Skip to content

Commit

Permalink
[Phi] Change the output format of C++ backward api (Part2) (#42545)
Browse files Browse the repository at this point in the history
* change the output format of C++ backward api

* fix merge conflict

* fix sparse api code auto-gen

* fix eager_gen bug

* fix bug of output is null

* fix bug of conv2d_grad_impl

* fix optional grad

* fix bug of eager-gen double_grad

* fix bug

* fix multiply_double_grad bug

* fix bug of higher order derivative

* fix bug of FillZeroForEmptyGradInput

* remove redundant vector in grad_node

* fix bug of test_deformable_conv_v1_op

* fix bug of test_deformable_conv_v1_op

* some refacotr
  • Loading branch information
zyfncg authored May 19, 2022
1 parent 892f685 commit 4427f1b
Show file tree
Hide file tree
Showing 10 changed files with 127 additions and 50 deletions.
Original file line number Diff line number Diff line change
Expand Up @@ -24,10 +24,11 @@
ops_to_fill_zero_for_empty_grads = set([
"split_grad", "rnn_grad", "matmul_double_grad", "matmul_triple_grad",
"sigmoid_double_grad", "sigmoid_triple_grad", "add_double_grad",
"add_triple_grad", "multiply_double_grad", "multiply_triple_grad",
"conv2d_grad_grad", "batch_norm_double_grad", "tanh_double_grad",
"tanh_triple_grad", "subtract_double_grad", "divide_double_grad",
"log_double_grad", "elu_double_grad", "leaky_relu_double_grad"
"add_triple_grad", "multiply_grad", "multiply_double_grad",
"multiply_triple_grad", "conv2d_grad_grad", "batch_norm_double_grad",
"tanh_double_grad", "tanh_triple_grad", "subtract_double_grad",
"divide_double_grad", "log_double_grad", "elu_double_grad",
"leaky_relu_double_grad"
])

# For API dispatch used at python-level
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -337,14 +337,14 @@ class {} : public egr::GradNodeBase {{

CREATE_PLAIN_OPTIONAL_TENSOR_TEMPLATE = \
"""
paddle::optional<const paddle::experimental::Tensor&> {}_optional = paddle::none;
if({}.initialized()) {}_optional = paddle::make_optional<const paddle::experimental::Tensor&>({});
paddle::optional<const paddle::experimental::Tensor&> {}_optional = paddle::none;
if({}.initialized()) {}_optional = paddle::make_optional<const paddle::experimental::Tensor&>({});
"""

CREATE_RECOVER_OPTIONAL_TENSOR_TEMPLATE = \
"""
paddle::optional<const paddle::experimental::Tensor&> {}_optional = paddle::none;
if( {}.impl() ) {}_optional = paddle::make_optional<const paddle::experimental::Tensor&>({});
paddle::optional<const paddle::experimental::Tensor&> {}_optional = paddle::none;
if( {}.impl() ) {}_optional = paddle::make_optional<const paddle::experimental::Tensor&>({});
"""

CHECK_NAN_AND_INF_TEMPLATE = \
Expand Down Expand Up @@ -738,9 +738,14 @@ def GenerateNodeCreationCodes(self):
num_outputs = len(forward_outputs_position_map.keys())
for name, (_, pos) in forward_outputs_position_map.items():
output_autograd_meta_name = GetAutoGradMetaName(name)
set_out_rank = f"""{indent}if ({output_autograd_meta_name}) {{
{indent} egr::EagerUtils::SetOutRankWithSlot({output_autograd_meta_name}, {pos});
{indent}}}"""

set_history = f"""{indent}if ({output_autograd_meta_name}) {{
{indent} egr::EagerUtils::SetHistory({output_autograd_meta_name}, grad_node);
{indent}}}"""

set_out_rank = f"{indent}egr::EagerUtils::SetOutRankWithSlot({output_autograd_meta_name}, {pos});"
set_history = f"{indent}egr::EagerUtils::SetHistory({output_autograd_meta_name}, grad_node);"
set_grad_in_meta = f"{indent}grad_node->SetGradInMeta({name}, {pos});"
set_retain_grad = f"{indent}egr::EagerUtils::CheckAndRetainGrad({name});"

Expand Down Expand Up @@ -1265,7 +1270,17 @@ def GenerateNodeDefinition(self, next_grad_node_creation_str,
# Fill Grad Ins with Zero
fill_zero_str = ""
if backward_api_name in ops_to_fill_zero_for_empty_grads:
fill_zero_str = f"{indent}egr::EagerUtils::FillZeroForEmptyGradInputs(&grads, this->InputMeta());\n"
fill_zero_str = f"{indent}const auto& input_metas = this->InputMeta();\n"
for name, (ttype, fwd_position,
grad_api_position) in backward_grad_inputs_map.items():
if name in self.optional_inputs:
if IsPlainTensorType(ttype):
fill_zero_str += f"{indent}egr::EagerUtils::FillZeroForEmptyOptionalGradInput(&grads[{fwd_position}][0], input_metas[{fwd_position}][0]);\n"
else:
if IsPlainTensorType(ttype):
fill_zero_str += f"{indent}egr::EagerUtils::FillZeroForEmptyGradInput(&grads[{fwd_position}][0], input_metas[{fwd_position}][0]);\n"
else:
fill_zero_str += f"{indent}egr::EagerUtils::FillZeroForEmptyGradInput(&grads[{fwd_position}], input_metas[{fwd_position}]);\n"

# Grad Ins from TensorWrappers
for name, (_, is_fwd_input,
Expand Down Expand Up @@ -1322,40 +1337,46 @@ def GenerateNodeDefinition(self, next_grad_node_creation_str,

get_grad_in_args_str = "\n".join(get_grad_in_args_list)

# Grad Outputs
for name, (ttype, fwd_position,
grad_api_position) in backward_grad_outputs_map.items():
transformed_tensor_name = self.TransformToNextGradName(name)
if IsPlainTensorType(ttype):
grad_api_args.append(f"api_output[{fwd_position}][0]")
else:
assert IsVectorTensorType(ttype)
grad_api_args.append(f"api_output[{fwd_position}]")

grad_api_args_str = ", ".join(grad_api_args)

# Grad Function Call String
slot_num_bwd_outputs = len(self.forward_inputs_position_map.keys())
grad_api_namespace = f"paddle::experimental::{namespace}"
grad_function_call_str = f"""
const auto& out_metas = OutputMeta();
paddle::small_vector<std::vector<paddle::experimental::Tensor>, egr::kSlotSmallVectorSize> returns({slot_num_bwd_outputs});
paddle::small_vector<std::vector<paddle::experimental::Tensor*>, egr::kSlotSmallVectorSize> api_output({slot_num_bwd_outputs});
for (int i = 0; i < {slot_num_bwd_outputs}; ++i) {{
returns[i].resize(out_metas[i].size());
if(returns[i].size() == 0) {{
api_output[i].reserve(1);
api_output[i].push_back(nullptr);
continue;
}}
api_output[i].reserve(returns[i].size());
for (size_t j = 0; j < returns[i].size(); ++j) {{
api_output[i].push_back(&returns[i][j]);
}}
}}
"""

grad_function_call_str = grad_function_call_str + f"{indent}{grad_api_namespace}{backward_api_name}({grad_api_args_str});"
# Grad Outputs
out_index = -1
for name, (ttype, fwd_position,
grad_api_position) in backward_grad_outputs_map.items():
transformed_tensor_name = self.TransformToNextGradName(name)
out_index = out_index + 1
grad_api_args.append(f"api_output_{out_index}")

if IsPlainTensorType(ttype):
grad_function_call_str += f"""
auto* api_output_{out_index} = (out_metas[{fwd_position}].empty() || out_metas[{fwd_position}][0].IsStopGradient()) ? nullptr : &returns[{fwd_position}][0];"""

else:
assert IsVectorTensorType(ttype)
grad_function_call_str += f"""
std::vector<paddle::experimental::Tensor*> api_output_{out_index};
api_output_{out_index}.reserve(returns[{fwd_position}].size());
for (size_t i = 0; i < returns[{fwd_position}].size(); ++i) {{
if (out_metas[{fwd_position}].empty() || out_metas[{fwd_position}][i].IsStopGradient()) {{
api_output_{out_index}.push_back(nullptr);
}} else {{
api_output_{out_index}.push_back(&returns[{fwd_position}][i]);
}}
}}"""

grad_api_args_str = ", ".join(grad_api_args)

grad_function_call_str = grad_function_call_str + f"""
{indent}{grad_api_namespace}{backward_api_name}({grad_api_args_str});"""

# Check Nan and Inf
check_nan_inf_str = CHECK_NAN_AND_INF_TEMPLATE.format(backward_api_name,
Expand Down Expand Up @@ -1425,7 +1446,7 @@ def GenerateNodeDefinition(self, next_grad_node_creation_str,
if IsPlainTensorType(rtype):
output_autograd_meta = f"""
auto& {transformed_tensor_name} = returns[{pos}][0];
egr::AutogradMeta* {output_autograd_meta_name} = egr::EagerUtils::autograd_meta(&{transformed_tensor_name});"""
egr::AutogradMeta* {output_autograd_meta_name} = returns[{pos}][0].initialized() ? egr::EagerUtils::autograd_meta(&{transformed_tensor_name}) : nullptr;"""

else:
assert IsVectorTensorType(rtype)
Expand Down
2 changes: 2 additions & 0 deletions paddle/fluid/eager/grad_node_info.cc
Original file line number Diff line number Diff line change
Expand Up @@ -218,6 +218,8 @@ void GradNodeBase::SetGradOutMeta(const paddle::experimental::Tensor& fwd_in,
// Set Stop_gradient
if (fwd_in_meta) {
meta.SetStopGradient(fwd_in_meta->StopGradient());
} else {
meta.SetStopGradient(true);
}
// Set Adj Edges
if (fwd_in_meta && !fwd_in_meta->StopGradient()) {
Expand Down
40 changes: 36 additions & 4 deletions paddle/fluid/eager/utils.cc
Original file line number Diff line number Diff line change
Expand Up @@ -454,16 +454,48 @@ void EagerUtils::FillZeroForEmptyGradInputs(
grad_in_meta.HasTensorMeta(),
paddle::platform::errors::Fatal(
"Unable to fill empty grad inputs due to empty GradSlotMeta"));

const auto& tensor_meta = grad_in_meta.GetTensorMeta();
phi::Place place = grad_in_meta.GetPlace();

auto tensor_with_zero = paddle::experimental::full(
phi::vectorize(tensor_meta.dims), 0.0, tensor_meta.dtype, place);
phi::vectorize(tensor_meta.dims), 0.0, tensor_meta.dtype,
grad_in_meta.GetPlace());
grad.set_impl(tensor_with_zero.impl());
}
}
}
}

void EagerUtils::FillZeroForEmptyGradInput(
paddle::experimental::Tensor* in_grad, const GradSlotMeta& grad_in_meta) {
if (!in_grad->initialized()) {
PADDLE_ENFORCE(
grad_in_meta.HasTensorMeta(),
paddle::platform::errors::Fatal(
"Unable to fill empty grad inputs due to empty GradSlotMeta"));
const auto& tensor_meta = grad_in_meta.GetTensorMeta();
auto tensor_with_zero =
paddle::experimental::full(phi::vectorize(tensor_meta.dims), 0.0,
tensor_meta.dtype, grad_in_meta.GetPlace());
in_grad->set_impl(tensor_with_zero.impl());
}
}

void EagerUtils::FillZeroForEmptyOptionalGradInput(
paddle::experimental::Tensor* in_grad, const GradSlotMeta& grad_in_meta) {
if (!in_grad->initialized() && grad_in_meta.HasTensorMeta()) {
const auto& tensor_meta = grad_in_meta.GetTensorMeta();
auto tensor_with_zero =
paddle::experimental::full(phi::vectorize(tensor_meta.dims), 0.0,
tensor_meta.dtype, grad_in_meta.GetPlace());
in_grad->set_impl(tensor_with_zero.impl());
}
}

void EagerUtils::FillZeroForEmptyGradInput(
std::vector<paddle::experimental::Tensor>* in_grads,
const std::vector<GradSlotMeta>& grad_in_metas) {
for (size_t i = 0; i < in_grads->size(); i++) {
FillZeroForEmptyGradInput(&in_grads->at(i), grad_in_metas[i]);
}
}

} // namespace egr
7 changes: 7 additions & 0 deletions paddle/fluid/eager/utils.h
Original file line number Diff line number Diff line change
Expand Up @@ -238,6 +238,13 @@ class EagerUtils {
kSlotSmallVectorSize>* out_grads,
const paddle::small_vector<std::vector<GradSlotMeta>,
kSlotSmallVectorSize>& grad_out_metas);
static void FillZeroForEmptyGradInput(paddle::experimental::Tensor* in_grad,
const GradSlotMeta& grad_in_meta);
static void FillZeroForEmptyOptionalGradInput(
paddle::experimental::Tensor* in_grad, const GradSlotMeta& grad_in_meta);
static void FillZeroForEmptyGradInput(
std::vector<paddle::experimental::Tensor>* in_grads,
const std::vector<GradSlotMeta>& grad_in_metas);
};

} // namespace egr
7 changes: 6 additions & 1 deletion paddle/phi/api/lib/kernel_dispatch.h
Original file line number Diff line number Diff line change
Expand Up @@ -109,7 +109,12 @@ struct KernelKeyParser : ArgsIterator<KernelKeyParser> {
}
}

void operator()(const Tensor& x) { AssignKernelKeySet(*x.impl()); }
void operator()(const Tensor& x) {
const auto* tensor = x.impl().get();
if (tensor) {
AssignKernelKeySet(*tensor);
}
}

void operator()(const std::vector<Tensor>& x) {
const phi::TensorBase& tensor = *x.at(0).impl();
Expand Down
3 changes: 2 additions & 1 deletion paddle/phi/kernels/activation_grad_kernel.h
Original file line number Diff line number Diff line change
Expand Up @@ -17,6 +17,7 @@ limitations under the License. */
#include "paddle/phi/common/scalar.h"
#include "paddle/phi/core/dense_tensor.h"
#include "paddle/phi/infermeta/unary.h"
#include "paddle/utils/optional.h"

namespace phi {

Expand Down Expand Up @@ -136,7 +137,7 @@ void SigmoidTripleGradKernel(const Context& dev_ctx,
const DenseTensor& dout,
const DenseTensor& ddx,
const DenseTensor& d_dout_new,
const DenseTensor& d_ddout,
paddle::optional<const DenseTensor&> d_ddout,
DenseTensor* d_out_new,
DenseTensor* d_dout,
DenseTensor* d_ddx);
Expand Down
17 changes: 12 additions & 5 deletions paddle/phi/kernels/funcs/activation_functor.h
Original file line number Diff line number Diff line change
Expand Up @@ -1428,16 +1428,19 @@ struct SigmoidTripleGradFunctor : public BaseActivationFunctor<T> {
GET_DATA_SAFELY(Out, "Input", "Out", "SigmoidTripleGrad"));
auto dout = EigenVector<T>::Flatten(
GET_DATA_SAFELY(dOut, "Input", "DOut", "SigmoidTripleGrad"));
auto d_ddOut = EigenVector<T>::Flatten(
GET_DATA_SAFELY(d_DDOut, "Input", "D_DDOut", "SigmoidTripleGrad"));
auto d_dOutNew = EigenVector<T>::Flatten(GET_DATA_SAFELY(
d_dOut_New, "Input", "D_DOut_New", "SigmoidTripleGrad"));

if (d_Out_New) {
auto d_OutNew = EigenVector<T>::Flatten(GET_DATA_SAFELY(
d_Out_New, "Output", "D_OutNew", "SigmoidTripleGrad"));
d_OutNew.device(*d) = (ddx - static_cast<T>(2) * out * ddx) * d_ddOut -
static_cast<T>(2) * dout * ddx * d_dOutNew;
d_OutNew.device(*d) = -static_cast<T>(2) * dout * ddx * d_dOutNew;
if (d_DDOut) {
auto d_ddOut = EigenVector<T>::Flatten(
GET_DATA_SAFELY(d_DDOut, "Input", "D_DDOut", "SigmoidTripleGrad"));
d_OutNew.device(*d) =
(ddx - static_cast<T>(2) * out * ddx) * d_ddOut + d_OutNew;
}
}
if (d_d_Out) {
auto d_dOut = EigenVector<T>::Flatten(
Expand All @@ -1449,8 +1452,12 @@ struct SigmoidTripleGradFunctor : public BaseActivationFunctor<T> {
auto d_ddx = EigenVector<T>::Flatten(
GET_DATA_SAFELY(d_DDx, "Output", "D_DDx", "SigmoidTripleGrad"));
d_ddx.device(*d) =
(static_cast<T>(1) - out) * out * d_ddOut +
(static_cast<T>(1) - static_cast<T>(2) * out) * dout * d_dOutNew;
if (d_DDOut) {
auto d_ddOut = EigenVector<T>::Flatten(
GET_DATA_SAFELY(d_DDOut, "Input", "D_DDOut", "SigmoidTripleGrad"));
d_ddx.device(*d) = d_ddx + (static_cast<T>(1) - out) * out * d_ddOut;
}
}
}
static constexpr ActBwdOpFwdDeps FwdDeps() {
Expand Down
8 changes: 4 additions & 4 deletions paddle/phi/kernels/impl/activation_grad_impl.h
Original file line number Diff line number Diff line change
Expand Up @@ -265,7 +265,7 @@ void SigmoidTripleGradKernel(const Context& dev_ctx,
const DenseTensor& dout,
const DenseTensor& ddx,
const DenseTensor& d_dout_new,
const DenseTensor& d_ddout,
paddle::optional<const DenseTensor&> d_ddout,
DenseTensor* d_out_new,
DenseTensor* d_dout,
DenseTensor* d_ddx) {
Expand All @@ -274,19 +274,19 @@ void SigmoidTripleGradKernel(const Context& dev_ctx,
dev_ctx.template Alloc<T>(d_dout);
}
if (d_out_new) {
d_dout->Resize(out.dims());
d_out_new->Resize(out.dims());
dev_ctx.template Alloc<T>(d_out_new);
}
if (d_ddx) {
d_dout->Resize(ddx.dims());
d_ddx->Resize(ddx.dims());
dev_ctx.template Alloc<T>(d_ddx);
}
funcs::SigmoidTripleGradFunctor<T> functor;
functor(dev_ctx,
&out,
&ddx,
&dout,
&d_ddout,
d_ddout.get_ptr(),
&d_dout_new,
d_dout,
d_out_new,
Expand Down
1 change: 1 addition & 0 deletions python/paddle/utils/code_gen/backward.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -1655,6 +1655,7 @@
param : [out, fwd_grad_out, grad_grad_x]
kernel :
func : sigmoid_triple_grad
optional : grad_grad_out_grad

- backward_api : silu_grad
forward : silu (Tensor x) -> Tensor(out)
Expand Down

0 comments on commit 4427f1b

Please sign in to comment.