-
Notifications
You must be signed in to change notification settings - Fork 5.6k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
[cherry pick][Inference]Enhance gpu multihead matmul v3 fuse pass (#4…
- Loading branch information
1 parent
babba55
commit 94bacb4
Showing
4 changed files
with
225 additions
and
1 deletion.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
215 changes: 215 additions & 0 deletions
215
python/paddle/fluid/tests/unittests/ir/inference/test_multihead_matmul_fuse_pass_v3.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,215 @@ | ||
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
from auto_scan_test import PassAutoScanTest, IgnoreReasons | ||
from program_config import TensorConfig, ProgramConfig, OpConfig | ||
import numpy as np | ||
import paddle.inference as paddle_infer | ||
from functools import partial | ||
from typing import Optional, List, Callable, Dict, Any, Set | ||
import unittest | ||
|
||
import hypothesis | ||
from hypothesis import given, settings, seed, example, assume, reproduce_failure | ||
import hypothesis.strategies as st | ||
|
||
|
||
class TestMultiheadMatmulFusePass(PassAutoScanTest): | ||
|
||
def sample_predictor_configs(self, program_config): | ||
# gpu | ||
config = self.create_inference_config(use_gpu=True) | ||
yield config, ["multihead_matmul", "mul"], (1e-2, 1e-3) | ||
|
||
def sample_program_config(self, draw): | ||
|
||
def generate_mul_input(): | ||
return np.random.random([1, 128, 768]).astype(np.float32) - 0.5 | ||
|
||
def generate_elewise_input(): | ||
return np.random.random([1, 12, 128, 128]).astype(np.float32) | ||
|
||
mul_0 = OpConfig("mul", | ||
inputs={ | ||
"X": ["mul_x"], | ||
"Y": ["mul_0_w"] | ||
}, | ||
outputs={"Out": ["mul_0_out"]}, | ||
x_num_col_dims=2, | ||
y_num_col_dims=1) | ||
mul_1 = OpConfig("mul", | ||
inputs={ | ||
"X": ["mul_x"], | ||
"Y": ["mul_1_w"] | ||
}, | ||
outputs={"Out": ["mul_1_out"]}, | ||
x_num_col_dims=2, | ||
y_num_col_dims=1) | ||
mul_2 = OpConfig("mul", | ||
inputs={ | ||
"X": ["mul_x"], | ||
"Y": ["mul_2_w"] | ||
}, | ||
outputs={"Out": ["mul_2_out"]}, | ||
x_num_col_dims=2, | ||
y_num_col_dims=1) | ||
ele_0 = OpConfig("elementwise_add", | ||
inputs={ | ||
"X": [mul_0.outputs["Out"][0]], | ||
"Y": ["ele_0_w"] | ||
}, | ||
outputs={"Out": ["ele_0_out"]}, | ||
axis=-1) | ||
ele_1 = OpConfig("elementwise_add", | ||
inputs={ | ||
"X": [mul_1.outputs["Out"][0]], | ||
"Y": ["ele_1_w"] | ||
}, | ||
outputs={"Out": ["ele_1_out"]}, | ||
axis=-1) | ||
ele_2 = OpConfig("elementwise_add", | ||
inputs={ | ||
"X": [mul_2.outputs["Out"][0]], | ||
"Y": ["ele_2_w"] | ||
}, | ||
outputs={"Out": ["ele_2_out"]}, | ||
axis=-1) | ||
reshape_0 = OpConfig("reshape2", | ||
inputs={"X": [ele_0.outputs["Out"][0]]}, | ||
outputs={ | ||
"Out": ["reshape_0_out"], | ||
"XShape": ["reshape_0_Xout"] | ||
}, | ||
shape=(1, 128, 12, 64)) | ||
reshape_1 = OpConfig("reshape2", | ||
inputs={"X": [ele_1.outputs["Out"][0]]}, | ||
outputs={ | ||
"Out": ["reshape_1_out"], | ||
"XShape": ["reshape_1_Xout"] | ||
}, | ||
shape=(1, 128, 12, 64)) | ||
reshape_2 = OpConfig("reshape2", | ||
inputs={"X": [ele_2.outputs["Out"][0]]}, | ||
outputs={ | ||
"Out": ["reshape_2_out"], | ||
"XShape": ["reshape_2_Xout"] | ||
}, | ||
shape=(1, 128, 12, 64)) | ||
transpose_0 = OpConfig("transpose2", | ||
inputs={"X": [reshape_0.outputs["Out"][0]]}, | ||
outputs={"Out": ["transpose_0_out"]}, | ||
axis=(0, 2, 1, 3)) | ||
transpose_1 = OpConfig("transpose2", | ||
inputs={"X": [reshape_1.outputs["Out"][0]]}, | ||
outputs={"Out": ["transpose_1_out"]}, | ||
axis=(0, 2, 3, 1)) | ||
transpose_2 = OpConfig("transpose2", | ||
inputs={"X": [reshape_2.outputs["Out"][0]]}, | ||
outputs={"Out": ["transpose_2_out"]}, | ||
axis=(0, 2, 1, 3)) | ||
matmul_0 = OpConfig("matmul", | ||
inputs={ | ||
"X": [transpose_0.outputs["Out"][0]], | ||
"Y": [transpose_1.outputs["Out"][0]] | ||
}, | ||
outputs={"Out": ["matmul_0_out"]}, | ||
alpha=0.125, | ||
transpose_X=False, | ||
transpose_Y=False, | ||
fused_reshape_Out=[], | ||
fused_reshape_X=[], | ||
fused_reshape_Y=[], | ||
fused_transpose_Out=[], | ||
fused_transpose_X=[], | ||
fused_transpose_Y=[]) | ||
ele_3 = OpConfig("elementwise_add", | ||
inputs={ | ||
"X": [matmul_0.outputs["Out"][0]], | ||
"Y": ["eltadd_qk_b_var"] | ||
}, | ||
outputs={"Out": ["ele_3_out"]}, | ||
axis=-1) | ||
softmax_op = OpConfig("softmax", | ||
inputs={"X": [ele_3.outputs["Out"][0]]}, | ||
outputs={"Out": ["softmax_out"]}, | ||
axis=3, | ||
is_test=True) | ||
matmul_1 = OpConfig("matmul", | ||
inputs={ | ||
"X": [softmax_op.outputs["Out"][0]], | ||
"Y": [transpose_2.outputs["Out"][0]] | ||
}, | ||
outputs={"Out": ["matmul_1_out"]}, | ||
alpha=1.0, | ||
transpose_X=False, | ||
transpose_Y=False, | ||
fused_reshape_Out=[], | ||
fused_reshape_X=[], | ||
fused_reshape_Y=[], | ||
fused_transpose_Out=[], | ||
fused_transpose_X=[], | ||
fused_transpose_Y=[]) | ||
transpose_3 = OpConfig("transpose2", | ||
inputs={"X": [matmul_1.outputs["Out"][0]]}, | ||
outputs={"Out": ["transpose_3_out"]}, | ||
axis=(0, 2, 1, 3)) | ||
reshape_3 = OpConfig("reshape2", | ||
inputs={"X": [transpose_3.outputs["Out"][0]]}, | ||
outputs={ | ||
"Out": ["reshape_3_out"], | ||
"XShape": ["reshape_3_Xout"] | ||
}, | ||
shape=(1, 128, 768)) | ||
mul_3 = OpConfig("mul", | ||
inputs={ | ||
"X": [reshape_3.outputs["Out"][0]], | ||
"Y": ["mul_3_w"] | ||
}, | ||
outputs={"Out": ["mul_3_out"]}, | ||
x_num_col_dims=2, | ||
y_num_col_dims=1) | ||
ops = [ | ||
mul_0, mul_1, mul_2, ele_0, ele_1, ele_2, reshape_0, reshape_1, | ||
reshape_2, transpose_0, transpose_1, transpose_2, matmul_0, ele_3, | ||
softmax_op, matmul_1, transpose_3, reshape_3, mul_3 | ||
] | ||
program_config = ProgramConfig( | ||
ops=ops, | ||
inputs={ | ||
"mul_x": | ||
TensorConfig(data_gen=partial(generate_mul_input)), | ||
"eltadd_qk_b_var": | ||
TensorConfig(data_gen=partial(generate_elewise_input)) | ||
}, | ||
weights={ | ||
"mul_0_w": TensorConfig(shape=[768, 768]), | ||
"mul_1_w": TensorConfig(shape=[768, 768]), | ||
"mul_2_w": TensorConfig(shape=[768, 768]), | ||
"mul_3_w": TensorConfig(shape=[768, 768]), | ||
"ele_0_w": TensorConfig(shape=[768]), | ||
"ele_1_w": TensorConfig(shape=[768]), | ||
"ele_2_w": TensorConfig(shape=[768]) | ||
}, | ||
outputs=[ops[-1].outputs["Out"][0]]) | ||
return program_config | ||
|
||
def test(self): | ||
self.run_and_statis(quant=False, | ||
max_examples=100, | ||
min_success_num=1, | ||
passes=["multihead_matmul_fuse_pass_v3"]) | ||
|
||
|
||
if __name__ == "__main__": | ||
unittest.main() |