Skip to content

Commit

Permalink
【cherry-pick】add diag_embed op (#23385) (#24001)
Browse files Browse the repository at this point in the history
* add diag_embed op (#23385)

* add diag_embed op, test=release/2.0-beta

* solved a conflict, test=release/2.0-beta
  • Loading branch information
lfchener authored Apr 23, 2020
1 parent 9eef667 commit c1b4d1c
Show file tree
Hide file tree
Showing 7 changed files with 427 additions and 7 deletions.
113 changes: 113 additions & 0 deletions paddle/fluid/operators/diag_embed_op.cc
Original file line number Diff line number Diff line change
@@ -0,0 +1,113 @@
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/operators/diag_embed_op.h"

namespace paddle {
namespace operators {

class DiagEmbedOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;

void InferShape(framework::InferShapeContext *ctx) const override {
PADDLE_ENFORCE_EQ(
ctx->HasInput("Input"), true,
platform::errors::NotFound("Input of DiagEmbedOp is not found."));

PADDLE_ENFORCE_EQ(
ctx->HasOutput("Out"), true,
platform::errors::NotFound("Output of DiagEmbedOp is not found."));

int offset = ctx->Attrs().Get<int>("offset");
int dim1 = ctx->Attrs().Get<int>("dim1");
int dim2 = ctx->Attrs().Get<int>("dim2");

auto x_dims = ctx->GetInputDim("Input");

int dim1_ = dim1 < 0 ? x_dims.size() + dim1 + 1 : dim1;
int dim2_ = dim2 < 0 ? x_dims.size() + dim2 + 1 : dim2;
int offset_ = std::abs(offset);

PADDLE_ENFORCE_LE(
dim1_, x_dims.size(),
platform::errors::OutOfRange(
"Dim1 is out of range (expected to be in range of [%ld, "
"%ld], but got %ld).",
-(x_dims.size() + 1), x_dims.size(), dim1));
PADDLE_ENFORCE_LE(
dim2_, x_dims.size(),
platform::errors::OutOfRange(
"Dim2 is out of range (expected to be in range of [%ld, "
"%ld], but got %ld).",
-(x_dims.size() + 1), x_dims.size(), dim2));
PADDLE_ENFORCE_NE(dim1_, dim2_,
platform::errors::InvalidArgument(
"diagonal dimensions should not be identical "
"%ld vs %ld.",
dim1, dim2));

int new_dim_len = offset_ + x_dims[x_dims.size() - 1];
auto sizes = vectorize(x_dims);
sizes.pop_back();
sizes.insert(sizes.begin() + std::min(dim1_, dim2_), new_dim_len);
sizes.insert(sizes.begin() + std::max(dim1_, dim2_), new_dim_len);
ctx->SetOutputDim("Out", framework::make_ddim(sizes));
}
};

class DiagEmbedOpMaker : public framework::OpProtoAndCheckerMaker {
public:
void Make() override {
AddInput("Input", "The input tensor. Must be at least 1-dimensional.");
AddOutput("Out", "A matrix whose certain 2D planes is diagonal matrix.");

AddAttr<int>(
"offset",
R"DOC((int, default 0), which diagonal to consider. Default: 0 (main diagonal).
)DOC")
.SetDefault(0);
AddAttr<int>(
"dim1",
R"DOC((int, default -2), first dimension with respect to which to take diagonal. Default: -2.
)DOC")
.SetDefault(-2);
AddAttr<int>(
"dim2",
R"DOC((int, default -1), second dimension with respect to which to take diagonal. Default: -1.
)DOC")
.SetDefault(-1);

AddComment(R"DOC(Creates a tensor whose diagonals of certain 2D planes
(specified by dim1 and dim2) are filled by input.
To facilitate creating batched diagonal matrices,
the 2D planes formed by the last two dimensions of the returned tensor
are chosen by default.
)DOC");
}
};
} // namespace operators
} // namespace paddle

namespace ops = paddle::operators;
namespace platform = paddle::platform;
REGISTER_OPERATOR(
diag_embed, ops::DiagEmbedOp, ops::DiagEmbedOpMaker,
paddle::framework::EmptyGradOpMaker<paddle::framework::OpDesc>,
paddle::framework::EmptyGradOpMaker<paddle::imperative::OpBase>);
REGISTER_OP_CPU_KERNEL(
diag_embed, ops::DiagEmbedKernel<paddle::platform::CPUDeviceContext, int>,
ops::DiagEmbedKernel<paddle::platform::CPUDeviceContext, float>,
ops::DiagEmbedKernel<paddle::platform::CPUDeviceContext, double>,
ops::DiagEmbedKernel<paddle::platform::CPUDeviceContext, int64_t>);
26 changes: 26 additions & 0 deletions paddle/fluid/operators/diag_embed_op.cu
Original file line number Diff line number Diff line change
@@ -0,0 +1,26 @@
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/diag_embed_op.h"

namespace ops = paddle::operators;
namespace platform = paddle::platform;
REGISTER_OP_CUDA_KERNEL(
diag_embed, ops::DiagEmbedKernel<paddle::platform::CUDADeviceContext, int>,
ops::DiagEmbedKernel<paddle::platform::CUDADeviceContext, int64_t>,
ops::DiagEmbedKernel<paddle::platform::CUDADeviceContext, float>,
ops::DiagEmbedKernel<paddle::platform::CUDADeviceContext,
platform::float16>,
ops::DiagEmbedKernel<paddle::platform::CUDADeviceContext, double>);
121 changes: 121 additions & 0 deletions paddle/fluid/operators/diag_embed_op.h
Original file line number Diff line number Diff line change
@@ -0,0 +1,121 @@
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once

#include <algorithm>
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/operator.h"
#include "paddle/fluid/operators/math/math_function.h"
#include "paddle/fluid/platform/for_range.h"

namespace paddle {
namespace operators {

template <typename T>
struct DiagEmbedFunctor {
DiagEmbedFunctor(const T* input, int64_t numel, const int64_t* dim,
int64_t offset, int64_t dims_size, T* output,
const int64_t* strides)
: input_(input),
numel_(numel),
dim_(dim),
offset_(offset),
dims_size_(dims_size),
output_(output),
strides_(strides) {}

HOSTDEVICE void operator()(size_t idx) const {
int64_t position = 0;
auto numel = numel_;
int64_t num = idx;
for (int64_t i = 0; i < dims_size_; i++) {
numel = numel / dim_[i];
position += num / numel * strides_[i];
num = num % numel;
}
output_[position + offset_] = input_[idx];
}

const T* input_;
int64_t numel_;
const int64_t* dim_;
int64_t offset_;
int64_t dims_size_;
T* output_;
const int64_t* strides_;
};

template <typename DeviceContext, typename T>
class DiagEmbedKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& context) const override {
auto* input = context.Input<framework::Tensor>("Input");
auto* out = context.Output<framework::Tensor>("Out");

const int64_t offset = context.Attr<int>("offset");
const int64_t dim1 = context.Attr<int>("dim1");
const int64_t dim2 = context.Attr<int>("dim2");
auto* input_data = input->data<T>();

T* out_data = out->mutable_data<T>(context.GetPlace());
math::SetConstant<DeviceContext, T> set_zero;
auto& dev_ctx = context.template device_context<DeviceContext>();
set_zero(dev_ctx, out, static_cast<T>(0.0));

auto out_dims = out->dims();
int dim1_ = dim1 < 0 ? out_dims.size() + dim1 : dim1;
int dim2_ = dim2 < 0 ? out_dims.size() + dim2 : dim2;
auto stride = framework::stride(out_dims);
int64_t diag_size;
int64_t storage_offset = 0;
if (offset >= 0) {
int64_t dim = out_dims[dim2_] - offset;
diag_size = std::max<int64_t>(std::min(out_dims[dim1_], dim), 0);
} else {
int64_t dim = out_dims[dim1_] + offset;
diag_size = std::max<int64_t>(std::min(dim, out_dims[dim2_]), 0);
}
if (diag_size == 0) {
// skip
} else if (offset >= 0) {
storage_offset += offset * stride[dim2_];
} else {
storage_offset -= offset * stride[dim1_];
}
auto strides = vectorize(stride);
strides.erase(strides.begin() + std::max(dim1_, dim2_));
strides.erase(strides.begin() + std::min(dim1_, dim2_));
strides.push_back(stride[dim1_] + stride[dim2_]);
const auto dims = vectorize(input->dims());

#ifdef __NVCC__
thrust::device_vector<int64_t> dims_vec(dims);
const int64_t* dims_arr = thrust::raw_pointer_cast(dims_vec.data());
thrust::device_vector<int64_t> strides_vec(strides);
const int64_t* strides_arr = thrust::raw_pointer_cast(strides_vec.data());
#else
const int64_t* dims_arr = dims.data();
const int64_t* strides_arr = strides.data();
#endif

platform::ForRange<DeviceContext> for_range(dev_ctx, input->numel());
DiagEmbedFunctor<T> functor(input_data, input->numel(), dims_arr,
storage_offset, dims.size(), out_data,
strides_arr);
for_range(functor);
}
};
} // namespace operators
} // namespace paddle
73 changes: 73 additions & 0 deletions python/paddle/fluid/tests/unittests/test_diag_embed.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,73 @@
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import unittest
import numpy as np
from op_test import OpTest
import paddle.nn.functional as F
import paddle.fluid as fluid
import paddle.fluid.dygraph as dg
import paddle.fluid.core as core


class TestDiagEmbedOp(OpTest):
def setUp(self):
self.op_type = "diag_embed"
self.init_config()
self.outputs = {'Out': self.target}

def test_check_output(self):
self.check_output()

def init_config(self):
self.case = np.random.randn(2, 3).astype('float32')
self.inputs = {'Input': self.case}
self.attrs = {'offset': 0, 'dim1': -2, 'dim2': -1}
self.target = np.stack([np.diag(r, 0) for r in self.inputs['Input']], 0)


class TestDiagEmbedOpCase1(TestDiagEmbedOp):
def init_config(self):
self.case = np.random.randn(2, 3).astype('float32')
self.inputs = {'Input': self.case}
self.attrs = {'offset': -1, 'dim1': 0, 'dim2': 2}
self.target = np.stack([np.diag(r, -1) for r in self.inputs['Input']],
1)


class TestDiagEmbedAPICase(unittest.TestCase):
def test_case1(self):
diag_embed = np.random.randn(2, 3, 4).astype('float32')
data1 = fluid.data(name='data1', shape=[2, 3, 4], dtype='float32')
out1 = F.diag_embed(data1)
out2 = F.diag_embed(data1, offset=1, dim1=-2, dim2=3)

place = core.CPUPlace()
exe = fluid.Executor(place)
results = exe.run(fluid.default_main_program(),
feed={"data1": diag_embed},
fetch_list=[out1, out2],
return_numpy=True)
target1 = np.stack(
[np.stack([np.diag(s, 0) for s in r], 0) for r in diag_embed], 0)
target2 = np.stack(
[np.stack([np.diag(s, 1) for s in r], 0) for r in diag_embed], 0)
self.assertTrue(np.allclose(results[0], target1))
self.assertTrue(np.allclose(results[1], target2))


if __name__ == "__main__":
unittest.main()
5 changes: 3 additions & 2 deletions python/paddle/nn/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -14,12 +14,13 @@

# TODO: import all neural network related api under this directory,
# including layers, linear, conv, rnn etc.
# __all__ = []

from .layer import norm
from .functional import extension

__all__ = []
__all__ += norm.__all__
__all__ += extension.__all__

# TODO: define alias in nn directory
# from .clip import ErrorClipByValue #DEFINE_ALIAS
Expand Down Expand Up @@ -220,7 +221,7 @@
# from .functional.extension import target_assign #DEFINE_ALIAS
# from .functional.extension import temporal_shift #DEFINE_ALIAS
# from .functional.extension import warpctc #DEFINE_ALIAS
# from .functional.extension import diag_embed #DEFINE_ALIAS
from .functional.extension import diag_embed #DEFINE_ALIAS
# from .functional.rnn import gru_unit #DEFINE_ALIAS
# from .functional.rnn import lstm #DEFINE_ALIAS
# from .functional.rnn import lstm_unit #DEFINE_ALIAS
Expand Down
Loading

0 comments on commit c1b4d1c

Please sign in to comment.