-
Notifications
You must be signed in to change notification settings - Fork 5.6k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
add c_reduce_sum/unstack/all_reduce_datatype for kunlun
- Loading branch information
1 parent
27281e1
commit 8b0b5a8
Showing
6 changed files
with
275 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,65 @@ | ||
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. | ||
Licensed under the Apache License, Version 2.0 (the "License"); | ||
you may not use this file except in compliance with the License. | ||
You may obtain a copy of the License at | ||
http://www.apache.org/licenses/LICENSE-2.0 | ||
Unless required by applicable law or agreed to in writing, software | ||
distributed under the License is distributed on an "AS IS" BASIS, | ||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
See the License for the specific language governing permissions and | ||
limitations under the License. */ | ||
|
||
#include "paddle/phi/kernels/unstack_grad_kernel.h" | ||
|
||
#include "paddle/phi/backends/xpu/enforce_xpu.h" | ||
#include "paddle/phi/core/kernel_registry.h" | ||
|
||
namespace phi { | ||
|
||
template <typename T, typename Context> | ||
void UnStackGradKernel(const Context &dev_ctx, | ||
const std::vector<const DenseTensor *> &x, | ||
int axis, | ||
DenseTensor *x_grad) { | ||
using XPUType = typename XPUTypeTrait<T>::Type; | ||
if (axis < 0) { | ||
axis += x[0]->dims().size() + 1; | ||
} | ||
dev_ctx.template Alloc<T>(x_grad); | ||
auto &dim = x[0]->dims(); | ||
std::vector<int> xdims; | ||
for (auto i = 0; i < dim.size(); ++i) { | ||
xdims.push_back(dim[i]); | ||
} | ||
xdims.push_back(1); | ||
std::vector<std::vector<int>> xdims_list; | ||
int n = static_cast<int>(x.size()); | ||
for (int i = 0; i < n; i++) { | ||
xdims_list.push_back(xdims); | ||
} | ||
|
||
std::vector<const XPUType *> x_list; | ||
for (int i = 0; i < n; i++) { | ||
x_list.push_back(reinterpret_cast<const XPUType *>(x[i]->data<T>())); | ||
} | ||
|
||
int r = xpu::concat<XPUType>(dev_ctx.x_context(), | ||
x_list, | ||
reinterpret_cast<XPUType *>(x_grad->data<T>()), | ||
xdims_list, | ||
axis); | ||
PADDLE_ENFORCE_XDNN_SUCCESS(r, "concat in unstack_grad op"); | ||
} | ||
} // namespace phi | ||
|
||
PD_REGISTER_KERNEL(unstack_grad, | ||
XPU, | ||
ALL_LAYOUT, | ||
phi::UnStackGradKernel, | ||
float, | ||
phi::dtype::float16, | ||
int, | ||
int64_t) {} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,60 @@ | ||
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. | ||
Licensed under the Apache License, Version 2.0 (the "License"); | ||
you may not use this file except in compliance with the License. | ||
You may obtain a copy of the License at | ||
http://www.apache.org/licenses/LICENSE-2.0 | ||
Unless required by applicable law or agreed to in writing, software | ||
distributed under the License is distributed on an "AS IS" BASIS, | ||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
See the License for the specific language governing permissions and | ||
limitations under the License. */ | ||
|
||
#include "paddle/phi/kernels/unstack_kernel.h" | ||
|
||
#include "paddle/phi/backends/xpu/enforce_xpu.h" | ||
#include "paddle/phi/core/kernel_registry.h" | ||
|
||
namespace phi { | ||
|
||
template <typename T, typename Context> | ||
void UnStackKernel(const Context &dev_ctx, | ||
const DenseTensor &x, | ||
int axis, | ||
int num, | ||
std::vector<DenseTensor *> outs) { | ||
using XPUType = typename XPUTypeTrait<T>::Type; | ||
auto x_dims = x.dims(); | ||
|
||
if (axis < 0) axis += x_dims.size(); | ||
auto x_shape = phi::vectorize<int>(x_dims); | ||
|
||
std::vector<int> dx_dims_list(outs.size(), 1); | ||
std::vector<XPUType *> dx_lists; | ||
for (size_t j = 0; j < outs.size(); ++j) { | ||
dev_ctx.template Alloc<T>(outs[j]); | ||
dx_lists.push_back(reinterpret_cast<XPUType *>(outs[j]->data<T>())); | ||
} | ||
|
||
int r = xpu::split<XPUType>(dev_ctx.x_context(), | ||
reinterpret_cast<const XPUType *>(x.data<T>()), | ||
dx_lists, | ||
x_shape, | ||
dx_dims_list, | ||
axis); | ||
|
||
PADDLE_ENFORCE_XDNN_SUCCESS(r, "split in unstack op"); | ||
} | ||
|
||
} // namespace phi | ||
|
||
PD_REGISTER_KERNEL(unstack, | ||
XPU, | ||
ALL_LAYOUT, | ||
phi::UnStackKernel, | ||
phi::dtype::float16, | ||
float, | ||
int, | ||
int64_t) {} |
131 changes: 131 additions & 0 deletions
131
python/paddle/fluid/tests/unittests/xpu/test_unstack_op_xpu.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,131 @@ | ||
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
import sys | ||
import unittest | ||
|
||
import numpy as np | ||
|
||
sys.path.append("..") | ||
from op_test_xpu import XPUOpTest | ||
from xpu.get_test_cover_info import ( | ||
XPUOpTestWrapper, | ||
create_test_class, | ||
get_xpu_op_support_types, | ||
) | ||
|
||
import paddle | ||
|
||
paddle.enable_static() | ||
|
||
|
||
class XPUTestUnStackOp(XPUOpTestWrapper): | ||
def __init__(self): | ||
self.op_name = 'unstack' | ||
self.use_dynamic_create_class = False | ||
|
||
class TestUnStackOpBase(XPUOpTest): | ||
def initDefaultParameters(self): | ||
self.input_dim = (5, 6, 7) | ||
self.axis = 0 | ||
self.dtype = 'float32' | ||
|
||
def initParameters(self): | ||
pass | ||
|
||
def get_y_names(self): | ||
y_names = [] | ||
for i in range(self.input_dim[self.axis]): | ||
y_names.append('y{}'.format(i)) | ||
return y_names | ||
|
||
def setUp(self): | ||
self.initDefaultParameters() | ||
self.initParameters() | ||
self.op_type = 'unstack' | ||
self.python_api = paddle.unstack | ||
self.x = np.random.random(size=self.input_dim).astype(self.dtype) | ||
|
||
outs = np.split(self.x, self.input_dim[self.axis], self.axis) | ||
new_shape = list(self.input_dim) | ||
del new_shape[self.axis] | ||
y_names = self.get_y_names() | ||
tmp = [] | ||
tmp_names = [] | ||
for i in range(self.input_dim[self.axis]): | ||
tmp.append((y_names[i], np.reshape(outs[i], new_shape))) | ||
tmp_names.append(y_names[i]) | ||
|
||
self.python_out_sig = tmp_names | ||
self.inputs = {'X': self.x} | ||
self.outputs = {'Y': tmp} | ||
self.attrs = {'axis': self.axis, 'num': self.input_dim[self.axis]} | ||
|
||
def test_check_output(self): | ||
if paddle.is_compiled_with_xpu(): | ||
place = paddle.XPUPlace(0) | ||
self.check_output_with_place(place) | ||
|
||
def test_check_grad(self): | ||
self.check_grad_with_place( | ||
paddle.XPUPlace(0), self.get_y_names, 'Y' | ||
) | ||
|
||
class TestStackOp3(TestUnStackOpBase): | ||
def initParameters(self): | ||
self.axis = -1 | ||
|
||
class TestStackOp4(TestUnStackOpBase): | ||
def initParameters(self): | ||
self.axis = -3 | ||
|
||
class TestStackOp5(TestUnStackOpBase): | ||
def initParameters(self): | ||
self.axis = 1 | ||
|
||
class TestStackOp6(TestUnStackOpBase): | ||
def initParameters(self): | ||
self.axis = 2 | ||
|
||
class TestUnstackZeroInputOp(unittest.TestCase): | ||
def unstack_zero_input_static(self): | ||
|
||
paddle.enable_static() | ||
|
||
array = np.array([], dtype=np.float32) | ||
x = paddle.to_tensor(np.reshape(array, [0]), dtype='float32') | ||
paddle.unstack(x, axis=1) | ||
|
||
def unstack_zero_input_dynamic(self): | ||
|
||
array = np.array([], dtype=np.float32) | ||
x = paddle.to_tensor(np.reshape(array, [0]), dtype='float32') | ||
paddle.unstack(x, axis=1) | ||
|
||
def test_type_error(self): | ||
paddle.disable_static() | ||
|
||
self.assertRaises(ValueError, self.unstack_zero_input_dynamic) | ||
self.assertRaises(ValueError, self.unstack_zero_input_static) | ||
|
||
paddle.disable_static() | ||
|
||
|
||
support_types = get_xpu_op_support_types('unstack') | ||
for stype in support_types: | ||
create_test_class(globals(), XPUTestUnStackOp, stype) | ||
|
||
|
||
if __name__ == '__main__': | ||
unittest.main() |