Skip to content

Commit

Permalink
add BCast and Gather
Browse files Browse the repository at this point in the history
  • Loading branch information
chengduoZH committed Apr 11, 2018
1 parent 47a4ec0 commit 8eaec5d
Show file tree
Hide file tree
Showing 5 changed files with 382 additions and 3 deletions.
8 changes: 7 additions & 1 deletion paddle/fluid/framework/details/CMakeLists.txt
Original file line number Diff line number Diff line change
Expand Up @@ -2,15 +2,21 @@ cc_library(var_handle SRCS var_handle.cc DEPS place)
cc_library(op_handle_base SRCS op_handle_base.cc DEPS var_handle device_context)
cc_library(scale_loss_grad_op_handle SRCS scale_loss_grad_op_handle.cc DEPS op_handle_base scope lod_tensor ddim memory)
cc_library(fetch_op_handle SRCS fetch_op_handle.cc DEPS op_handle_base scope lod_tensor ddim memory)
nv_library(nccl_all_reduce_op_handle SRCS nccl_all_reduce_op_handle.cc DEPS op_handle_base scope lod_tensor ddim memory
if(WITH_GPU)
nv_library(nccl_all_reduce_op_handle SRCS nccl_all_reduce_op_handle.cc DEPS op_handle_base scope lod_tensor ddim memory
dynload_cuda)
nv_library(broad_cast_op_handle SRCS broad_cast_op_handle.cc DEPS op_handle_base scope lod_tensor ddim memory)
endif()

cc_library(computation_op_handle SRCS computation_op_handle.cc DEPS framework_proto scope place operator op_registry)

cc_library(ssa_graph SRCS ssa_graph.cc DEPS var_handle op_handle_base)
cc_library(ssa_graph_builder SRCS ssa_graph_builder.cc DEPS ssa_graph)

if(WITH_GPU)
set(multi_devices_graph_builder_deps nccl_all_reduce_op_handle)
nv_test(broad_cast_op_test SRCS broad_cast_op_handle_test.cc DEPS var_handle op_handle_base scope lod_tensor ddim memory
device_context broad_cast_op_handle)
else()
set(multi_devices_graph_builder_deps)
endif()
Expand Down
103 changes: 103 additions & 0 deletions paddle/fluid/framework/details/broad_cast_op_handle.cc
Original file line number Diff line number Diff line change
@@ -0,0 +1,103 @@
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/framework/details/broad_cast_op_handle.h"

namespace paddle {
namespace framework {
namespace details {

Tensor *GetTensorFromVar(Variable *in_var) {
if (in_var->IsType<LoDTensor>()) {
return in_var->GetMutable<LoDTensor>();
} else if (in_var->IsType<SelectedRows>()) {
return in_var->GetMutable<SelectedRows>()->mutable_value();
} else {
PADDLE_THROW("Var should be LoDTensor or SelectedRows");
}
return nullptr;
}
BCastOpHandle::BCastOpHandle(const std::vector<Scope *> &local_scopes,
const std::vector<platform::Place> &places,
const platform::ContextMap &ctxs)
: local_scopes_(local_scopes), places_(places), ctxs_(ctxs) {
for (auto &p : places_) {
this->dev_ctxes_[p] = ctxs_.DevCtx(p);
}
}

void BCastOpHandle::RunImpl() {
PADDLE_ENFORCE_EQ(this->inputs_.size(), 1);
PADDLE_ENFORCE_EQ(this->outputs_.size(), places_.size());

// Wait input done, this Wait is asynchronous operation
auto in_var_handle = static_cast<VarHandle *>(this->inputs_[0]);
auto &in_place = in_var_handle->place_;
if (inputs_[0]->generated_op_)
inputs_[0]->generated_op_->Wait(dev_ctxes_[in_place]);

auto iter = std::find(places_.begin(), places_.end(), in_place);
if (iter == places_.end()) {
PADDLE_THROW("The input of BCast is not in the places_.");
}

int offset = iter - places_.begin();
auto in_var = local_scopes_[offset]->FindVar(in_var_handle->name_);

Tensor *in_tensor = GetTensorFromVar(in_var);
for (auto *out : outputs_) {
auto out_handle = static_cast<VarHandle *>(out);
auto &out_p = out_handle->place_;

auto iter = std::find(places_.begin(), places_.end(), out_p);
if (iter == places_.end()) {
PADDLE_THROW("The output of BCast is not in the places_.");
}
int offset = iter - places_.begin();

auto *s = local_scopes_[offset];
auto out_var = s->FindVar(out_handle->name_);

PADDLE_ENFORCE_EQ(out_var->Type(), in_var->Type(), "");

if (in_var->IsType<framework::SelectedRows>()) {
auto in_sr = in_var->GetMutable<framework::SelectedRows>();
auto out = out_var->GetMutable<framework::SelectedRows>();
if (in_sr == out) continue;
out->set_height(in_sr->height());
out->set_rows(in_sr->rows());
out->mutable_value()->Resize(in_sr->value().dims());
out->mutable_value()->mutable_data(out_p, in_sr->value().type());
} else if (in_var->IsType<framework::LoDTensor>()) {
auto in_lod = in_var->GetMutable<framework::LoDTensor>();
auto out = out_var->GetMutable<framework::LoDTensor>();
if (in_lod == out) continue;
out->set_lod(in_lod->lod());
out->Resize(in_lod->dims());
out->mutable_data(out_p, in_lod->type());
} else {
PADDLE_THROW("Var should be LoDTensor or SelectedRows");
}

Tensor *out_tensor = GetTensorFromVar(out_var);

paddle::framework::TensorCopy(*in_tensor, out_p, *(dev_ctxes_[in_place]),
out_tensor);
}
}

std::string BCastOpHandle::Name() const { return "broadcast"; }
} // namespace details
} // namespace framework
} // namespace paddle
54 changes: 54 additions & 0 deletions paddle/fluid/framework/details/broad_cast_op_handle.h
Original file line number Diff line number Diff line change
@@ -0,0 +1,54 @@
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once

#include <map>
#include <string>
#include <vector>

#include "paddle/fluid/framework/details/op_handle_base.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/scope.h"
#include "paddle/fluid/framework/selected_rows.h"
#include "paddle/fluid/platform/device_context.h"

namespace paddle {
namespace framework {
namespace details {

/*
* BroadCast the input to all scope.
*
*/
struct BCastOpHandle : public OpHandleBase {
const std::vector<Scope *> &local_scopes_;
const std::vector<platform::Place> &places_;
const platform::ContextMap &ctxs_;

BCastOpHandle(const std::vector<Scope *> &local_scopes,
const std::vector<platform::Place> &places,
const platform::ContextMap &ctxs);

std::string Name() const override;

bool IsMultiDeviceTransfer() override { return false; };

protected:
void RunImpl() override;
};

} // namespace details
} // namespace framework
} // namespace paddle
174 changes: 174 additions & 0 deletions paddle/fluid/framework/details/broad_cast_op_handle_test.cc
Original file line number Diff line number Diff line change
@@ -0,0 +1,174 @@
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/framework/details/broad_cast_op_handle.h"
#include "gtest/gtest.h"

#include "paddle/fluid/platform/device_context.h"

namespace f = paddle::framework;
namespace p = paddle::platform;

// test data amount
const f::DDim kDims = {20, 20};

class BroadCastTester : public ::testing::Test {
public:
void SetUp() override {
int count = p::GetCUDADeviceCount();
if (count <= 1) {
LOG(WARNING) << "Cannot test multi-gpu BroadCast, because the CUDA "
"device count is "
<< count;
exit(0);
}
for (int i = 0; i < count; ++i) {
gpu_list_.emplace_back(p::CUDAPlace(i));
}
ctxs_ = new p::ContextMap(gpu_list_);
}

template <class T>
void BroadCastInitOp(int gpu_id = 0) {
for (size_t j = 0; j < gpu_list_.size(); ++j) {
local_scope_.push_back(&g_scope_.NewScope());
auto* out_var = local_scope_[j]->Var("out");
out_var->GetMutable<T>();
}
auto* in_var = local_scope_[gpu_id]->Var("input");
in_var->GetMutable<T>();

bc_op_handle_ =
new f::details::BCastOpHandle(local_scope_, gpu_list_, *ctxs_);

f::details::VarHandle* in_var_handle = new f::details::VarHandle();
in_var_handle->place_ = gpu_list_[gpu_id];
in_var_handle->name_ = "input";
in_var_handle->version_ = 1;
in_var_handle->generated_op_ = nullptr;
bc_op_handle_->AddInput(in_var_handle);

for (size_t j = 0; j < gpu_list_.size(); ++j) {
f::details::VarHandle* out_var_handle = new f::details::VarHandle();
out_var_handle->place_ = gpu_list_[j];
out_var_handle->name_ = "out";
out_var_handle->version_ = 2;
out_var_handle->generated_op_ = bc_op_handle_;
bc_op_handle_->AddOutput(out_var_handle);
}
}
void BroadCastDestroy() {
delete ctxs_;
for (auto in : bc_op_handle_->inputs_) {
delete in;
}
for (auto out : bc_op_handle_->outputs_) {
delete out;
}
delete bc_op_handle_;
}

public:
f::Scope g_scope_;
p::ContextMap* ctxs_;
std::vector<f::Scope*> local_scope_;
std::vector<p::Place> gpu_list_;
f::details::BCastOpHandle* bc_op_handle_;
};

TEST_F(BroadCastTester, BroadCastTestLodTensor) {
int gpu_id = 0;
BroadCastInitOp<f::LoDTensor>(gpu_id);

auto in_var = local_scope_[gpu_id]->Var("input");
auto in_lod_tensor = in_var->GetMutable<f::LoDTensor>();
in_lod_tensor->mutable_data<float>(kDims, gpu_list_[gpu_id]);

std::vector<float> send_vector(f::product(kDims), gpu_id + 12);
for (size_t k = 0; k < send_vector.size(); ++k) {
send_vector[k] = k;
}
f::LoD lod{{0, 10, 20}};
paddle::framework::TensorFromVector<float>(
send_vector, *(ctxs_->DevCtx(gpu_list_[gpu_id])), in_lod_tensor);
in_lod_tensor->set_lod(lod);
bc_op_handle_->Run(false);

ctxs_->WaitAll();

p::CPUPlace cpu_place;
for (size_t j = 0; j < gpu_list_.size(); ++j) {
auto out_var = local_scope_[j]->Var("out");
auto out_tensor = out_var->Get<f::LoDTensor>();
PADDLE_ENFORCE_EQ(out_tensor.lod(), lod, "lod is not equal.");

f::Tensor result_tensor;
f::TensorCopy(out_tensor, cpu_place, *(ctxs_->DevCtx(j)), &result_tensor);
float* ct = result_tensor.mutable_data<float>(cpu_place);

for (int64_t j = 0; j < f::product(kDims); ++j) {
ASSERT_NEAR(ct[j], send_vector[j], 1e-5);
}
}

BroadCastDestroy();
}

TEST_F(BroadCastTester, BroadCastTestSelectedRows) {
int gpu_id = 0;
BroadCastInitOp<f::SelectedRows>(gpu_id);

auto in_var = local_scope_[gpu_id]->Var("input");
auto in_selected_rows = in_var->GetMutable<f::SelectedRows>();
auto value = in_selected_rows->mutable_value();
value->mutable_data<float>(kDims, gpu_list_[gpu_id]);
int height = kDims[0] * 2;
std::vector<int64_t> rows{0, 1, 2, 3, 3, 0, 14, 7, 3, 1,
2, 4, 6, 3, 1, 1, 1, 1, 3, 7};
in_selected_rows->set_height(height);
in_selected_rows->set_rows(rows);

std::vector<float> send_vector(f::product(kDims));
for (size_t k = 0; k < send_vector.size(); ++k) {
send_vector[k] = k;
}
paddle::framework::TensorFromVector<float>(
send_vector, *(ctxs_->DevCtx(gpu_list_[gpu_id])), value);

bc_op_handle_->Run(false);

ctxs_->WaitAll();

p::CPUPlace cpu_place;
for (size_t j = 0; j < gpu_list_.size(); ++j) {
auto out_var = local_scope_[j]->Var("out");
auto& out_select_rows = out_var->Get<f::SelectedRows>();
auto rt = out_select_rows.value();

PADDLE_ENFORCE_EQ(out_select_rows.height(), height, "height is not equal.");
for (size_t k = 0; k < out_select_rows.rows().size(); ++k) {
PADDLE_ENFORCE_EQ(out_select_rows.rows()[k], rows[k]);
}

f::Tensor result_tensor;
f::TensorCopy(rt, cpu_place, *(ctxs_->DevCtx(j)), &result_tensor);
float* ct = result_tensor.data<float>();

for (int64_t j = 0; j < f::product(kDims); ++j) {
ASSERT_NEAR(ct[j], send_vector[j], 1e-5);
}
}

BroadCastDestroy();
}
Loading

0 comments on commit 8eaec5d

Please sign in to comment.