-
Notifications
You must be signed in to change notification settings - Fork 5.6k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
31cd106
commit dd47f2a
Showing
2 changed files
with
259 additions
and
0 deletions.
There are no files selected for viewing
77 changes: 77 additions & 0 deletions
77
paddle/fluid/operators/elementwise/elementwise_mod_op_npu.cc
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,77 @@ | ||
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. | ||
Licensed under the Apache License, Version 2.0 (the "License"); | ||
you may not use this file except in compliance with the License. | ||
You may obtain a copy of the License at | ||
http://www.apache.org/licenses/LICENSE-2.0 | ||
Unless required by applicable law or agreed to in writing, software | ||
distributed under the License is distributed on an "AS IS" BASIS, | ||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
See the License for the specific language governing permissions and | ||
limitations under the License. */ | ||
|
||
#include "paddle/fluid/operators/elementwise/elementwise_mod_op.h" | ||
#include "paddle/fluid/operators/elementwise/elementwise_npu.h" | ||
#include "paddle/fluid/operators/npu_op_runner.h" | ||
|
||
namespace paddle { | ||
namespace operators { | ||
|
||
using Tensor = framework::Tensor; | ||
|
||
template <typename DeviceContext, typename T> | ||
class ElementwiseModNPUKernel : public framework::OpKernel<T> { | ||
public: | ||
void Compute(const framework::ExecutionContext& ctx) const override { | ||
auto& dev_ctx = | ||
ctx.template device_context<paddle::platform::NPUDeviceContext>(); | ||
auto* x = ctx.Input<Tensor>("X"); | ||
auto* y = ctx.Input<Tensor>("Y"); | ||
auto* out = ctx.Output<Tensor>("Out"); | ||
int axis = ctx.Attr<int>("axis"); | ||
|
||
auto x_dims = x->dims(); | ||
auto y_dims = y->dims(); | ||
|
||
axis = (axis == -1 ? std::abs(x_dims.size() - y_dims.size()) : axis); | ||
|
||
bool direct_compute = false; | ||
if (x_dims.size() >= y_dims.size()) { | ||
direct_compute = | ||
y_dims == framework::slice_ddim(x_dims, axis, x_dims.size()); | ||
} else { | ||
direct_compute = | ||
x_dims == framework::slice_ddim(y_dims, axis, y_dims.size()); | ||
} | ||
|
||
Tensor transformed_x, transformed_y; | ||
if (direct_compute) { | ||
transformed_x.ShareDataWith(*x); | ||
transformed_y.ShareDataWith(*y); | ||
} else { | ||
NpuElementWiseOpBroadcast<T>(dev_ctx, x, y, axis, &transformed_x, | ||
&transformed_y); | ||
} | ||
out->mutable_data<T>(ctx.GetPlace()); | ||
const auto& runner = | ||
NpuOpRunner("FloorMod", {transformed_x, transformed_y}, {*out}, {}); | ||
auto stream = dev_ctx.stream(); | ||
runner.Run(stream); | ||
} | ||
}; | ||
|
||
} // namespace operators | ||
} // namespace paddle | ||
|
||
namespace ops = paddle::operators; | ||
|
||
REGISTER_OP_NPU_KERNEL( | ||
elementwise_mod, | ||
ops::ElementwiseModNPUKernel<paddle::platform::NPUDeviceContext, float>, | ||
ops::ElementwiseModNPUKernel<paddle::platform::NPUDeviceContext, double>, | ||
ops::ElementwiseModNPUKernel<paddle::platform::NPUDeviceContext, int>, | ||
ops::ElementwiseModNPUKernel<paddle::platform::NPUDeviceContext, int64_t>, | ||
ops::ElementwiseModNPUKernel<paddle::platform::NPUDeviceContext, | ||
paddle::platform::float16>); |
182 changes: 182 additions & 0 deletions
182
python/paddle/fluid/tests/unittests/npu/test_elementwise_mod_op_npu.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,182 @@ | ||
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
from __future__ import print_function | ||
import numpy as np | ||
import unittest | ||
|
||
import sys | ||
sys.path.append("..") | ||
from op_test import OpTest | ||
|
||
import paddle | ||
import paddle.fluid as fluid | ||
|
||
import random | ||
|
||
paddle.enable_static() | ||
|
||
|
||
class TestElementwiseModOp(OpTest): | ||
def setUp(self): | ||
self.set_npu() | ||
self.place = paddle.NPUPlace(0) | ||
self.op_type = "elementwise_mod" | ||
self.axis = -1 | ||
self.init_dtype() | ||
self.init_input_output() | ||
self.init_kernel_type() | ||
self.init_axis() | ||
|
||
self.inputs = { | ||
'X': OpTest.np_dtype_to_fluid_dtype(self.x), | ||
'Y': OpTest.np_dtype_to_fluid_dtype(self.y) | ||
} | ||
self.attrs = {'axis': self.axis, 'use_mkldnn': self.use_mkldnn} | ||
self.outputs = {'Out': self.out} | ||
|
||
def init_kernel_type(self): | ||
self.use_mkldnn = False | ||
|
||
def init_dtype(self): | ||
self.dtype = np.int32 | ||
|
||
def init_axis(self): | ||
pass | ||
|
||
def set_npu(self): | ||
self.__class__.use_npu = True | ||
|
||
def init_input_output(self): | ||
self.x = np.random.uniform(0, 10000, [10, 10]).astype(self.dtype) | ||
self.y = np.random.uniform(0, 1000, [10, 10]).astype(self.dtype) | ||
self.out = np.mod(self.x, self.y) | ||
|
||
def test_check_output(self): | ||
self.check_output_with_place(self.place) | ||
|
||
|
||
class TestElementwiseModOpInt64(TestElementwiseModOp): | ||
def init_dtype(self): | ||
self.dtype = np.int64 | ||
|
||
|
||
class TestElementwiseModOp_scalar(TestElementwiseModOp): | ||
def init_input_output(self): | ||
scale_x = random.randint(0, 100000000) | ||
scale_y = random.randint(1, 100000000) | ||
self.x = (np.random.rand(2, 3, 4) * scale_x).astype(self.dtype) | ||
self.y = (np.random.rand(1) * scale_y + 1).astype(self.dtype) | ||
self.out = np.mod(self.x, self.y) | ||
|
||
|
||
class TestElementwiseModOpFloat(TestElementwiseModOp): | ||
def init_dtype(self): | ||
self.dtype = np.float32 | ||
|
||
def init_input_output(self): | ||
self.x = np.random.uniform(-1000, 1000, [10, 10]).astype(self.dtype) | ||
self.y = np.random.uniform(-100, 100, [10, 10]).astype(self.dtype) | ||
self.out = np.fmod(self.y + np.fmod(self.x, self.y), self.y) | ||
|
||
def test_check_output(self): | ||
self.check_output_with_place(self.place, atol=1e-4) | ||
|
||
|
||
class TestElementwiseModOpDouble(TestElementwiseModOpFloat): | ||
def init_dtype(self): | ||
self.dtype = np.float64 | ||
|
||
def test_check_output(self): | ||
self.check_output_with_place(self.place) | ||
|
||
|
||
class TestElementwiseModOpFP16(TestElementwiseModOpFloat): | ||
def init_dtype(self): | ||
self.dtype = np.float16 | ||
|
||
def test_check_output(self): | ||
self.check_output_with_place(self.place, atol=1e-1) | ||
|
||
|
||
class TestElementwiseModOp_broadcast_0(TestElementwiseModOp): | ||
def init_input_output(self): | ||
self.x = np.random.rand(100, 2, 3).astype(self.dtype) | ||
self.y = np.random.rand(100).astype(self.dtype) | ||
self.out = np.mod(self.x, self.y.reshape(100, 1, 1)) | ||
|
||
def init_axis(self): | ||
self.axis = 0 | ||
|
||
|
||
class TestElementwiseModOp_broadcast_1(TestElementwiseModOp): | ||
def init_input_output(self): | ||
self.x = np.random.rand(2, 100, 3).astype(self.dtype) | ||
self.y = np.random.rand(100).astype(self.dtype) | ||
self.out = np.mod(self.x, self.y.reshape(1, 100, 1)) | ||
|
||
def init_axis(self): | ||
self.axis = 1 | ||
|
||
|
||
class TestElementwiseModOp_broadcast_2(TestElementwiseModOp): | ||
def init_input_output(self): | ||
self.x = np.random.rand(2, 3, 100).astype(self.dtype) | ||
self.y = np.random.rand(100).astype(self.dtype) | ||
self.out = np.mod(self.x, self.y.reshape(1, 1, 100)) | ||
|
||
def init_axis(self): | ||
self.axis = 2 | ||
|
||
|
||
class TestRemainderOp(unittest.TestCase): | ||
def test_name(self): | ||
paddle.set_device('npu:0') | ||
with fluid.program_guard(fluid.Program()): | ||
x = fluid.data(name="x", shape=[2, 3], dtype="int64") | ||
y = fluid.data(name='y', shape=[2, 3], dtype='int64') | ||
y_1 = paddle.remainder(x, y, name='div_res') | ||
self.assertEqual(('div_res' in y_1.name), True) | ||
|
||
def test_dygraph(self): | ||
paddle.set_device('npu:0') | ||
with fluid.dygraph.guard(): | ||
np_x = np.array([2, 3, 8, 7]).astype('int64') | ||
np_y = np.array([1, 5, 3, 3]).astype('int64') | ||
x = paddle.to_tensor(np_x) | ||
y = paddle.to_tensor(np_y) | ||
z = paddle.remainder(x, y) | ||
np_z = z.numpy() | ||
z_expected = np.array([0, 3, 2, 1]) | ||
self.assertEqual((np_z == z_expected).all(), True) | ||
|
||
np_x = np.array([-3.3, 11.5, -2, 3.5]) | ||
np_y = np.array([-1.2, 2., 3.3, -2.3]) | ||
x = paddle.to_tensor(np_x) | ||
y = paddle.to_tensor(np_y) | ||
z = x % y | ||
z_expected = np.array([-0.9, 1.5, 1.3, -1.1]) | ||
self.assertEqual(np.allclose(z_expected, z.numpy()), True) | ||
|
||
np_x = np.array([-3, 11, -2, 3]) | ||
np_y = np.array([-1, 2, 3, -2]) | ||
x = paddle.to_tensor(np_x, dtype="int64") | ||
y = paddle.to_tensor(np_y, dtype="int64") | ||
z = x % y | ||
z_expected = np.array([0, 1, 1, -1]) | ||
self.assertEqual(np.allclose(z_expected, z.numpy()), True) | ||
|
||
|
||
if __name__ == '__main__': | ||
unittest.main() |
dd47f2a
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
✅Congratulation! Your pull request passed all required CI. You could ask reviewer(s) to approve and merge. 🎉