Skip to content

Commit

Permalink
[Sparse]Optimize BatchNorm1D forward in test mode (#47736)
Browse files Browse the repository at this point in the history
  • Loading branch information
zhangkaihuo authored Nov 11, 2022
1 parent 1ad95e9 commit 6cdc18a
Showing 1 changed file with 72 additions and 13 deletions.
85 changes: 72 additions & 13 deletions paddle/phi/kernels/gpu/batch_norm_kernel.cu
Original file line number Diff line number Diff line change
Expand Up @@ -72,6 +72,40 @@ static __global__ void BNForwardInference(const T *x,
}
}

template <typename T>
static __global__ void InverseVariance(const BatchNormParamType<T> *variance,
const double epsilon,
const int C,
BatchNormParamType<T> *inv_variance) {
int tid = threadIdx.x + blockIdx.x * blockDim.x;
if (tid < C) {
inv_variance[tid] = 1 / sqrt(variance[tid] + epsilon);
}
}

template <typename T, phi::DataLayout layout>
static __global__ void BN1DForwardInference(
const T *x,
const BatchNormParamType<T> *mean,
const BatchNormParamType<T> *inv_variance,
const BatchNormParamType<T> *scale,
const BatchNormParamType<T> *bias,
const int C,
const int N,
const int HxW,
const double epsilon,
T *y) {
int gid = blockIdx.x * blockDim.x + threadIdx.x;
int stride = blockDim.x * gridDim.x;
int num = N * C * HxW;
for (int i = gid; i < num; i += stride) {
const int c = layout == phi::DataLayout::kNCHW ? i / HxW % C : i % C;
BatchNormParamType<T> x_sub_mean =
static_cast<BatchNormParamType<T>>(x[i]) - mean[c];
y[i] = static_cast<T>(scale[c] * x_sub_mean * inv_variance[c] + bias[c]);
}
}

template <typename T, int BlockDim, phi::DataLayout layout>
static __global__ LAUNCH_BOUNDS(BlockDim) void BNForwardTraining(
const T *x,
Expand Down Expand Up @@ -795,7 +829,7 @@ void BatchNormKernel(const Context &ctx,
// epsilon));
#else
const bool use_native_kernel =
((x_dims.size() == 2 && N >= CUDNN_PER_ACTIVATION_THRESHOLD) ||
(x_dims.size() == 2 ||
(x_dims.size() == 3 && N >= CUDNN_SPATIAL_THRESHOLD));
if (use_native_kernel) {
const int block_size = 256;
Expand All @@ -814,18 +848,43 @@ void BatchNormKernel(const Context &ctx,
epsilon,
transformed_y.template data<T>());
} else {
BNForwardInference<T, DataLayout::kNHWC>
<<<grid_size, block_size, 0, ctx.stream()>>>(
transformed_x.template data<T>(),
est_mean->template data<BatchNormParamType<T>>(),
est_var->template data<BatchNormParamType<T>>(),
scale.template data<BatchNormParamType<T>>(),
bias.template data<BatchNormParamType<T>>(),
C,
N,
H * W * D,
epsilon,
transformed_y.template data<T>());
if (x_dims.size() == 2) {
DenseTensor inv_var = phi::Empty<BatchNormParamType<T>>(ctx, {C});
auto *inv_var_ptr = inv_var.data<BatchNormParamType<T>>();
const int threads = 512 > C ? C : 512;
const int blocks = (C + 511) / 512;
InverseVariance<T><<<blocks, threads>>>(
est_var->template data<BatchNormParamType<T>>(),
epsilon,
C,
inv_var_ptr);
BN1DForwardInference<T, DataLayout::kNHWC>
<<<grid_size, block_size, 0, ctx.stream()>>>(
transformed_x.template data<T>(),
est_mean->template data<BatchNormParamType<T>>(),
// est_var->template data<BatchNormParamType<T>>(),
inv_var_ptr,
scale.template data<BatchNormParamType<T>>(),
bias.template data<BatchNormParamType<T>>(),
C,
N,
H * W * D,
epsilon,
transformed_y.template data<T>());
} else {
BNForwardInference<T, DataLayout::kNHWC>
<<<grid_size, block_size, 0, ctx.stream()>>>(
transformed_x.template data<T>(),
est_mean->template data<BatchNormParamType<T>>(),
est_var->template data<BatchNormParamType<T>>(),
scale.template data<BatchNormParamType<T>>(),
bias.template data<BatchNormParamType<T>>(),
C,
N,
H * W * D,
epsilon,
transformed_y.template data<T>());
}
}
} else {
PADDLE_ENFORCE_GPU_SUCCESS(
Expand Down

0 comments on commit 6cdc18a

Please sign in to comment.