-
Notifications
You must be signed in to change notification settings - Fork 5.7k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
* add xpu resnet_unit *test=kunlun * tmp *test=kunlun
- Loading branch information
1 parent
74412df
commit 02e9453
Showing
7 changed files
with
376 additions
and
17 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,333 @@ | ||
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. | ||
Licensed under the Apache License, Version 2.0 (the "License"); | ||
you may not use this file except in compliance with the License. | ||
You may obtain a copy of the License at | ||
http://www.apache.org/licenses/LICENSE-2.0 | ||
Unless required by applicable law or agreed to in writing, software | ||
distributed under the License is distributed on an "AS IS" BASIS, | ||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
See the License for the specific language governing permissions and | ||
limitations under the License. */ | ||
|
||
#include "paddle/fluid/framework/op_registry.h" | ||
#include "paddle/fluid/platform/device/device_wrapper.h" | ||
#include "paddle/fluid/platform/float16.h" | ||
|
||
namespace paddle { | ||
namespace operators { | ||
|
||
using Tensor = framework::Tensor; | ||
|
||
template <typename T> | ||
class ResNetUnitXPUKernel : public framework::OpKernel<T> { | ||
public: | ||
void Compute(const framework::ExecutionContext &ctx) const override { | ||
auto place = ctx.GetPlace(); | ||
PADDLE_ENFORCE_EQ( | ||
platform::is_xpu_place(place), | ||
true, | ||
platform::errors::PreconditionNotMet("It must use XPUPlace.")); | ||
|
||
bool is_nchw = (ctx.Attr<std::string>("data_format") == "NCHW"); | ||
// input x | ||
const Tensor *input_x = ctx.Input<Tensor>("X"); | ||
const Tensor *filter_x = ctx.Input<Tensor>("FilterX"); | ||
const Tensor *scale_x = ctx.Input<Tensor>("ScaleX"); | ||
const Tensor *bias_x = ctx.Input<Tensor>("BiasX"); | ||
|
||
// output x | ||
Tensor *conv_out_x = ctx.Output<Tensor>("ConvX"); | ||
Tensor *saved_mean_x = ctx.Output<Tensor>("SavedMeanX"); | ||
Tensor *saved_invstd_x = ctx.Output<Tensor>("SavedInvstdX"); | ||
Tensor *running_mean_x = ctx.Output<Tensor>("RunningMeanX"); | ||
Tensor *running_var_x = ctx.Output<Tensor>("RunningVarX"); | ||
|
||
Tensor *output = ctx.Output<Tensor>("Y"); | ||
|
||
// attrs | ||
int padding = ctx.Attr<int>("padding"); | ||
int stride = ctx.Attr<int>("stride"); | ||
int stride_z = ctx.Attr<int>("stride_z"); | ||
int dilation = ctx.Attr<int>("dilation"); | ||
int group = ctx.Attr<int>("group"); | ||
float eps = ctx.Attr<float>("epsilon"); | ||
float momentum = ctx.Attr<float>("momentum"); | ||
bool has_shortcut = ctx.Attr<bool>("has_shortcut"); | ||
bool fuse_add = ctx.Attr<bool>("fuse_add"); | ||
bool use_global_stats = ctx.Attr<bool>("use_global_stats"); | ||
bool is_test = ctx.Attr<bool>("is_test"); | ||
bool is_train = !is_test && !use_global_stats; | ||
std::string act_type = ctx.Attr<std::string>("act_type"); | ||
auto &dev_ctx = ctx.template device_context<platform::XPUDeviceContext>(); | ||
|
||
std::vector<const T *> x_list = {input_x->data<T>()}; | ||
std::vector<const T *> w_list = {filter_x->data<T>()}; | ||
std::vector<T *> conv_y_list = {conv_out_x->mutable_data<T>(place)}; | ||
|
||
std::vector<std::vector<int>> x_shape_list = { | ||
phi::vectorize<int>(input_x->dims())}; | ||
|
||
auto filter_x_shape = phi::vectorize<int>(filter_x->dims()); | ||
std::vector<int> ksize = {filter_x_shape[2], filter_x_shape[3]}; | ||
if (!is_nchw) { | ||
ksize[0] = filter_x_shape[1]; | ||
ksize[1] = filter_x_shape[2]; | ||
} | ||
std::vector<int> strides = {stride, stride}; | ||
std::vector<std::vector<int>> ksize_list = {ksize}; | ||
std::vector<std::vector<int>> stride_list = {strides}; | ||
std::vector<int> paddings = {padding, padding}; | ||
std::vector<int> dilations = {dilation, dilation}; | ||
std::vector<const float *> scale_list = {scale_x->data<float>()}; | ||
std::vector<const float *> bias_list = {bias_x->data<float>()}; | ||
std::vector<float *> batch_mean_list = { | ||
saved_mean_x->mutable_data<float>(place)}; | ||
std::vector<float *> batch_invstd_list = { | ||
saved_invstd_x->mutable_data<float>(place)}; | ||
std::vector<float *> global_mean_list = { | ||
running_mean_x->mutable_data<float>(place)}; | ||
std::vector<float *> global_var_list = { | ||
running_var_x->mutable_data<float>(place)}; | ||
|
||
std::vector<const float *> x_maxlist = {nullptr}; | ||
std::vector<const float *> w_maxlist = {nullptr}; | ||
if (has_shortcut) { | ||
// input z | ||
const Tensor *input_z = ctx.Input<Tensor>("Z"); | ||
const Tensor *filter_z = ctx.Input<Tensor>("FilterZ"); | ||
const Tensor *scale_z = ctx.Input<Tensor>("ScaleZ"); | ||
const Tensor *bias_z = ctx.Input<Tensor>("BiasZ"); | ||
|
||
Tensor *conv_out_z = ctx.Output<Tensor>("ConvZ"); | ||
Tensor *saved_mean_z = ctx.Output<Tensor>("SavedMeanZ"); | ||
Tensor *saved_invstd_z = ctx.Output<Tensor>("SavedInvstdZ"); | ||
Tensor *running_mean_z = ctx.Output<Tensor>("RunningMeanZ"); | ||
Tensor *running_var_z = ctx.Output<Tensor>("RunningVarZ"); | ||
|
||
x_list.push_back(input_z->data<T>()); | ||
w_list.push_back(filter_z->data<T>()); | ||
conv_y_list.push_back(conv_out_z->mutable_data<T>(place)); | ||
|
||
x_shape_list.push_back(phi::vectorize<int>(input_z->dims())); | ||
|
||
auto filter_z_shape = phi::vectorize<int>(filter_z->dims()); | ||
std::vector<int> ksize_z = {filter_z_shape[2], filter_z_shape[3]}; | ||
if (!is_nchw) { | ||
ksize_z[0] = filter_z_shape[1]; | ||
ksize_z[1] = filter_z_shape[2]; | ||
} | ||
ksize_list.push_back(ksize_z); | ||
stride_list.push_back({stride_z, stride_z}); | ||
scale_list.push_back(scale_z->data<float>()); | ||
bias_list.push_back(bias_z->data<float>()); | ||
batch_mean_list.push_back(saved_mean_z->mutable_data<float>(place)); | ||
batch_invstd_list.push_back(saved_invstd_z->mutable_data<float>(place)); | ||
global_mean_list.push_back(running_mean_z->mutable_data<float>(place)); | ||
global_var_list.push_back(running_var_z->mutable_data<float>(place)); | ||
x_maxlist.push_back(nullptr); | ||
w_maxlist.push_back(nullptr); | ||
} else { | ||
if (fuse_add) { | ||
const Tensor *input_z = ctx.Input<Tensor>("Z"); | ||
auto input_z_shape = phi::vectorize<int>(input_z->dims()); | ||
x_list.push_back(input_z->data<T>()); | ||
x_shape_list.push_back(input_z_shape); | ||
x_maxlist.push_back(nullptr); | ||
} | ||
} | ||
int r = xpu::resnet_unit_fusion<T, T, T, int16_t>( | ||
dev_ctx.x_context(), | ||
x_list, | ||
w_list, | ||
conv_y_list, | ||
output->mutable_data<T>(place), | ||
x_shape_list, | ||
filter_x_shape[0], | ||
ksize_list, | ||
stride_list, | ||
paddings, | ||
dilations, | ||
group, | ||
eps, | ||
momentum, | ||
x_maxlist, | ||
w_maxlist, | ||
scale_list, | ||
bias_list, | ||
batch_mean_list, | ||
batch_invstd_list, | ||
global_mean_list, | ||
global_var_list, | ||
xpu::Activation_t::RELU, | ||
is_nchw, | ||
has_shortcut, | ||
fuse_add, | ||
is_train); | ||
PADDLE_ENFORCE_XDNN_SUCCESS(r, "resnet_unit_fusion"); | ||
} | ||
}; | ||
|
||
template <typename T> | ||
class ResNetUnitGradXPUKernel : public framework::OpKernel<T> { | ||
public: | ||
void Compute(const framework::ExecutionContext &ctx) const override { | ||
auto place = ctx.GetPlace(); | ||
PADDLE_ENFORCE_EQ( | ||
platform::is_xpu_place(place), | ||
true, | ||
platform::errors::PreconditionNotMet("It must use XPUPlace.")); | ||
|
||
bool is_nchw = (ctx.Attr<std::string>("data_format") == "NCHW"); | ||
const Tensor *y_grad = ctx.Input<Tensor>(framework::GradVarName("Y")); | ||
const Tensor *x = ctx.Input<Tensor>("X"); | ||
const Tensor *filter_x = ctx.Input<Tensor>("FilterX"); | ||
const Tensor *scale_x = ctx.Input<Tensor>("ScaleX"); | ||
const Tensor *saved_mean_x = ctx.Input<Tensor>("SavedMeanX"); | ||
const Tensor *saved_invstd_x = ctx.Input<Tensor>("SavedInvstdX"); | ||
const Tensor *conv_out_x = ctx.Input<Tensor>("ConvX"); | ||
const Tensor *output = ctx.Input<Tensor>("Y"); | ||
|
||
Tensor *x_grad = ctx.Output<Tensor>(framework::GradVarName("X")); | ||
Tensor *filter_x_grad = | ||
ctx.Output<Tensor>(framework::GradVarName("FilterX")); | ||
Tensor *scale_x_grad = ctx.Output<Tensor>(framework::GradVarName("ScaleX")); | ||
Tensor *bias_x_grad = ctx.Output<Tensor>(framework::GradVarName("BiasX")); | ||
|
||
int padding = ctx.Attr<int>("padding"); | ||
int stride = ctx.Attr<int>("stride"); | ||
int stride_z = ctx.Attr<int>("stride_z"); | ||
int dilation = ctx.Attr<int>("dilation"); | ||
int group = ctx.Attr<int>("group"); | ||
float eps = ctx.Attr<float>("epsilon"); | ||
bool has_shortcut = ctx.Attr<bool>("has_shortcut"); | ||
bool fuse_add = ctx.Attr<bool>("fuse_add"); | ||
std::string act_type = ctx.Attr<std::string>("act_type"); | ||
|
||
auto &dev_ctx = ctx.template device_context<platform::XPUDeviceContext>(); | ||
|
||
std::vector<const T *> x_list = {x->data<T>()}; | ||
std::vector<const T *> w_list = {filter_x->data<T>()}; | ||
std::vector<const T *> conv_y_list = {conv_out_x->data<T>()}; | ||
std::vector<T *> dx_list = {x_grad->mutable_data<T>(place)}; | ||
std::vector<T *> dw_list = {filter_x_grad->mutable_data<T>(place)}; | ||
|
||
std::vector<std::vector<int>> x_shape_list = { | ||
phi::vectorize<int>(x->dims())}; | ||
|
||
auto filter_x_shape = phi::vectorize<int>(filter_x->dims()); | ||
std::vector<int> x_ksize = {filter_x_shape[2], filter_x_shape[3]}; | ||
if (!is_nchw) { | ||
x_ksize[0] = filter_x_shape[1]; | ||
x_ksize[1] = filter_x_shape[2]; | ||
} | ||
std::vector<std::vector<int>> ksize_list = {x_ksize}; | ||
std::vector<std::vector<int>> stride_list = {{stride, stride}}; | ||
std::vector<int> paddings = {padding, padding}; | ||
std::vector<int> dilations = {dilation, dilation}; | ||
|
||
std::vector<const float *> x_maxlist = {nullptr}; | ||
std::vector<const float *> w_maxlist = {nullptr}; | ||
|
||
std::vector<const float *> scale_list = {scale_x->data<float>()}; | ||
std::vector<const float *> batch_mean_list = {saved_mean_x->data<float>()}; | ||
std::vector<const float *> batch_invstd_list = { | ||
saved_invstd_x->data<float>()}; | ||
std::vector<float *> dscale_list = { | ||
scale_x_grad->mutable_data<float>(place)}; | ||
std::vector<float *> dbias_list = {bias_x_grad->mutable_data<float>(place)}; | ||
|
||
if (has_shortcut) { | ||
// X Z | ||
// | | | ||
// NormConv NormConv | ||
// | | | ||
// BNStatsFinalize BNStatsFinalize | ||
// \ / | ||
// ScaleBiasAddRelu | ||
// | | ||
// Y | ||
const Tensor *z = ctx.Input<Tensor>("Z"); | ||
const Tensor *filter_z = ctx.Input<Tensor>("FilterZ"); | ||
const Tensor *scale_z = ctx.Input<Tensor>("ScaleZ"); | ||
const Tensor *saved_mean_z = ctx.Input<Tensor>("SavedMeanZ"); | ||
const Tensor *saved_invstd_z = ctx.Input<Tensor>("SavedInvstdZ"); | ||
const Tensor *conv_out_z = ctx.Input<Tensor>("ConvZ"); | ||
|
||
Tensor *z_grad = ctx.Output<Tensor>(framework::GradVarName("Z")); | ||
Tensor *filter_z_grad = | ||
ctx.Output<Tensor>(framework::GradVarName("FilterZ")); | ||
Tensor *scale_z_grad = | ||
ctx.Output<Tensor>(framework::GradVarName("ScaleZ")); | ||
Tensor *bias_z_grad = ctx.Output<Tensor>(framework::GradVarName("BiasZ")); | ||
x_list.push_back(z->data<T>()); | ||
w_list.push_back(filter_z->data<T>()); | ||
conv_y_list.push_back(conv_out_z->data<T>()); | ||
dx_list.push_back(z_grad->mutable_data<T>(place)); | ||
dw_list.push_back(filter_z_grad->mutable_data<T>(place)); | ||
x_shape_list.push_back(phi::vectorize<int>(z->dims())); | ||
|
||
auto filter_z_shape = phi::vectorize<int>(filter_z->dims()); | ||
std::vector<int> ksize_z = {filter_z_shape[2], filter_z_shape[3]}; | ||
if (!is_nchw) { | ||
ksize_z[0] = filter_z_shape[1]; | ||
ksize_z[1] = filter_z_shape[2]; | ||
} | ||
ksize_list.push_back(ksize_z); | ||
stride_list.push_back({stride_z, stride_z}); | ||
x_maxlist.push_back(nullptr); | ||
w_maxlist.push_back(nullptr); | ||
|
||
scale_list.push_back(scale_z->data<float>()); | ||
batch_mean_list.push_back(saved_mean_z->data<float>()); | ||
batch_invstd_list.push_back(saved_invstd_z->data<float>()); | ||
dscale_list.push_back(scale_z_grad->mutable_data<float>(place)); | ||
dbias_list.push_back(bias_z_grad->mutable_data<float>(place)); | ||
} else { | ||
if (fuse_add) { | ||
auto z_grad = ctx.Output<Tensor>(framework::GradVarName("Z")); | ||
dx_list.push_back(z_grad->mutable_data<T>(place)); | ||
} | ||
} | ||
|
||
int r = | ||
xpu::resnet_unit_grad_fusion<T, T, T, int16_t>(dev_ctx.x_context(), | ||
x_list, | ||
w_list, | ||
y_grad->data<T>(), | ||
output->data<T>(), | ||
conv_y_list, | ||
dx_list, | ||
dw_list, | ||
x_shape_list, | ||
filter_x_shape[0], | ||
ksize_list, | ||
stride_list, | ||
paddings, | ||
dilations, | ||
group, | ||
x_maxlist, | ||
w_maxlist, | ||
scale_list, | ||
batch_mean_list, | ||
batch_invstd_list, | ||
dscale_list, | ||
dbias_list, | ||
xpu::Activation_t::RELU, | ||
eps, | ||
is_nchw, | ||
has_shortcut, | ||
fuse_add); | ||
PADDLE_ENFORCE_XDNN_SUCCESS(r, "resnet_unit_grad_fusion"); | ||
} | ||
}; | ||
|
||
} // namespace operators | ||
} // namespace paddle | ||
|
||
namespace ops = paddle::operators; | ||
namespace plat = paddle::platform; | ||
REGISTER_OP_XPU_KERNEL(resnet_unit, ops::ResNetUnitXPUKernel<float>); | ||
REGISTER_OP_XPU_KERNEL(resnet_unit_grad, ops::ResNetUnitGradXPUKernel<float>); |
Oops, something went wrong.