Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

How to use CTC loss function? #68

Closed
F0REacH opened this issue Sep 12, 2016 · 7 comments
Closed

How to use CTC loss function? #68

F0REacH opened this issue Sep 12, 2016 · 7 comments
Assignees
Labels

Comments

@F0REacH
Copy link
Contributor

F0REacH commented Sep 12, 2016

How to use CTC loss function?
I'm planning to extend my dataset with unsegmented data, but cannot figure out how to use ctc_error_evaluator and ctc_layer
model:

def stacked_gru_net_with_ctc(input_dim=24,
                     class_dim=133,
                     hid_dim=129,
                     stacked_num=3,
                     is_predict=False):
    """
    """
    assert stacked_num % 2 == 1

    linear = LinearActivation()

    data = data_layer("word", input_dim)
    fc1 = fc_layer(input=data, size=hid_dim, act=linear)
    gru1 = grumemory(input=fc1)

    inputs = [fc1, gru1]
    for i in range(2, stacked_num + 1):
        fc = fc_layer(input=inputs, size=hid_dim, act=linear)
        gru = grumemory(input=fc, reverse=(i % 2) == 0)
        inputs = [fc, gru]


    output = fc_layer(input=inputs, size=class_dim, act=SoftmaxActivation())

    if is_predict:
        outputs(output)
    else:
        # FIXME? #outputs(classification_cost(input=output, label=data_layer('label', class_dim), evaluator=ctc_error_evaluator))
        outputs(classification_cost(input=output, label=data_layer('label', class_dim), evaluator=precision_recall_evaluator))

dataprovider:

    settings.input_types = [
        dense_vector_sequence(24),
        integer_value_sequence(133)]

Also I have no idea how to feed labels to model if sequences are not segmented. With simple classification_cost each timestep has label, but how to use dataprovider with unsegmented sequences and CTC?
My current dataset is 180 examples, each is roughly 5000 timesteps (variable length). Each timestep is len=24 float vector labeled with one int label in range 0..132 (133 labels total).
Any example/suggestion would be highly appreciated. Thanks

@qingqing01
Copy link
Contributor

qingqing01 commented Sep 14, 2016

You can use ctc_layer and ctc_error_evaluator as follows. Note, in consideration of the ‘blank’ label is needed by CTC, the size of ctc_layer and its input layer should be 134 (133 + 1). The 'blank' is the last category index by default, namely 133. We also integrate warp-CTC before, which may be merged later.

   ... # omit the previous content

   output = fc_layer(input=inputs, size=134, act=SoftmaxActivation())

   label = data_layer('label', class_dim)
   ctc = ctc_layer(input=output, label=label, 134)
   eval = ctc_error_evaluator(input=output, label=label)
   outputs(ctc)

@F0REacH
Copy link
Contributor Author

F0REacH commented Sep 14, 2016

@qingqing01 Many thanks.

@F0REacH F0REacH closed this as completed Sep 14, 2016
@qingqing01
Copy link
Contributor

@F0REacH I forget to remind you to update the code.

@F0REacH
Copy link
Contributor Author

F0REacH commented Sep 14, 2016

@qingqing01 I saw commit 9f3cbed fixed ctc issues. Nice work

@F0REacH
Copy link
Contributor Author

F0REacH commented Sep 14, 2016

Hi, @qingqing01
I've pulled the latest code and changed the model as you suggested:

def stacked_gru_net_with_ctc(input_dim=24,
                     class_dim=133,
                     hid_dim=129,
                     stacked_num=3,
                     is_predict=False):
    """
    """
    assert stacked_num % 2 == 1

    linear = LinearActivation()

    data = data_layer("word", input_dim)
    fc1 = fc_layer(input=data, size=hid_dim, act=linear)
    gru1 = grumemory(input=fc1)

    inputs = [fc1, gru1]
    for i in range(2, stacked_num + 1):
        fc = fc_layer(input=inputs, size=hid_dim, act=linear)
        gru = grumemory(input=fc, reverse=(i % 2) == 0)
        inputs = [fc, gru]

    output = fc_layer(input=inputs, size=class_dim+1, act=SoftmaxActivation())
    label = data_layer('label', class_dim)
    ctc = ctc_layer(input=output, label=label, size=class_dim+1)

    if is_predict:
        outputs(output)
    else:
        eval = ctc_error_evaluator(input=output, label=label)
        outputs(ctc)

But somehow started getting segmentation fault error:

Program terminated with signal SIGSEGV, Segmentation fault.
#0  0x0000000000b1ed66 in __gnu_cxx::__ops::_Iter_less_iter::operator()<float*, float*> (this=0x7ffcb7b25980, __it1=0x21cc21000, __it2=0x21cc21004) at /opt/gcc/include/c++/4.9.4/bits/predefined_ops.h:42
42            { return *__it1 < *__it2; }
[Current thread is 1 (Thread 0x7f5fe144f800 (LWP 8836))]
(gdb) bt
#0  0x0000000000b1ed66 in __gnu_cxx::__ops::_Iter_less_iter::operator()<float*, float*> (this=0x7ffcb7b25980, __it1=0x21cc21000, __it2=0x21cc21004) at /opt/gcc/include/c++/4.9.4/bits/predefined_ops.h:42
#1  0x0000000000b1e9ed in std::__max_element<float*, __gnu_cxx::__ops::_Iter_less_iter> (__first=0x21cc21004, __last=0x21cc21218, __comp=...) at /opt/gcc/include/c++/4.9.4/bits/stl_algo.h:5474
#2  0x0000000000b1e84c in std::max_element<float*> (__first=0x21cc21000, __last=0x21cc21218) at /opt/gcc/include/c++/4.9.4/bits/stl_algo.h:5497
#3  0x0000000000b1d1dc in paddle::CTCErrorEvaluator::bestLabelSeq (this=0x13a573f0) at /home/foreach/SOFT/BAIDU/PADDLE/Paddle/paddle/gserver/evaluators/CTCErrorEvaluator.cpp:52
#4  0x0000000000b1dc29 in paddle::CTCErrorEvaluator::editDistance (this=0x13a573f0, output=0x219046ce8, numTimes=120314, numClasses=134, labels=0x2049e5928, labelsLen=61) at /home/foreach/SOFT/BAIDU/PADDLE/Paddle/paddle/gserver/evaluators/CTCErrorEvaluator.cpp:175
#5  0x0000000000b1e152 in paddle::CTCErrorEvaluator::evalImp (this=0x13a573f0, arguments=std::vector of length 2, capacity 2 = {...}) at /home/foreach/SOFT/BAIDU/PADDLE/Paddle/paddle/gserver/evaluators/CTCErrorEvaluator.cpp:212
#6  0x0000000000affcae in paddle::Evaluator::eval (this=0x13a573f0, nn=...) at /home/foreach/SOFT/BAIDU/PADDLE/Paddle/paddle/gserver/evaluators/Evaluator.cpp:32
#7  0x0000000000b1e23e in paddle::CTCErrorEvaluator::eval (this=0x13a573f0, nn=...) at /home/foreach/SOFT/BAIDU/PADDLE/Paddle/paddle/gserver/evaluators/CTCErrorEvaluator.cpp:221
#8  0x0000000000ad6e4e in paddle::CombinedEvaluator::eval (this=0x13a57340, nn=...) at /home/foreach/SOFT/BAIDU/PADDLE/Paddle/paddle/gserver/gradientmachines/NeuralNetwork.cpp:321
#9  0x0000000000ad4f44 in paddle::NeuralNetwork::eval (this=0x136f0e70, evaluator=0x13a57340) at /home/foreach/SOFT/BAIDU/PADDLE/Paddle/paddle/gserver/gradientmachines/NeuralNetwork.cpp:379
#10 0x0000000000bc461e in paddle::TrainerInternal::trainOneBatch (this=0x7ffcb7b26a30, batchId=0, dataBatch=...) at /home/foreach/SOFT/BAIDU/PADDLE/Paddle/paddle/trainer/TrainerInternal.cpp:143
#11 0x0000000000bbe532 in paddle::Trainer::trainOnePass (this=0x7ffcb7b26980, passId=0) at /home/foreach/SOFT/BAIDU/PADDLE/Paddle/paddle/trainer/Trainer.cpp:434
#12 0x0000000000bbd1e0 in paddle::Trainer::train (this=0x7ffcb7b26980, numPasses=100000) at /home/foreach/SOFT/BAIDU/PADDLE/Paddle/paddle/trainer/Trainer.cpp:280
#13 0x00000000009f2761 in main (argc=12, argv=0x7ffcb7b27518) at /home/foreach/SOFT/BAIDU/PADDLE/Paddle/paddle/trainer/TrainerMain.cpp:100
(gdb) frame 3
#3  0x0000000000b1d1dc in paddle::CTCErrorEvaluator::bestLabelSeq (this=0x13a573f0) at /home/foreach/SOFT/BAIDU/PADDLE/Paddle/paddle/gserver/evaluators/CTCErrorEvaluator.cpp:52
52                                            acts + (i + 1) * numClasses_) -
(gdb) info locals
i = 117089
path = std::vector of length 117089, capacity 131072 = {118, 60, 7, 7, 97, 40, 53, 40, 53, 53, 53, 7, 7, 7, 7, 7, 44, 44, 132, 7, 7, 53, 53, 53, 53, 53, 53, 53, 53, 97, 97, 7, 53, 53, 40, 53, 53, 17, 7, 7, 44, 44, 53, 53, 53, 22, 7, 44, 44, 17, 7, 87, 87, 53, 53, 53, 53, 53, 53, 53, 
  53, 53, 53, 53, 53, 53, 7, 51, 53, 53, 53, 129, 129, 48, 48, 48, 48, 48, 112, 112, 2, 47, 31, 60, 48, 48, 48, 20, 60, 60, 60, 60, 60, 6, 48, 48, 48, 48, 39, 39, 60, 127, 48, 127, 127, 127, 127, 127, 127, 127, 127, 127, 127, 127, 127, 127, 127, 6, 127, 127, 127, 127, 127, 127, 60, 
  127, 127, 60, 6, 38, 118, 38, 84, 84, 84, 84, 39, 39, 127, 127, 127, 127, 127, 2, 54, 54, 47, 47, 47, 48, 48, 48, 48, 48, 15, 48, 48, 48, 47, 47, 47, 48, 47, 48, 48, 48, 48, 48, 47, 48, 48, 48, 112, 97, 97, 6, 39, 6, 21, 6, 21, 39, 127, 48, 48, 54, 54, 48, 48, 127, 127, 127, 127, 
  127, 127, 127, 127, 127, 127, 127...}
acts = 0x219046ce8
(gdb) p numClasses_
$1 = 134
(gdb) p numTimes_
$2 = 120314

@F0REacH F0REacH reopened this Sep 14, 2016
@qingqing01
Copy link
Contributor

Hi, please refer to the changes in paddle/gserver/evaluators/CTCErrorEvaluator.cpp at this pull https://github.com/baidu/Paddle/pull/82/files

@F0REacH
Copy link
Contributor Author

F0REacH commented Sep 15, 2016

Thanks, @qingqing01 with pull #82 all is OK.

@F0REacH F0REacH closed this as completed Sep 15, 2016
qingqing01 pushed a commit to qingqing01/Paddle that referenced this issue Apr 30, 2020
thisjiang pushed a commit to thisjiang/Paddle that referenced this issue Oct 28, 2021
gglin001 added a commit to graphcore/Paddle-fork that referenced this issue Dec 8, 2021
* add equal,mean, fix mul

* add equal, mean, elementwis_miul tests

* include header
wangxicoding pushed a commit to wangxicoding/Paddle that referenced this issue Dec 9, 2021
* Update Dureader-yesno example, fix run_glue bug

* minor fix

* minor fix

* add predict() func

* minor fix

* add paddle.no_grad() for eval
zhoutianzi666 pushed a commit to zhoutianzi666/Paddle that referenced this issue May 23, 2022
AnnaTrainingG pushed a commit to AnnaTrainingG/Paddle that referenced this issue Sep 19, 2022
wangzhen38 pushed a commit to wangzhen38/Paddle that referenced this issue Nov 7, 2022
jack603047588 referenced this issue in jack603047588/Paddle Nov 9, 2022
…d enable train binding cpu mode support mix train (#68)
zmxdream pushed a commit to zmxdream/Paddle that referenced this issue Oct 10, 2023
zmxdream pushed a commit to zmxdream/Paddle that referenced this issue Oct 10, 2023
propagate nan and inf in relu and scaled_fc
hanhaowen-mt pushed a commit to hanhaowen-mt/Paddle that referenced this issue Feb 29, 2024
tc20042008 added a commit to tc20042008/Paddle that referenced this issue Mar 14, 2024
refactor ShardableAxesSignature by group_pattern.SoleOutputShardableAxes
WAYKEN-TSE pushed a commit to WAYKEN-TSE/Paddle that referenced this issue Dec 6, 2024
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
Projects
None yet
Development

No branches or pull requests

3 participants