Skip to content

Commit

Permalink
add unittest
Browse files Browse the repository at this point in the history
  • Loading branch information
Caozhou1995 committed Mar 22, 2023
1 parent 1d58586 commit a2878f5
Show file tree
Hide file tree
Showing 2 changed files with 142 additions and 0 deletions.
Original file line number Diff line number Diff line change
Expand Up @@ -127,6 +127,7 @@ if(WITH_DISTRIBUTE AND WITH_GPU)
py_test_modules(test_pass_bf16 MODULES test_pass_bf16)
py_test_modules(test_dist_saver MODULES test_dist_saver)
py_test_modules(test_engine_save_load MODULES test_engine_save_load)
py_test_modules(test_rule_based_tuner MODULES test_rule_based_tuner)
# End of unittests WITH single card WITHOUT timeout

endif()
Original file line number Diff line number Diff line change
@@ -0,0 +1,141 @@
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import sys
import unittest

import numpy as np

import paddle
import paddle.static as static

sys.path.append("..")
import auto_parallel_gpt_model as modeling
from auto_parallel_gpt_model import (
GPTForPretraining,
GPTModel,
GPTPretrainingCriterion,
)


def get_gpt_model(
train_program, start_program, place, batch_size, sequence_len, vocab_size
):
with static.program_guard(train_program, start_program):
tokens = paddle.static.data(
name="tokens", shape=[batch_size, sequence_len], dtype='int64'
)
position_ids = paddle.static.data(
name="position_ids", shape=[batch_size, sequence_len], dtype='int64'
)
attention_mask = paddle.static.data(
name="attention_mask",
shape=[batch_size, 1, sequence_len, sequence_len],
dtype='float32',
)
labels = paddle.static.data(
name="labels", shape=[batch_size, sequence_len], dtype='int64'
)
loss_mask = paddle.static.data(
name="loss_mask", shape=[batch_size, sequence_len], dtype='float32'
)

gpt = GPTModel(
vocab_size=1000,
hidden_size=64,
num_hidden_layers=2,
num_attention_heads=8,
intermediate_size=256,
hidden_act="gelu",
hidden_dropout_prob=0.0,
attention_probs_dropout_prob=0.0,
max_position_embeddings=1024,
type_vocab_size=1,
initializer_range=0.02,
pad_token_id=0,
eos_token_id=7,
bos_token_id=0,
eol_token_id=3,
)

model = GPTForPretraining(
gpt, vocab_size=1000, hidden_size=64, initializer_range=0.02
)
preds = model(tokens, position_ids, attention_mask)
criterion = GPTPretrainingCriterion()
loss = criterion(preds, labels, loss_mask)

def gen_data():
np.random.seed(2021)
tokens = []
position_ids = []
attention_mask = []
labels = []
loss_mask = []
for _ in range(batch_size):
tokens.append(np.random.randint(vocab_size, size=sequence_len))
position_ids.append(np.arange(sequence_len))
attention_mask.append([np.tril(np.ones(sequence_len))])
labels.append(np.random.randint(vocab_size, size=sequence_len))
loss_mask.append(np.ones(sequence_len))

return tokens, position_ids, attention_mask, labels, loss_mask

return train_program, start_program, loss, gen_data


class TestRuleBasedTuner(unittest.TestCase):
def test_gpt(self):
modeling.init_global()
train_program = static.Program()
start_program = static.Program()
place = paddle.set_device("gpu")
batch_size = 8
sequence_len = 512
vocab_size = 1000
train_program, start_program, loss, gen_data = get_gpt_model(
train_program,
start_program,
place,
batch_size,
sequence_len,
vocab_size,
)
from paddle.distributed.auto_parallel.dist_context import (
DistributedContext,
)
from paddle.distributed.auto_parallel.process_mesh import ProcessMesh
from paddle.distributed.auto_parallel.tuner.rule_based_tuner import (
RuleBasedTuner,
)

clip = paddle.nn.ClipGradByGlobalNorm(0.2)
opt = paddle.optimizer.AdamW(learning_rate=0.00001, grad_clip=clip)
dist_context = DistributedContext(
serial_main_prog=train_program,
serial_startup_prog=start_program,
serial_optimizer=opt,
serial_loss=loss,
)
dist_context.initialize()
tuner = RuleBasedTuner(dist_context)
tuner.cluster_operators()
tuner.gen_full_program()
tuner.match_program(tuner._dist_context.serial_main_program)
process_mesh = ProcessMesh([0, 1])
tuner.complete_sub_fwd_programs(process_mesh)


if __name__ == "__main__":
unittest.main()

0 comments on commit a2878f5

Please sign in to comment.