Skip to content

Commit

Permalink
Merge pull request #5480 from wanghaoshuang/nce_op
Browse files Browse the repository at this point in the history
Add nce op
  • Loading branch information
wanghaoshuang authored Dec 1, 2017
2 parents 1fe5acb + 29262ab commit 10b2534
Show file tree
Hide file tree
Showing 3 changed files with 495 additions and 0 deletions.
186 changes: 186 additions & 0 deletions paddle/operators/nce_op.cc
Original file line number Diff line number Diff line change
@@ -0,0 +1,186 @@
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/operators/nce_op.h"

namespace paddle {
namespace operators {

using framework::Tensor;

class NCEOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;

void InferShape(framework::InferShapeContext* ctx) const override {
PADDLE_ENFORCE(ctx->HasInput("Input"));
PADDLE_ENFORCE(ctx->HasInput("Label"));
PADDLE_ENFORCE(ctx->HasInput("Weight"));
PADDLE_ENFORCE(ctx->HasOutput("Cost"));
PADDLE_ENFORCE(ctx->HasOutput("SampleLogits"));
PADDLE_ENFORCE(ctx->HasOutput("SampleLabels"));

auto x_dims = ctx->GetInputDim("Input");
auto label_dims = ctx->GetInputDim("Label");
PADDLE_ENFORCE_EQ(x_dims[0], label_dims[0]);
int num_true_classes = label_dims.size() == 2 ? label_dims[1] : 1;
if (ctx->HasInput("Bias")) {
PADDLE_ENFORCE_EQ(ctx->GetInputDim("Weight")[0],
ctx->GetInputDim("Bias")[0]);
}
auto num_neg_samples = ctx->Attrs().Get<int>("num_neg_samples");
auto num_total_classes = ctx->Attrs().Get<int>("num_total_classes");
std::vector<int> custom_neg_classes =
ctx->Attrs().Get<std::vector<int>>("custom_neg_classes");
PADDLE_ENFORCE_EQ(num_total_classes, ctx->GetInputDim("Weight")[0]);
if (custom_neg_classes.size() > 0) {
PADDLE_ENFORCE_EQ(custom_neg_classes.size(),
static_cast<size_t>(num_neg_samples));
}
// set dims of output(Out)
std::vector<int64_t> out_dims;
out_dims.push_back(x_dims[0]);
out_dims.push_back(1);
ctx->SetOutputDim("Cost", framework::make_ddim(out_dims));

// set dims of output(SampleOut)
std::vector<int64_t> sample_out_dims;
sample_out_dims.push_back(x_dims[0]);
sample_out_dims.push_back(num_neg_samples + num_true_classes);
ctx->SetOutputDim("SampleLogits", framework::make_ddim(sample_out_dims));
ctx->SetOutputDim("SampleLabels", framework::make_ddim(sample_out_dims));
}

protected:
framework::OpKernelType GetKernelType(
const framework::ExecutionContext& ctx) const override {
return framework::OpKernelType(
framework::ToDataType(ctx.Input<Tensor>("Input")->type()),
ctx.device_context());
}
};

class NCEOpMaker : public framework::OpProtoAndCheckerMaker {
public:
NCEOpMaker(framework::OpProto* proto, framework::OpAttrChecker* op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) {
AddInput("Input", "(Tensor) A tensor of shape [batch_size, dim].");
AddInput(
"Label",
"(Tensor) A tensor of shape [batch_size, num_true_class]. "
"'num_true_class' is the number of target classes in each sample."
"The number of target classes per sample should be same. "
"If you have a variable number of target classes, "
"you can pad them out to a constant number by either repeating them"
" or by padding with an otherwise unused class.)");
AddInput("Weight",
"(Tensor) A tensor of shape [num_class, dim]. 'num_class' is the "
"total number of class.");
AddInput(
"Bias",
"(Tensor) A tensor of shape [num_class, 1]. 'num_class' is the total "
"number of class. It is a dispensable input.")
.AsDispensable();
AddInput("SampleWeight",
"(Tensor) A tensor of shape [batch_size, 1] storing a weight for "
"each sample. And it is a dispensable input. The default value of "
"sample is 1.")
.AsDispensable();
AddOutput("Cost",
"(Tensor) A tensor of shape [batch_size, 1]. Cost of samples.");
AddOutput("SampleLogits",
"An intermediate tensor of shape[batch_size, num_neg_samples + "
"num_pos_samples]."
"This tensor is output of forward kernel and used in backward "
"kernel to compute grads."
"Given X is the dot product of input tensor and sampled labels' "
"weights."
"Then 'SampleLogits' is sigmoid(X).")
.AsIntermediate();
AddOutput("SampleLabels",
"An intermediate tensor of shape[batch_size, num_neg_samples + "
"num_pos_samples]."
"This tensor is output of forward kernel and used in backward "
"kernel to compute grads."
"")
.AsIntermediate();
AddAttr<int>("num_total_classes",
"Total number of classes in all samples.");
AddAttr<int>("num_neg_samples",
"The number of negative classes. The default value is 10.")
.SetDefault(10);
AddAttr<std::vector<int>>("custom_neg_classes",
"This attribute only be used in unitest. Classes "
"in this list wiil be used as negative classes "
"for every samples. Under normal conditions, "
"user should avoid setting this attribute.");
AddComment(R"DOC(
Compute and return the noise-contrastive estimation training loss.
See [Noise-contrastive estimation: A new estimation principle for unnormalized statistical models](http://www.jmlr.org/proceedings/papers/v9/gutmann10a/gutmann10a.pdf).
By default this operator uses a uniform distribution for sampling.
)DOC");
}
};

class NCEOpGrad : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;

void InferShape(framework::InferShapeContext* ctx) const override {
PADDLE_ENFORCE(ctx->HasInput("Input"));
PADDLE_ENFORCE(ctx->HasInput("Weight"));
PADDLE_ENFORCE(ctx->HasInput("Cost"));
PADDLE_ENFORCE(ctx->HasInput("SampleLogits"));
PADDLE_ENFORCE(ctx->HasInput("SampleLabels"));
PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Cost")),
"The input(Out@GRAD) should not be null.");

auto x_dims = ctx->GetInputDim("Input");
auto x_grad_name = framework::GradVarName("Input");
if (ctx->HasOutput(x_grad_name)) {
ctx->SetOutputDim(x_grad_name, x_dims);
}

auto w_dims = ctx->GetInputDim("Weight");
auto w_grad_name = framework::GradVarName("Weight");
if (ctx->HasOutput(w_grad_name)) {
ctx->SetOutputDim(w_grad_name, w_dims);
}

auto bias_grad_name = framework::GradVarName("Bias");
if (ctx->HasOutput(bias_grad_name)) {
auto bias_dims = ctx->GetInputDim("Bias");
ctx->SetOutputDim(bias_grad_name, bias_dims);
}
}

protected:
framework::OpKernelType GetKernelType(
const framework::ExecutionContext& ctx) const override {
return framework::OpKernelType(
framework::ToDataType(ctx.Input<Tensor>("Input")->type()),
ctx.device_context());
}
};

} // namespace operators
} // namespace paddle

namespace ops = paddle::operators;
REGISTER_OP(nce, ops::NCEOp, ops::NCEOpMaker, nce_grad, ops::NCEOpGrad);
REGISTER_OP_CPU_KERNEL(nce, ops::NCEKernel<paddle::platform::CPUPlace, float>,
ops::NCEKernel<paddle::platform::CPUPlace, double>);
REGISTER_OP_CPU_KERNEL(nce_grad,
ops::NCEGradKernel<paddle::platform::CPUPlace, float>,
ops::NCEGradKernel<paddle::platform::CPUPlace, double>);
211 changes: 211 additions & 0 deletions paddle/operators/nce_op.h
Original file line number Diff line number Diff line change
@@ -0,0 +1,211 @@
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

#include <math.h>
#include <random>
#include "paddle/framework/eigen.h"
#include "paddle/framework/op_registry.h"
#include "unsupported/Eigen/CXX11/Tensor"
namespace paddle {
namespace operators {

using Tensor = framework::Tensor;

template <typename T, int MajorType = Eigen::RowMajor,
typename IndexType = Eigen::DenseIndex>
using EigenMatrix = framework::EigenMatrix<T, MajorType, IndexType>;

template <typename Place, typename T>
void PrepareSamples(const framework::ExecutionContext& context) {
auto label = context.Input<Tensor>("Label");
const int64_t* label_data = label->data<int64_t>();
auto label_dims = label->dims();
int num_total_classes = context.Attr<int>("num_total_classes");
// for unitest
std::vector<int> custom_neg_classes =
context.Attr<std::vector<int>>("custom_neg_classes");
// random machine
std::random_device rd;
std::mt19937 rng(rd());
std::uniform_int_distribution<int> rand(0, num_total_classes - 1);

auto sample_labels = context.Output<Tensor>("SampleLabels");
auto sample_labels_dims = sample_labels->dims();
int64_t* sample_labels_data =
sample_labels->mutable_data<int64_t>(context.GetPlace());

int num_label = label_dims.size() == 2 ? label_dims[1] : 1;
int index = 0;
for (size_t i = 0; i < label_dims[0]; ++i) {
int j = 0;
for (; j < num_label; ++j) {
sample_labels_data[index++] = label_data[i * num_label + j];
}
if (custom_neg_classes.size() > 0) {
for (auto label : custom_neg_classes) {
sample_labels_data[index++] = label;
}
} else {
for (; j < sample_labels_dims[1]; ++j) {
// TODO(wanghaoshuang): support more distribution sampling
sample_labels_data[index++] = rand(rng);
}
}
}
}

template <typename Place, typename T>
class NCEKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& context) const override {
PrepareSamples<Place, T>(context);
auto sample_labels = context.Output<Tensor>("SampleLabels");
const int64_t* sample_labels_data = sample_labels->data<int64_t>();
auto sample_out = context.Output<Tensor>("SampleLogits");
T* sample_out_data = sample_out->mutable_data<T>(context.GetPlace());
auto label = context.Input<Tensor>("Label");
auto sample_weight = context.Input<Tensor>("SampleWeight");
const T* sample_weight_data = nullptr;
if (sample_weight != nullptr) {
sample_weight_data = sample_weight->data<T>();
}
auto out = context.Output<Tensor>("Cost");
T* out_data = out->mutable_data<T>(context.GetPlace());
int num_neg_samples = context.Attr<int>("num_neg_samples");
int num_total_classes = context.Attr<int>("num_total_classes");
int num_true_class = 1;
if (label != nullptr) {
num_true_class = label->dims()[1];
}
T b = 1. / num_total_classes * num_neg_samples;
// forward bias
auto bias = context.Input<Tensor>("Bias");
if (bias != nullptr) {
const T* bias_data = bias->data<T>();
for (size_t i = 0; i < sample_labels->numel(); ++i) {
sample_out_data[i] = bias_data[sample_labels_data[i]];
}
} else {
for (size_t i = 0; i < sample_labels->numel(); ++i) {
sample_out_data[i] = 0;
}
}
// forward mul
auto input_mat = EigenMatrix<T>::From(*(context.Input<Tensor>("Input")));
auto weight_mat = EigenMatrix<T>::From(*(context.Input<Tensor>("Weight")));
for (size_t i = 0; i < sample_labels->numel(); ++i) {
Eigen::Tensor<T, 0, Eigen::RowMajor, Eigen::DenseIndex> result =
(input_mat.chip((int)(i / sample_labels->dims()[1]), 0) *
weight_mat.chip(sample_labels_data[i], 0))
.sum();
sample_out_data[i] += result(0);
sample_out_data[i] = (1. / (1. + exp(-sample_out_data[i])));
}
// forward cost
for (size_t i = 0; i < sample_labels->dims()[0]; ++i) {
size_t j = 0;
out_data[i] = 0;
T w = sample_weight == nullptr ? 1. : sample_weight_data[i];
// for true classes
for (; j < num_true_class; ++j) {
T o = sample_out_data[i * sample_out->dims()[1] + j];
T cost = -log(o / (o + b));
out_data[i] += w * cost;
}
// for sampled neg classes
for (; j < sample_labels->dims()[1]; ++j) {
T o = sample_out_data[i * sample_out->dims()[1] + j];
T cost = -log(b / (o + b));
out_data[i] += w * cost;
}
}
}
};

template <typename Place, typename T>
class NCEGradKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& context) const override {
auto d_out = context.Input<Tensor>(framework::GradVarName("Cost"));
const T* d_out_data = d_out->data<T>();
auto label = context.Input<Tensor>("Label");
auto sample_out = context.Input<Tensor>("SampleLogits");
const T* sample_out_data = sample_out->data<T>();
auto sample_labels = context.Input<Tensor>("SampleLabels");
const int64_t* sample_labels_data = sample_labels->data<int64_t>();
auto sample_weight = context.Input<Tensor>("SampleWeight");
const T* sample_weight_data = nullptr;
if (sample_weight != nullptr) {
sample_weight_data = sample_weight->data<T>();
}
int num_neg_samples = context.Attr<int>("num_neg_samples");
int num_total_classes = context.Attr<int>("num_total_classes");
int num_true_class = 1;
if (label != nullptr) {
num_true_class = label->dims()[1];
}
T b = 1. / num_total_classes * num_neg_samples;
Tensor sample_grad; // tmp tensor
T* sample_grad_data =
sample_grad.mutable_data<T>(sample_labels->dims(), context.GetPlace());
// backward cost
for (size_t i = 0; i < sample_labels->numel(); ++i) {
T o = sample_out_data[i];
T w = sample_weight == nullptr
? 1
: sample_weight_data[i / sample_labels->dims()[1]];
sample_grad_data[i] = (i % sample_labels->dims()[1]) < num_true_class
? w * (b / (o + b)) * (o - 1)
: w * (o * (1 - o) / (o + b));
sample_grad_data[i] *= d_out_data[i / sample_labels->dims()[1]];
}
// get d_bias
auto d_bias = context.Output<Tensor>(framework::GradVarName("Bias"));
if (d_bias != nullptr) {
T* d_bias_data = d_bias->mutable_data<T>(context.GetPlace());
std::fill(d_bias_data, d_bias_data + d_bias->numel(), 0.0);
for (size_t i = 0; i < sample_labels->numel(); ++i) {
d_bias_data[sample_labels_data[i]] += sample_grad_data[i];
}
}
// get d_w
auto d_w = context.Output<Tensor>(framework::GradVarName("Weight"));
if (d_w != nullptr) {
auto d_w_data = d_w->mutable_data<T>(context.GetPlace());
std::fill(d_w_data, d_w_data + d_w->numel(), 0.0);
auto d_w_matrix = EigenMatrix<T>::From(*d_w);
auto x_matrix = EigenMatrix<T>::From(*(context.Input<Tensor>("Input")));
for (size_t i = 0; i < sample_labels->numel(); ++i) {
d_w_matrix.chip(sample_labels_data[i], 0) +=
x_matrix.chip((int)(i / sample_labels->dims()[1]), 0) *
sample_grad_data[i];
}
}
// get d_x
auto d_x = context.Output<Tensor>(framework::GradVarName("Input"));
if (d_x != nullptr) {
d_x->mutable_data<T>(context.GetPlace());
auto d_x_matrix = EigenMatrix<T>::From(*d_x);
auto w_matrix = EigenMatrix<T>::From(*(context.Input<Tensor>("Weight")));
for (size_t i = 0; i < sample_labels->numel(); ++i) {
d_x_matrix.chip((int)(i / sample_labels->dims()[1]), 0) +=
w_matrix.chip(sample_labels_data[i], 0) * sample_grad_data[i];
}
}
}
};
} // namespace operators
} // namespace paddle
Loading

0 comments on commit 10b2534

Please sign in to comment.