Skip to content

Commit

Permalink
bf16 for interpolate, nhwc for bf16 (#48192)
Browse files Browse the repository at this point in the history
  • Loading branch information
FeixLiu authored Nov 22, 2022
1 parent 4da1a0f commit e0dd4ee
Show file tree
Hide file tree
Showing 4 changed files with 22 additions and 6 deletions.
7 changes: 4 additions & 3 deletions paddle/phi/kernels/gpu/interpolate_grad_kernel.cu
Original file line number Diff line number Diff line change
Expand Up @@ -487,13 +487,13 @@ __global__ void KeBicubicInterpBw(T* in,
T in_img_idy = align_corners
? static_cast<T>(ratio_h * out_img_idy)
: static_cast<T>(ratio_h * (out_img_idy + 0.5) - 0.5);
int input_y = floorf(in_img_idy);
int input_y = floorf(static_cast<float>(in_img_idy));
using MT = typename phi::dtype::MPTypeTrait<T>::Type;
const T y_t = static_cast<T>(static_cast<MT>(in_img_idy) - input_y);
T in_img_idx = align_corners
? static_cast<T>(ratio_w * out_img_idx)
: static_cast<T>(ratio_w * (out_img_idx + 0.5) - 0.5);
int input_x = floorf(in_img_idx);
int input_x = floorf(static_cast<float>(in_img_idx));
const T x_t = static_cast<T>(static_cast<MT>(in_img_idx) - input_x);

T x_coeffs[4];
Expand Down Expand Up @@ -1577,7 +1577,8 @@ PD_REGISTER_KERNEL(nearest_interp_grad,
phi::NearestInterpGradKernel,
float,
double,
phi::dtype::float16) {
phi::dtype::float16,
phi::dtype::bfloat16) {
kernel->InputAt(2).SetBackend(phi::Backend::ALL_BACKEND);
kernel->InputAt(3).SetBackend(phi::Backend::ALL_BACKEND);
}
Expand Down
5 changes: 3 additions & 2 deletions paddle/phi/kernels/gpu/interpolate_kernel.cu
Original file line number Diff line number Diff line change
Expand Up @@ -355,14 +355,14 @@ __global__ void KeBicubicInterpFw(const T* in,
T in_img_idy = align_corners
? static_cast<T>(ratio_h * out_img_idy)
: static_cast<T>(ratio_h * (out_img_idy + 0.5) - 0.5);
int input_y = floorf(in_img_idy);
int input_y = floorf(static_cast<float>(in_img_idy));
using MT = typename phi::dtype::MPTypeTrait<T>::Type;
const T y_t = static_cast<T>(static_cast<MT>(in_img_idy) - input_y);

T in_img_idx = align_corners
? static_cast<T>(ratio_w * out_img_idx)
: static_cast<T>(ratio_w * (out_img_idx + 0.5) - 0.5);
int input_x = floorf(in_img_idx);
int input_x = floorf(static_cast<float>(in_img_idx));
const T x_t = static_cast<T>(static_cast<MT>(in_img_idx) - input_x);

T coefficients[4];
Expand Down Expand Up @@ -1468,6 +1468,7 @@ PD_REGISTER_KERNEL(nearest_interp,
float,
double,
phi::dtype::float16,
phi::dtype::bfloat16,
int,
int64_t) {
kernel->InputAt(2).SetBackend(phi::Backend::ALL_BACKEND);
Expand Down
6 changes: 6 additions & 0 deletions paddle/phi/kernels/gpudnn/conv_grad_kernel.cu
Original file line number Diff line number Diff line change
Expand Up @@ -454,8 +454,14 @@ void ConvCudnnGradKernel(const Context& ctx,
#ifdef PADDLE_WITH_HIP
// HIP MIOPEN ONLY SUPPORT NCHW format
auto compute_format = paddle::platform::DataLayout::kNCHW;
#else
#if CUDNN_VERSION_MIN(8, 1, 0)
const bool compute_in_nhwc =
(dtype == CUDNN_DATA_HALF || dtype == CUDNN_DATA_BFLOAT16) &&
IsVoltaOrLater(ctx);
#else
const bool compute_in_nhwc = dtype == CUDNN_DATA_HALF && IsVoltaOrLater(ctx);
#endif
auto compute_format = compute_in_nhwc && channel_last
? paddle::platform::DataLayout::kNHWC
: paddle::platform::DataLayout::kNCHW;
Expand Down
10 changes: 9 additions & 1 deletion paddle/phi/kernels/gpudnn/conv_kernel.cu
Original file line number Diff line number Diff line change
Expand Up @@ -373,10 +373,18 @@ void ConvCudnnKernel(const Context& ctx,
#ifdef PADDLE_WITH_HIP
// HIP MIOPEN ONLY SUPPORT NCHW format
auto compute_format = paddle::platform::DataLayout::kNCHW;
#else
#if CUDNN_VERSION_MIN(8, 1, 0)
// Tensor Core introduced from Volta GPUs supports more faster conv op
// with FP16 or BF16 in NHWC data format.
const bool compute_in_nhwc =
(dtype == CUDNN_DATA_HALF || dtype == CUDNN_DATA_BFLOAT16) &&
IsVoltaOrLater(ctx);
#else
// Tensor Core introduced from Volta GPUs supports more faster conv op
// with FP16 in NHWC data format.
// with FP16 in NHWC data format. (BF16 require cudnn >= 8.1.0)
const bool compute_in_nhwc = dtype == CUDNN_DATA_HALF && IsVoltaOrLater(ctx);
#endif
// We will only do data format conversion from NHWC to NCHW.
// cudnn will convert NCHW to NHWC automatically on Tensor Core.
auto compute_format = compute_in_nhwc && channel_last
Expand Down

0 comments on commit e0dd4ee

Please sign in to comment.