-
Notifications
You must be signed in to change notification settings - Fork 5.7k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Browse files
Browse the repository at this point in the history
This reverts commit 9c0eaad.
- Loading branch information
1 parent
3a6f113
commit 054fc99
Showing
14 changed files
with
270 additions
and
440 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,170 @@ | ||
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. | ||
// | ||
// Licensed under the Apache License, Version 2.0 (the "License"); | ||
// you may not use this file except in compliance with the License. | ||
// You may obtain a copy of the License at | ||
// | ||
// http://www.apache.org/licenses/LICENSE-2.0 | ||
// | ||
// Unless required by applicable law or agreed to in writing, software | ||
// distributed under the License is distributed on an "AS IS" BASIS, | ||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
// See the License for the specific language governing permissions and | ||
// limitations under the License. | ||
|
||
#pragma once | ||
|
||
#include <algorithm> | ||
#include <vector> | ||
#include "paddle/fluid/operators/reduce_ops/reduce_op_function.h" | ||
|
||
namespace paddle { | ||
namespace operators { | ||
|
||
#define HANDLE_DIM(NDIM, RDIM) \ | ||
if (ndim == NDIM && rdim == RDIM) { \ | ||
paddle::operators::ReduceFunctor<DeviceContext, OutT, NDIM, RDIM, \ | ||
LogsumexpFunctor>( \ | ||
context.template device_context<DeviceContext>(), *input, output, \ | ||
axis, keepdim); \ | ||
} | ||
|
||
struct LogsumexpFunctor { | ||
template <typename DeviceContext, typename X, typename Y, typename Dim> | ||
void operator()(const DeviceContext& place, X* x, Y* y, const Dim& dim) { | ||
auto x_dim = x->dimensions(); | ||
auto t_dim = x_dim; | ||
for (int i = 0; i < static_cast<int>(dim.size()); i++) { | ||
t_dim[dim[i]] = 1; | ||
} | ||
|
||
auto r_dim = x_dim; | ||
for (int i = 0; i < static_cast<int>(r_dim.size()); i++) { | ||
r_dim[i] = 1; | ||
} | ||
for (int i = 0; i < static_cast<int>(dim.size()); i++) { | ||
r_dim[dim[i]] = x_dim[dim[i]]; | ||
} | ||
|
||
auto y_dim = y->dimensions(); | ||
auto x_max = x->maximum(dim); | ||
y->device(place) = | ||
(x_max + | ||
(*x - x_max.reshape(t_dim).broadcast(r_dim)).exp().sum(dim).log()) | ||
.reshape(y_dim); | ||
} | ||
}; | ||
|
||
struct LogsumexpGradFunctor { | ||
template <typename DeviceContext, typename X, typename Y, typename DX, | ||
typename DY, typename Dim> | ||
void operator()(const DeviceContext& place, X* x, Y* y, DX* dx, DY* dy, | ||
const Dim& dim, int size) { | ||
dx->device(place) = dy->broadcast(dim) * (*x - y->broadcast(dim)).exp(); | ||
} | ||
}; | ||
|
||
template <typename DeviceContext, typename OutT> | ||
class LogsumexpKernel : public framework::OpKernel<OutT> { | ||
public: | ||
void Compute(const framework::ExecutionContext& context) const override { | ||
auto* input = context.Input<Tensor>("X"); | ||
auto* output = context.Output<Tensor>("Out"); | ||
output->mutable_data<OutT>(context.GetPlace()); | ||
|
||
auto axis = context.Attr<std::vector<int>>("axis"); | ||
auto keepdim = context.Attr<bool>("keepdim"); | ||
auto reduce_all = context.Attr<bool>("reduce_all"); | ||
|
||
const auto& input_dim_size = input->dims().size(); | ||
// The dims has full dim, set the reduce_all is True | ||
reduce_all |= (static_cast<const int>(axis.size()) == input_dim_size); | ||
|
||
if (reduce_all) { | ||
// Flatten and reduce 1-D tensor | ||
auto x = EigenVector<OutT>::Flatten(*input); | ||
auto out = EigenScalar<OutT>::From(*output); | ||
auto& place = | ||
*context.template device_context<DeviceContext>().eigen_device(); | ||
auto reduce_dim = Eigen::array<int, 1>({{0}}); | ||
LogsumexpFunctor()(place, &x, &out, reduce_dim); | ||
} else { | ||
int ndim = input_dim_size; | ||
int rdim = axis.size(); | ||
// comments for accelerating compiling temporarily. | ||
// HANDLE_DIM(6, 5); | ||
// HANDLE_DIM(6, 4); | ||
// HANDLE_DIM(6, 3); | ||
// HANDLE_DIM(6, 2); | ||
// HANDLE_DIM(6, 1); | ||
// HANDLE_DIM(5, 4); | ||
// HANDLE_DIM(5, 3); | ||
// HANDLE_DIM(5, 2); | ||
// HANDLE_DIM(5, 1); | ||
HANDLE_DIM(4, 3); | ||
HANDLE_DIM(4, 2); | ||
HANDLE_DIM(4, 1); | ||
HANDLE_DIM(3, 2); | ||
HANDLE_DIM(3, 1); | ||
HANDLE_DIM(2, 1); | ||
} | ||
} | ||
}; | ||
|
||
template <typename DeviceContext, typename T> | ||
class LogsumexpGradKernel : public framework::OpKernel<T> { | ||
public: | ||
void Compute(const framework::ExecutionContext& context) const override { | ||
auto* input = context.Input<Tensor>("X"); | ||
auto* output = context.Input<Tensor>("Out"); | ||
auto* output_grad = context.Input<Tensor>(framework::GradVarName("Out")); | ||
auto* input_grad = context.Output<Tensor>(framework::GradVarName("X")); | ||
input_grad->mutable_data<T>(context.GetPlace()); | ||
|
||
auto axis = context.Attr<std::vector<int>>("axis"); | ||
auto reduce_all = context.Attr<bool>("reduce_all"); | ||
const auto input_dim_size = context.Input<Tensor>("X")->dims().size(); | ||
reduce_all |= (static_cast<const int>(axis.size()) == input_dim_size); | ||
|
||
if (reduce_all) { | ||
auto x = EigenVector<T>::Flatten(*input); | ||
auto y = EigenVector<T>::Flatten(*output); | ||
auto dy = EigenVector<T>::Flatten(*output_grad); | ||
auto dx = EigenVector<T>::Flatten(*input_grad); | ||
auto& place = | ||
*context.template device_context<DeviceContext>().eigen_device(); | ||
auto broadcast_dim = | ||
Eigen::array<int, 1>({{static_cast<int>(input->numel())}}); | ||
LogsumexpGradFunctor()(place, &x, &y, &dx, &dy, broadcast_dim, | ||
broadcast_dim[0]); | ||
} else { | ||
int rank = input->dims().size(); | ||
LogsumexpGradFunctor functor; | ||
switch (rank) { | ||
case 1: | ||
ReduceGradFunctor<DeviceContext, T, 1, LogsumexpGradFunctor>( | ||
context.template device_context<DeviceContext>(), *input, *output, | ||
*output_grad, input_grad, functor, axis); | ||
break; | ||
case 2: | ||
ReduceGradFunctor<DeviceContext, T, 2, LogsumexpGradFunctor>( | ||
context.template device_context<DeviceContext>(), *input, *output, | ||
*output_grad, input_grad, functor, axis); | ||
break; | ||
case 3: | ||
ReduceGradFunctor<DeviceContext, T, 3, LogsumexpGradFunctor>( | ||
context.template device_context<DeviceContext>(), *input, *output, | ||
*output_grad, input_grad, functor, axis); | ||
break; | ||
case 4: | ||
ReduceGradFunctor<DeviceContext, T, 4, LogsumexpGradFunctor>( | ||
context.template device_context<DeviceContext>(), *input, *output, | ||
*output_grad, input_grad, functor, axis); | ||
break; | ||
} | ||
} | ||
} | ||
}; | ||
|
||
} // namespace operators | ||
} // namespace paddle |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.