-
Notifications
You must be signed in to change notification settings - Fork 5.6k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
【Hackathon No.6】implement nan_to_num (#42469)
- Loading branch information
1 parent
13a5f18
commit 9507969
Showing
4 changed files
with
255 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
203 changes: 203 additions & 0 deletions
203
python/paddle/fluid/tests/unittests/test_nan_to_num_op.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,203 @@ | ||
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
import unittest | ||
from typing import Optional | ||
import numpy as np | ||
import paddle | ||
import paddle.fluid.core as core | ||
|
||
# from op_test import OpTest | ||
|
||
|
||
def np_nan_to_num( | ||
x: np.ndarray, | ||
nan: float = 0.0, | ||
posinf: Optional[float] = None, | ||
neginf: Optional[float] = None, | ||
) -> np.ndarray: | ||
return np.nan_to_num(x, True, nan=nan, posinf=posinf, neginf=neginf) | ||
|
||
|
||
def np_nan_to_num_op( | ||
x: np.ndarray, | ||
nan: float, | ||
replace_posinf_with_max: bool, | ||
posinf: float, | ||
replace_neginf_with_min: bool, | ||
neginf: float, | ||
) -> np.ndarray: | ||
if replace_posinf_with_max: | ||
posinf = None | ||
if replace_neginf_with_min: | ||
neginf = None | ||
return np.nan_to_num(x, True, nan=nan, posinf=posinf, neginf=neginf) | ||
|
||
|
||
def np_nan_to_num_grad(x: np.ndarray, dout: np.ndarray) -> np.ndarray: | ||
dx = np.copy(dout) | ||
dx[np.isnan(x) | (x == np.inf) | (x == -np.inf)] = 0 | ||
return dx | ||
|
||
|
||
class TestNanToNum(unittest.TestCase): | ||
def setUp(self): | ||
self.place = ( | ||
paddle.CUDAPlace(0) | ||
if core.is_compiled_with_cuda() | ||
else paddle.CPUPlace() | ||
) | ||
|
||
def test_static(self): | ||
x_np = np.array([[1, np.nan, -2], [np.inf, 0, -np.inf]]).astype( | ||
np.float32 | ||
) | ||
out1_np = np_nan_to_num(x_np) | ||
out2_np = np_nan_to_num(x_np, 1.0) | ||
out3_np = np_nan_to_num(x_np, 1.0, 9.0) | ||
out4_np = np_nan_to_num(x_np, 1.0, 9.0, -12.0) | ||
paddle.enable_static() | ||
with paddle.static.program_guard(paddle.static.Program()): | ||
x = paddle.fluid.data('X', x_np.shape) | ||
out1 = paddle.nan_to_num(x) | ||
out2 = paddle.nan_to_num(x, 1.0) | ||
out3 = paddle.nan_to_num(x, 1.0, 9.0) | ||
out4 = paddle.nan_to_num(x, 1.0, 9.0, -12.0) | ||
exe = paddle.static.Executor(self.place) | ||
res = exe.run(feed={'X': x_np}, fetch_list=[out1, out2, out3, out4]) | ||
|
||
self.assertTrue(np.allclose(out1_np, res[0])) | ||
self.assertTrue(np.allclose(out2_np, res[1])) | ||
self.assertTrue(np.allclose(out3_np, res[2])) | ||
self.assertTrue(np.allclose(out4_np, res[3])) | ||
|
||
def test_dygraph(self): | ||
|
||
paddle.disable_static(place=self.place) | ||
|
||
with paddle.fluid.dygraph.guard(): | ||
# NOTE(tiancaishaonvjituizi): float64 input fails the test | ||
x_np = np.array([[1, np.nan, -2], [np.inf, 0, -np.inf]]).astype( | ||
np.float32 | ||
# np.float64 | ||
) | ||
x_tensor = paddle.to_tensor(x_np, stop_gradient=False) | ||
|
||
out_tensor = paddle.nan_to_num(x_tensor) | ||
out_np = np_nan_to_num(x_np) | ||
self.assertTrue(np.allclose(out_tensor.numpy(), out_np)) | ||
|
||
out_tensor = paddle.nan_to_num(x_tensor, 1.0, None, None) | ||
out_np = np_nan_to_num(x_np, 1, None, None) | ||
self.assertTrue(np.allclose(out_tensor.numpy(), out_np)) | ||
|
||
out_tensor = paddle.nan_to_num(x_tensor, 1.0, 2.0, None) | ||
out_np = np_nan_to_num(x_np, 1, 2, None) | ||
self.assertTrue(np.allclose(out_tensor.numpy(), out_np)) | ||
|
||
out_tensor = paddle.nan_to_num(x_tensor, 1.0, None, -10.0) | ||
out_np = np_nan_to_num(x_np, 1, None, -10) | ||
self.assertTrue(np.allclose(out_tensor.numpy(), out_np)) | ||
|
||
out_tensor = paddle.nan_to_num(x_tensor, 1.0, 100.0, -10.0) | ||
out_np = np_nan_to_num(x_np, 1, 100, -10) | ||
self.assertTrue(np.allclose(out_tensor.numpy(), out_np)) | ||
|
||
paddle.enable_static() | ||
|
||
def test_check_grad(self): | ||
paddle.disable_static(place=self.place) | ||
x_np = np.array([[1, np.nan, -2], [np.inf, 0, -np.inf]]).astype( | ||
np.float32 | ||
) | ||
x_tensor = paddle.to_tensor(x_np, stop_gradient=False) | ||
|
||
y = paddle.nan_to_num(x_tensor) | ||
dx = paddle.grad(y, x_tensor)[0].numpy() | ||
|
||
np_grad = np_nan_to_num_grad(x_np, np.ones_like(x_np)) | ||
self.assertTrue(np.allclose(np_grad, dx)) | ||
|
||
paddle.enable_static() | ||
|
||
|
||
# class BaseTestCases: | ||
# | ||
# class BaseOpTest(OpTest): | ||
# | ||
# def setUp(self): | ||
# self.op_type = "nan_to_num" | ||
# input = np.arange(100, dtype=np.float64) | ||
# input[5] = np.nan | ||
# input[29] = np.inf | ||
# input[97] = -np.inf | ||
# self.inputs = {'X': input} | ||
# self.attrs = self._attrs() | ||
# self.outputs = { | ||
# 'Out': np_nan_to_num_op(self.inputs['X'], **self.attrs) | ||
# } | ||
# paddle.enable_static() | ||
# | ||
# def test_check_output(self): | ||
# self.check_output() | ||
# | ||
# def test_check_grad(self): | ||
# input = self.inputs['X'] | ||
# dout = np.ones_like(input) / input.size | ||
# self.check_grad( | ||
# ['X'], | ||
# 'Out', | ||
# user_defined_grads=[np_nan_to_num_grad(self.inputs['X'], dout)]) | ||
# | ||
# def _attrs(self): | ||
# raise NotImplementedError() | ||
# | ||
# | ||
# class TestNanToNumOp1(BaseTestCases.BaseOpTest): | ||
# | ||
# def _attrs(self): | ||
# return { | ||
# 'nan': 0.0, | ||
# 'replace_posinf_with_max': True, | ||
# 'posinf': -1, | ||
# 'replace_neginf_with_min': True, | ||
# 'neginf': -10 | ||
# } | ||
# | ||
# | ||
# class TestNanToNumOp2(BaseTestCases.BaseOpTest): | ||
# | ||
# def _attrs(self): | ||
# return { | ||
# 'nan': 2.0, | ||
# 'replace_posinf_with_max': False, | ||
# 'posinf': -1, | ||
# 'replace_neginf_with_min': True, | ||
# 'neginf': -10 | ||
# } | ||
# | ||
# | ||
# class TestNanToNumOp3(BaseTestCases.BaseOpTest): | ||
# | ||
# def _attrs(self): | ||
# return { | ||
# 'nan': 0.0, | ||
# 'replace_posinf_with_max': False, | ||
# 'posinf': -1, | ||
# 'replace_neginf_with_min': False, | ||
# 'neginf': -10 | ||
# } | ||
|
||
if __name__ == "__main__": | ||
unittest.main() |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters