Skip to content

Commit

Permalink
2022-06-01_pre-commit
Browse files Browse the repository at this point in the history
  • Loading branch information
yangguohao committed Jun 1, 2022
1 parent b7b06e3 commit f06ad62
Show file tree
Hide file tree
Showing 2 changed files with 31 additions and 24 deletions.
21 changes: 10 additions & 11 deletions python/paddle/nn/functional/loss.py
Original file line number Diff line number Diff line change
Expand Up @@ -2235,7 +2235,7 @@ def hinge_embedding_loss(input, label, margin=1.0, reduction='mean', name=None):
def triplet_margin_loss(input,
positive,
negative,
margin=1.0,
margin=1.0,
p=2,
epsilon=1e-6,
swap=False,
Expand Down Expand Up @@ -2270,16 +2270,16 @@ def triplet_margin_loss(input,
negative (Tensor): Negative tensor, the data type is float32 or float64.
The shape of label is the same as the shape of input.
margin (float, Optional): Default: :math:`1`.
margin (float, Optional): Default: :math:`1`.
p (int, Optional): The norm degree for pairwise distance. Default: :math:`2`.
epsilon (float, Optional): Add small value to avoid division by zero,
default value is 1e-6.
swap (bool,Optional): The distance swap change the negative distance to the distance between
swap (bool,Optional): The distance swap change the negative distance to the distance between
positive sample and negative sample. For more details, see `Learning shallow convolutional feature descriptors with triplet losses`.
Default: ``False``.
Default: ``False``.
reduction (str, Optional):Indicate how to average the loss by batch_size.
Expand Down Expand Up @@ -2318,7 +2318,7 @@ def triplet_margin_loss(input,
raise ValueError(
"'reduction' in 'triplet_margin_loss' should be 'sum', 'mean' or 'none', "
"but received {}.".format(reduction))
if margin<0:
if margin < 0:
raise ValueError(
"The margin between positive samples and negative samples should be greater than 0."
)
Expand All @@ -2330,11 +2330,10 @@ def triplet_margin_loss(input,
check_variable_and_dtype(negative, 'negative', ['float32', 'float64'],
'triplet_margin_loss')

if not(input.shape==positive.shape==negative.shape):
raise ValueError(
"input's shape must equal to "
"positive's shape and "
"negative's shape")
if not (input.shape == positive.shape == negative.shape):
raise ValueError("input's shape must equal to "
"positive's shape and "
"negative's shape")

distance_function = paddle.nn.PairwiseDistance(p, epsilon=epsilon)
positive_dist = distance_function(input, positive)
Expand All @@ -2344,7 +2343,7 @@ def triplet_margin_loss(input,
swap_dist = distance_function(positive, negative)
negative_dist = paddle.minimum(negative_dist, swap_dist)

loss = paddle.clip(positive_dist-negative_dist+margin, min=0.0)
loss = paddle.clip(positive_dist - negative_dist + margin, min=0.0)

if reduction == 'mean':
return paddle.mean(loss, name=name)
Expand Down
34 changes: 21 additions & 13 deletions python/paddle/nn/layer/loss.py
Original file line number Diff line number Diff line change
Expand Up @@ -1352,13 +1352,13 @@ class TripletMarginLoss(Layer):
Call Parameters:
input (Tensor):Input tensor, the data type is float32 or float64.
the shape is [N, \*], N is batch size and `\*` means any number of additional dimensions, available dtype is float32, float64.
the shape is [N, \*], N is batch size and `\*` means any number of additional dimensions, available dtype is float32, float64.
positive (Tensor):Positive tensor, the data type is float32 or float64.
The shape of label is the same as the shape of input.
The shape of label is the same as the shape of input.
negative (Tensor):Negative tensor, the data type is float32 or float64.
The shape of label is the same as the shape of input.
The shape of label is the same as the shape of input.
Returns:
Tensor. The tensor variable storing the triplet_margin_loss of input and positive and negative.
Expand All @@ -1383,7 +1383,14 @@ class TripletMarginLoss(Layer):
# Tensor([0.19165580])
"""
def __init__(self, margin=1.0, p=2., epsilon= 1e-6, swap=False, reduction='mean', name=None):

def __init__(self,
margin=1.0,
p=2.,
epsilon=1e-6,
swap=False,
reduction='mean',
name=None):
super(TripletMarginLoss, self).__init__()
if reduction not in ['sum', 'mean', 'none']:
raise ValueError(
Expand All @@ -1397,12 +1404,13 @@ def __init__(self, margin=1.0, p=2., epsilon= 1e-6, swap=False, reduction='mean'
self.name = name

def forward(self, input, positive, negative):
return F.triplet_margin_loss(input,
positive,
negative,
margin=self.margin,
p=self.p,
epsilon=self.epsilon,
swap=self.swap,
reduction=self.reduction,
name=self.name)
return F.triplet_margin_loss(
input,
positive,
negative,
margin=self.margin,
p=self.p,
epsilon=self.epsilon,
swap=self.swap,
reduction=self.reduction,
name=self.name)

0 comments on commit f06ad62

Please sign in to comment.