clear(); | ||
size_t sum = 0; | ||
for (size_t i = 0; i < inPairs.size(); ++i) { | ||
sum += inPairs[i].second; | ||
accuVec->push_back(sum); | ||
} | ||
} | ||
|
||
std::string getTypeImpl() const { return "detection_map"; } | ||
|
||
real getValueImpl() const { return calcMAP(); } | ||
|
||
private: | ||
real overlapThreshold_; // overlap threshold when determining whether matched | ||
bool evaluateDifficult_; // whether evaluate difficult ground truth | ||
size_t backgroundId_; // class index of background | ||
std::string apType_; // how to calculate mAP (Integral or 11point) | ||
|
||
MatrixPtr cpuOutput_; | ||
MatrixPtr cpuLabel_; | ||
|
||
map<size_t, size_t> numPos_; // counts of true objects each classification | ||
map<size_t, vector<pair<real, size_t>>> | ||
allTruePos_; // true positive prediction | ||
map<size_t, vector<pair<real, size_t>>> | ||
allFalsePos_; // false positive prediction | ||
}; | ||
|
||
REGISTER_EVALUATOR(detection_map, DetectionMAPEvaluator); | ||
|
||
} // namespace paddle |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
和layout相关6,7常量后续的PR需要重新设计,避免固定死,这里标记下