-
Notifications
You must be signed in to change notification settings - Fork 5.6k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #4740 from wanghaoshuang/seq_expand_op
Seq expand op
- Loading branch information
Showing
5 changed files
with
344 additions
and
5 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,153 @@ | ||
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. | ||
Licensed under the Apache License, Version 2.0 (the "License"); | ||
you may not use this file except in compliance with the License. | ||
You may obtain a copy of the License at | ||
http://www.apache.org/licenses/LICENSE-2.0 | ||
Unless required by applicable law or agreed to in writing, software | ||
distributed under the License is distributed on an "AS IS" BASIS, | ||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
See the License for the specific language governing permissions and | ||
limitations under the License. */ | ||
|
||
#include "paddle/operators/seq_expand_op.h" | ||
|
||
namespace paddle { | ||
namespace operators { | ||
|
||
using framework::Tensor; | ||
|
||
class SeqExpandOp : public framework::OperatorWithKernel { | ||
public: | ||
using framework::OperatorWithKernel::OperatorWithKernel; | ||
|
||
protected: | ||
void InferShape(framework::InferShapeContext* ctx) const override { | ||
PADDLE_ENFORCE(ctx->HasInput("X")); | ||
PADDLE_ENFORCE(ctx->HasOutput("Out")); | ||
PADDLE_ENFORCE(ctx->HasInput("Y")); | ||
framework::DDim out_dim; | ||
out_dim = ctx->GetInputDim("Y"); | ||
ctx->ShareLoD("Y", "Out"); | ||
ctx->SetOutputDim("Out", out_dim); | ||
} | ||
}; | ||
|
||
class SeqExpandOpMaker : public framework::OpProtoAndCheckerMaker { | ||
public: | ||
SeqExpandOpMaker(framework::OpProto* proto, | ||
framework::OpAttrChecker* op_checker) | ||
: OpProtoAndCheckerMaker(proto, op_checker) { | ||
AddInput("X", | ||
"(Tensor or LoDTensor) The input(X) of this operator can be a " | ||
"LoDTensor or a base Tensor."); | ||
AddInput("Y", | ||
"(LoDTensor)The reference input(Y) of seq_expand op." | ||
"It must be a LoDTensor with k-level(k>0)." | ||
"The input(X) will be expanded according to LOD of input(Y)." | ||
"The element numbers of last level in input(Y) " | ||
"must be equal to dims[0] of input(X)."); | ||
AddOutput("Out", | ||
"(LodTensor)The output of seq_expand op." | ||
"The lod of output will be as same as input(Y)'s lod."); | ||
AddComment(R"DOC( | ||
Expand input(X) according to LOD of input(Y). | ||
Case 1: | ||
Given 2-level a LoDTensor input(X) | ||
X.lod = [[0, 2, 3], | ||
[0, 1, 3, 4]] | ||
X.data = [a, b, c, d] | ||
X.dims = [4, 1] | ||
and input(Y) | ||
Y.lod = [[0, 2, 4], | ||
[0, 3, 6, 7, 8]] | ||
with condition len(Y.lod[-1]) -1 == X.dims[0] | ||
then we get 2-level LoDTensor | ||
Out.lod = [[0, 2, 4], | ||
[0, 3, 6, 7, 8]] | ||
Out.data = [a, a, a, b, b, b, c, d] | ||
Out.dims = [8, 1] | ||
Case 2: | ||
Given a 0-level LoDTensor input(X) | ||
X.data = [a, b, c] | ||
X.lod = NULL | ||
X.dims = [3, 1] | ||
and input(Y) | ||
Y.lod = [[0, 2, 3, 6]] | ||
with condition len(Y.lod[-1]) -1 == X.dims[0] | ||
then we get 1-level LoDTensor | ||
Out.lod = [[0, 2, 3, 6]] | ||
Out.data = [a, a, b, c, c, c] | ||
Out.dims = [6, 1] | ||
Case 3: | ||
Given a 0-level LoDTensor input(X) | ||
X.data = [[a, b], [c, d], [e, f]] | ||
X.lod = NULL | ||
X.dims = [3, 2] | ||
and input(Y) | ||
Y.lod = [[0, 2, 3, 6]] | ||
with condition len(Y.lod[-1]) -1 == X.dims[0] | ||
then we get 1-level LoDTensor | ||
Out.lod = [[0, 2, 3, 6]] | ||
Out.data = [[a,b], [a,b] [c,d], [e, f], [e, f], [e, f]] | ||
Out.dims = [6, 2] | ||
Case 4: | ||
Given 2-level a LoDTensor input(X) | ||
X.lod = [[0, 2, 3], | ||
[0, 1, 3, 4]] | ||
X.data = [a, b, c, d] | ||
X.dims = [4, 1] | ||
and input(Y) | ||
Y.lod = [[0, 2, 4], | ||
[0, 3, 6, 6, 8]] | ||
with condition len(Y.lod[-1]) -1 == X.dims[0] | ||
then we get 2-level LoDTensor | ||
Out.lod = [[0, 2, 4], | ||
[0, 3, 6, 6, 8]] | ||
Out.data = [a, a, a, b, b, b, d, d] | ||
Out.dims = [8, 1] | ||
)DOC"); | ||
} | ||
}; | ||
|
||
class SeqExpandOpGrad : public framework::OperatorWithKernel { | ||
public: | ||
using framework::OperatorWithKernel::OperatorWithKernel; | ||
|
||
protected: | ||
void InferShape(framework::InferShapeContext* ctx) const override { | ||
PADDLE_ENFORCE(ctx->HasInput("X")); | ||
PADDLE_ENFORCE(ctx->HasInput("Out")); | ||
PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")), | ||
"The input(Out@GRAD) should not be null"); | ||
auto x_dims = ctx->GetInputDim("X"); | ||
auto x_grad_name = framework::GradVarName("X"); | ||
if (ctx->HasOutput(x_grad_name)) { | ||
ctx->SetOutputDim(x_grad_name, x_dims); | ||
} | ||
} | ||
}; | ||
|
||
} // namespace operators | ||
} // namespace paddle | ||
|
||
namespace ops = paddle::operators; | ||
REGISTER_OP(seq_expand, ops::SeqExpandOp, ops::SeqExpandOpMaker, | ||
seq_expand_grad, ops::SeqExpandOpGrad); | ||
REGISTER_OP_CPU_KERNEL(seq_expand, | ||
ops::SeqExpandKernel<paddle::platform::CPUPlace, float>); | ||
REGISTER_OP_CPU_KERNEL( | ||
seq_expand_grad, | ||
ops::SeqExpandGradKernel<paddle::platform::CPUPlace, float>); |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,23 @@ | ||
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. | ||
Licensed under the Apache License, Version 2.0 (the "License"); | ||
you may not use this file except in compliance with the License. | ||
You may obtain a copy of the License at | ||
http://www.apache.org/licenses/LICENSE-2.0 | ||
Unless required by applicable law or agreed to in writing, software | ||
distributed under the License is distributed on an "AS IS" BASIS, | ||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
See the License for the specific language governing permissions and | ||
limitations under the License. */ | ||
|
||
#define EIGEN_USE_GPU | ||
#include "paddle/operators/seq_expand_op.h" | ||
|
||
namespace ops = paddle::operators; | ||
REGISTER_OP_GPU_KERNEL(seq_expand, | ||
ops::SeqExpandKernel<paddle::platform::GPUPlace, float>); | ||
REGISTER_OP_GPU_KERNEL( | ||
seq_expand_grad, | ||
ops::SeqExpandGradKernel<paddle::platform::GPUPlace, float>); |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,100 @@ | ||
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. | ||
Licensed under the Apache License, Version 2.0 (the "License"); | ||
you may not use this file except in compliance with the License. | ||
You may obtain a copy of the License at | ||
http://www.apache.org/licenses/LICENSE-2.0 | ||
Unless required by applicable law or agreed to in writing, software | ||
distributed under the License is distributed on an "AS IS" BASIS, | ||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
See the License for the specific language governing permissions and | ||
limitations under the License. */ | ||
|
||
#pragma once | ||
|
||
#include "paddle/framework/op_registry.h" | ||
#include "paddle/memory/memcpy.h" | ||
#include "unsupported/Eigen/CXX11/Tensor" | ||
|
||
namespace paddle { | ||
namespace operators { | ||
|
||
using LoDTensor = framework::LoDTensor; | ||
|
||
template <typename Place, typename T> | ||
class SeqExpandKernel : public framework::OpKernel<T> { | ||
public: | ||
void Compute(const framework::ExecutionContext& context) const override { | ||
auto* x = context.Input<LoDTensor>("X"); | ||
auto* out = context.Output<LoDTensor>("Out"); | ||
const T* x_data = x->data<T>(); | ||
auto x_dims = x->dims(); | ||
auto* y = context.Input<LoDTensor>("Y"); | ||
PADDLE_ENFORCE_EQ(x_dims[0], y->lod().back().size() - 1, | ||
"The size of last lod level in Input(Y)" | ||
"must be equal to dims[0] of Input(X)."); | ||
out->set_lod(y->lod()); | ||
auto place = context.GetEigenDevice<Place>(); | ||
size_t element_len = framework::product(x_dims) / x_dims[0]; | ||
T* out_data = out->mutable_data<T>(context.GetPlace()); | ||
auto out_starts = out->lod().back(); | ||
|
||
for (size_t i = 0; i < out_starts.size() - 1; i++) { | ||
int scale = out_starts[i + 1] - out_starts[i]; | ||
Eigen::TensorMap< | ||
Eigen::Tensor<const T, 2, Eigen::RowMajor, Eigen::DenseIndex>> | ||
x_t(x_data, 1, element_len); | ||
Eigen::TensorMap<Eigen::Tensor<T, 2, Eigen::RowMajor, Eigen::DenseIndex>> | ||
out_t(out_data, scale, element_len); | ||
Eigen::array<int, 2> cast({scale, 1}); | ||
out_t.device(place) = x_t.broadcast(cast); | ||
x_data += element_len; | ||
out_data += element_len * scale; | ||
} | ||
} | ||
}; | ||
|
||
/* | ||
*Given Grad(Out) | ||
* | ||
* Grad(Out).lod = [[0, 2], | ||
* [0, 3, 6]] | ||
* Grad(Out).data = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6] | ||
* Then | ||
* Grad(X).data = [(0.1 + 0.2 + 0.3), (0.4 + 0.5 + 0.6)] | ||
* = [0.6, 1.5] | ||
* Grad(X).lod = Input(X).lod | ||
* | ||
* */ | ||
template <typename Place, typename T> | ||
class SeqExpandGradKernel : public framework::OpKernel<T> { | ||
public: | ||
void Compute(const framework::ExecutionContext& context) const override { | ||
auto* d_out = context.Input<LoDTensor>(framework::GradVarName("Out")); | ||
auto* x = context.Input<LoDTensor>("X"); | ||
auto* out = context.Input<LoDTensor>("Out"); | ||
auto* d_x = context.Output<LoDTensor>(framework::GradVarName("X")); | ||
auto out_last_level = out->lod().back(); | ||
d_x->set_lod(x->lod()); | ||
const T* d_out_data = d_out->data<T>(); | ||
T* d_x_data = d_x->mutable_data<T>(context.GetPlace()); | ||
size_t element_len = d_out->numel() / d_out->dims()[0]; | ||
for (size_t i = 0; i < out_last_level.size() - 1; ++i) { | ||
size_t repeat = out_last_level[i + 1] - out_last_level[i]; | ||
Eigen::TensorMap< | ||
Eigen::Tensor<const T, 2, Eigen::RowMajor, Eigen::DenseIndex>> | ||
d_out_t(d_out_data, static_cast<int>(repeat), element_len); | ||
Eigen::TensorMap<Eigen::Tensor<T, 1, Eigen::RowMajor, Eigen::DenseIndex>> | ||
d_x_t(d_x_data, static_cast<int>(element_len)); | ||
auto place = context.GetEigenDevice<Place>(); | ||
d_x_t.device(place) = d_out_t.sum(Eigen::array<int, 1>({{0}})); | ||
d_out_data += (repeat * element_len); | ||
d_x_data += element_len; | ||
} | ||
} | ||
}; | ||
|
||
} // namespace operators | ||
} // namespace paddle |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,63 @@ | ||
import unittest | ||
import numpy as np | ||
from op_test import OpTest | ||
|
||
|
||
class TestSeqExpand(OpTest): | ||
def set_data(self): | ||
x_data = np.random.uniform(0.1, 1, [3, 1]).astype('float32') | ||
y_data = np.random.uniform(0.1, 1, [8, 1]).astype('float32') | ||
y_lod = [[0, 1, 4, 8]] | ||
self.inputs = {'X': x_data, 'Y': (y_data, y_lod)} | ||
|
||
def compute(self): | ||
x = self.inputs['X'] | ||
x_data, x_lod = x if type(x) == tuple else (x, None) | ||
n = 1 + x_data.shape[0] if not x_lod else len(x_lod[0]) | ||
y_data, y_lod = self.inputs['Y'] | ||
repeats = [((y_lod[-1][i + 1] - y_lod[-1][i])) | ||
for i in range(len(y_lod[-1]) - 1)] | ||
out = x_data.repeat(repeats, axis=0) | ||
self.outputs = {'Out': out} | ||
|
||
def setUp(self): | ||
self.op_type = 'seq_expand' | ||
self.set_data() | ||
self.compute() | ||
|
||
def test_check_output(self): | ||
self.check_output() | ||
|
||
def test_check_grad(self): | ||
self.check_grad(["X"], "Out") | ||
|
||
|
||
class TestSeqExpandCase1(TestSeqExpand): | ||
def set_data(self): | ||
x_data = np.random.uniform(0.1, 1, [5, 1]).astype('float32') | ||
x_lod = [[0, 2, 5]] | ||
y_data = np.random.uniform(0.1, 1, [13, 1]).astype('float32') | ||
y_lod = [[0, 2, 5], [0, 2, 4, 7, 10, 13]] | ||
self.inputs = {'X': (x_data, x_lod), 'Y': (y_data, y_lod)} | ||
|
||
|
||
class TestSeqExpandCase2(TestSeqExpand): | ||
def set_data(self): | ||
x_data = np.random.uniform(0.1, 1, [1, 2, 2]).astype('float32') | ||
x_lod = [[0, 1]] | ||
y_data = np.random.uniform(0.1, 1, [2, 2, 2]).astype('float32') | ||
y_lod = [[0, 2]] | ||
self.inputs = {'X': (x_data, x_lod), 'Y': (y_data, y_lod)} | ||
|
||
|
||
class TestSeqExpandCase3(TestSeqExpand): | ||
def set_data(self): | ||
x_data = np.random.uniform(0.1, 1, [4, 1]).astype('float32') | ||
x_lod = [[0, 1, 2, 3, 4]] | ||
y_data = np.random.uniform(0.1, 1, [6, 1]).astype('float32') | ||
y_lod = [[0, 2, 4, 4, 6]] | ||
self.inputs = {'X': (x_data, x_lod), 'Y': (y_data, y_lod)} | ||
|
||
|
||
if __name__ == '__main__': | ||
unittest.main() |