Skip to content

Commit

Permalink
NPU add elementwise_mod
Browse files Browse the repository at this point in the history
  • Loading branch information
Aganlengzi committed Aug 29, 2021
1 parent 31cd106 commit dd47f2a
Show file tree
Hide file tree
Showing 2 changed files with 259 additions and 0 deletions.
77 changes: 77 additions & 0 deletions paddle/fluid/operators/elementwise/elementwise_mod_op_npu.cc
Original file line number Diff line number Diff line change
@@ -0,0 +1,77 @@
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/elementwise/elementwise_mod_op.h"
#include "paddle/fluid/operators/elementwise/elementwise_npu.h"
#include "paddle/fluid/operators/npu_op_runner.h"

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;

template <typename DeviceContext, typename T>
class ElementwiseModNPUKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
auto& dev_ctx =
ctx.template device_context<paddle::platform::NPUDeviceContext>();
auto* x = ctx.Input<Tensor>("X");
auto* y = ctx.Input<Tensor>("Y");
auto* out = ctx.Output<Tensor>("Out");
int axis = ctx.Attr<int>("axis");

auto x_dims = x->dims();
auto y_dims = y->dims();

axis = (axis == -1 ? std::abs(x_dims.size() - y_dims.size()) : axis);

bool direct_compute = false;
if (x_dims.size() >= y_dims.size()) {
direct_compute =
y_dims == framework::slice_ddim(x_dims, axis, x_dims.size());
} else {
direct_compute =
x_dims == framework::slice_ddim(y_dims, axis, y_dims.size());
}

Tensor transformed_x, transformed_y;
if (direct_compute) {
transformed_x.ShareDataWith(*x);
transformed_y.ShareDataWith(*y);
} else {
NpuElementWiseOpBroadcast<T>(dev_ctx, x, y, axis, &transformed_x,
&transformed_y);
}
out->mutable_data<T>(ctx.GetPlace());
const auto& runner =
NpuOpRunner("FloorMod", {transformed_x, transformed_y}, {*out}, {});
auto stream = dev_ctx.stream();
runner.Run(stream);
}
};

} // namespace operators
} // namespace paddle

namespace ops = paddle::operators;

REGISTER_OP_NPU_KERNEL(
elementwise_mod,
ops::ElementwiseModNPUKernel<paddle::platform::NPUDeviceContext, float>,
ops::ElementwiseModNPUKernel<paddle::platform::NPUDeviceContext, double>,
ops::ElementwiseModNPUKernel<paddle::platform::NPUDeviceContext, int>,
ops::ElementwiseModNPUKernel<paddle::platform::NPUDeviceContext, int64_t>,
ops::ElementwiseModNPUKernel<paddle::platform::NPUDeviceContext,
paddle::platform::float16>);
182 changes: 182 additions & 0 deletions python/paddle/fluid/tests/unittests/npu/test_elementwise_mod_op_npu.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,182 @@
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function
import numpy as np
import unittest

import sys
sys.path.append("..")
from op_test import OpTest

import paddle
import paddle.fluid as fluid

import random

paddle.enable_static()


class TestElementwiseModOp(OpTest):
def setUp(self):
self.set_npu()
self.place = paddle.NPUPlace(0)
self.op_type = "elementwise_mod"
self.axis = -1
self.init_dtype()
self.init_input_output()
self.init_kernel_type()
self.init_axis()

self.inputs = {
'X': OpTest.np_dtype_to_fluid_dtype(self.x),
'Y': OpTest.np_dtype_to_fluid_dtype(self.y)
}
self.attrs = {'axis': self.axis, 'use_mkldnn': self.use_mkldnn}
self.outputs = {'Out': self.out}

def init_kernel_type(self):
self.use_mkldnn = False

def init_dtype(self):
self.dtype = np.int32

def init_axis(self):
pass

def set_npu(self):
self.__class__.use_npu = True

def init_input_output(self):
self.x = np.random.uniform(0, 10000, [10, 10]).astype(self.dtype)
self.y = np.random.uniform(0, 1000, [10, 10]).astype(self.dtype)
self.out = np.mod(self.x, self.y)

def test_check_output(self):
self.check_output_with_place(self.place)


class TestElementwiseModOpInt64(TestElementwiseModOp):
def init_dtype(self):
self.dtype = np.int64


class TestElementwiseModOp_scalar(TestElementwiseModOp):
def init_input_output(self):
scale_x = random.randint(0, 100000000)
scale_y = random.randint(1, 100000000)
self.x = (np.random.rand(2, 3, 4) * scale_x).astype(self.dtype)
self.y = (np.random.rand(1) * scale_y + 1).astype(self.dtype)
self.out = np.mod(self.x, self.y)


class TestElementwiseModOpFloat(TestElementwiseModOp):
def init_dtype(self):
self.dtype = np.float32

def init_input_output(self):
self.x = np.random.uniform(-1000, 1000, [10, 10]).astype(self.dtype)
self.y = np.random.uniform(-100, 100, [10, 10]).astype(self.dtype)
self.out = np.fmod(self.y + np.fmod(self.x, self.y), self.y)

def test_check_output(self):
self.check_output_with_place(self.place, atol=1e-4)


class TestElementwiseModOpDouble(TestElementwiseModOpFloat):
def init_dtype(self):
self.dtype = np.float64

def test_check_output(self):
self.check_output_with_place(self.place)


class TestElementwiseModOpFP16(TestElementwiseModOpFloat):
def init_dtype(self):
self.dtype = np.float16

def test_check_output(self):
self.check_output_with_place(self.place, atol=1e-1)


class TestElementwiseModOp_broadcast_0(TestElementwiseModOp):
def init_input_output(self):
self.x = np.random.rand(100, 2, 3).astype(self.dtype)
self.y = np.random.rand(100).astype(self.dtype)
self.out = np.mod(self.x, self.y.reshape(100, 1, 1))

def init_axis(self):
self.axis = 0


class TestElementwiseModOp_broadcast_1(TestElementwiseModOp):
def init_input_output(self):
self.x = np.random.rand(2, 100, 3).astype(self.dtype)
self.y = np.random.rand(100).astype(self.dtype)
self.out = np.mod(self.x, self.y.reshape(1, 100, 1))

def init_axis(self):
self.axis = 1


class TestElementwiseModOp_broadcast_2(TestElementwiseModOp):
def init_input_output(self):
self.x = np.random.rand(2, 3, 100).astype(self.dtype)
self.y = np.random.rand(100).astype(self.dtype)
self.out = np.mod(self.x, self.y.reshape(1, 1, 100))

def init_axis(self):
self.axis = 2


class TestRemainderOp(unittest.TestCase):
def test_name(self):
paddle.set_device('npu:0')
with fluid.program_guard(fluid.Program()):
x = fluid.data(name="x", shape=[2, 3], dtype="int64")
y = fluid.data(name='y', shape=[2, 3], dtype='int64')
y_1 = paddle.remainder(x, y, name='div_res')
self.assertEqual(('div_res' in y_1.name), True)

def test_dygraph(self):
paddle.set_device('npu:0')
with fluid.dygraph.guard():
np_x = np.array([2, 3, 8, 7]).astype('int64')
np_y = np.array([1, 5, 3, 3]).astype('int64')
x = paddle.to_tensor(np_x)
y = paddle.to_tensor(np_y)
z = paddle.remainder(x, y)
np_z = z.numpy()
z_expected = np.array([0, 3, 2, 1])
self.assertEqual((np_z == z_expected).all(), True)

np_x = np.array([-3.3, 11.5, -2, 3.5])
np_y = np.array([-1.2, 2., 3.3, -2.3])
x = paddle.to_tensor(np_x)
y = paddle.to_tensor(np_y)
z = x % y
z_expected = np.array([-0.9, 1.5, 1.3, -1.1])
self.assertEqual(np.allclose(z_expected, z.numpy()), True)

np_x = np.array([-3, 11, -2, 3])
np_y = np.array([-1, 2, 3, -2])
x = paddle.to_tensor(np_x, dtype="int64")
y = paddle.to_tensor(np_y, dtype="int64")
z = x % y
z_expected = np.array([0, 1, 1, -1])
self.assertEqual(np.allclose(z_expected, z.numpy()), True)


if __name__ == '__main__':
unittest.main()

1 comment on commit dd47f2a

@paddle-bot-old
Copy link

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Congratulation! Your pull request passed all required CI. You could ask reviewer(s) to approve and merge. 🎉

Please sign in to comment.