-
Notifications
You must be signed in to change notification settings - Fork 465
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Add BetaForAlphaBar, ConvertModelOutput, SetTimesteps, and constructo…
…r for DPMSolverMultistepScheduler
- Loading branch information
Showing
7 changed files
with
326 additions
and
6 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,25 @@ | ||
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
PROJECT(main C CXX) | ||
CMAKE_MINIMUM_REQUIRED (VERSION 3.10) | ||
|
||
option(FASTDEPLOY_INSTALL_DIR "Path of downloaded fastdeploy sdk.") | ||
set(THIRD_LIBS "") | ||
include(${FASTDEPLOY_INSTALL_DIR}/FastDeploy.cmake) | ||
|
||
include_directories(${FASTDEPLOY_INCS}) | ||
|
||
add_executable(main ${PROJECT_SOURCE_DIR}/main.cc ${PROJECT_SOURCE_DIR}/dpm_solver_multistep_scheduler.cc) | ||
target_link_libraries(main ${FASTDEPLOY_LIBS} ${THIRD_LIBS}) |
177 changes: 177 additions & 0 deletions
177
examples/multimodal/stable_diffusion/cpp/dpm_solver_multistep_scheduler.cc
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,177 @@ | ||
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. | ||
// | ||
// Licensed under the Apache License, Version 2.0 (the "License"); | ||
// you may not use this file except in compliance with the License. | ||
// You may obtain a copy of the License at | ||
// | ||
// http://www.apache.org/licenses/LICENSE-2.0 | ||
// | ||
// Unless required by applicable law or agreed to in writing, software | ||
// distributed under the License is distributed on an "AS IS" BASIS, | ||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
// See the License for the specific language governing permissions and | ||
// limitations under the License. | ||
|
||
#include "dpm_solver_multistep_scheduler.h" | ||
#include "fastdeploy/core/fd_scalar.h" | ||
#include "fastdeploy/function/functions.h" | ||
#include <algorithm> | ||
#include <cmath> | ||
|
||
namespace fastdeploy { | ||
|
||
void DPMSolverMultistepScheduler::BetaForAlphaBar(FDTensor* out, | ||
int num_diffusion_timesteps, | ||
float max_beta) { | ||
auto alpha_bar = [](float time_step) -> float { | ||
constexpr float pi = 3.14159265358979323846; | ||
return std::pow(std::cos((time_step + 0.008) / 1.008 * pi / 2), 2); | ||
}; | ||
std::vector<FDTensor> betas; | ||
for (int i = 0; i < num_diffusion_timesteps; ++i) { | ||
float t1 = i / num_diffusion_timesteps; | ||
float t2 = (i + 1) / num_diffusion_timesteps; | ||
float beta_val = (std::min)(1 - alpha_bar(t1) / alpha_bar(t2), max_beta); | ||
betas.emplace_back(Scalar(beta_val)); | ||
} | ||
function::Concat(betas, out); | ||
} | ||
|
||
DPMSolverMultistepScheduler::DPMSolverMultistepScheduler( | ||
int num_train_timesteps, float beta_start, float beta_end, | ||
const std::string& beta_schedule, const std::vector<float>& trained_betas, | ||
int solver_order, bool predict_epsilon, bool thresholding, | ||
float dynamic_thresholding_ratio, float sample_max_value, | ||
const std::string& algorithm_type, const std::string& solver_type, | ||
bool lower_order_final) | ||
: num_train_timesteps_(num_train_timesteps), beta_start_(beta_start), | ||
beta_end_(beta_end), beta_schedule_(beta_schedule), | ||
solver_order_(solver_order), predict_epsilon_(predict_epsilon), | ||
thresholding_(thresholding), | ||
dynamic_thresholding_ratio_(dynamic_thresholding_ratio), | ||
sample_max_value_(sample_max_value), algorithm_type_(algorithm_type), | ||
solver_type_(solver_type), lower_order_final_(lower_order_final) { | ||
int beta_size = trained_betas.size(); | ||
if (beta_size > 0) { | ||
betas_.Allocate({beta_size}, FDDataType::FP32); | ||
std::copy(trained_betas.data(), trained_betas.data() + beta_size, | ||
reinterpret_cast<float*>(betas_.Data())); | ||
} else if (beta_schedule == "linear") { | ||
function::Linspace(beta_start, beta_end, num_train_timesteps, &betas_, | ||
FDDataType::FP32); | ||
} else if (beta_schedule == "scaled_linear") { | ||
function::Linspace(beta_start, beta_end, num_train_timesteps, &betas_, | ||
FDDataType::FP32); | ||
betas_ = betas_ * betas_; | ||
} else if (beta_schedule == "squaredcos_cap_v2") { | ||
BetaForAlphaBar(&betas_, num_train_timesteps); | ||
} else { | ||
FDASSERT(false, "%s is not implemented for DPMSolverMultistepScheduler", | ||
beta_schedule.c_str()); | ||
} | ||
|
||
Scalar one = static_cast<float>(1.0); | ||
alphas_ = FDTensor(one) - betas_; | ||
function::Cumprod(alphas_, &alphas_cumprod_); | ||
function::Sqrt(alphas_cumprod_, &alpha_t_); | ||
function::Sqrt(FDTensor(one) - alphas_cumprod_, &sigma_t_); | ||
FDTensor alpha_t_log, sigma_t_log; | ||
function::Log(alpha_t_, &alpha_t_log); | ||
function::Log(sigma_t_, &sigma_t_log); | ||
lambda_t_ = alpha_t_log - sigma_t_log; | ||
|
||
FDASSERT(algorithm_type_ == "dpmsolver" || algorithm_type_ == "dpmsolver++", | ||
"%s does is not implemented for DPMSolverMultistepScheduler", | ||
algorithm_type_.c_str()); | ||
FDASSERT(solver_type_ == "midpoint" || solver_type_ == "heun", | ||
"%s does is not implemented for DPMSolverMultistepScheduler", | ||
solver_type_.c_str()); | ||
num_inference_steps_ = -1; | ||
|
||
function::Linspace(0, num_train_timesteps_ - 1, num_train_timesteps_, | ||
×teps_); | ||
// Reverse timesteps | ||
float* timesteps_data = reinterpret_cast<float*>(timesteps_.Data()); | ||
std::reverse(timesteps_data, timesteps_data + timesteps_.Numel()); | ||
|
||
model_outputs_.resize(solver_order_); | ||
lower_order_nums_ = 0; | ||
} | ||
|
||
void DPMSolverMultistepScheduler::ConvertModelOutput( | ||
const FDTensor& model_output, int timestep, const FDTensor& sample, | ||
FDTensor* out) { | ||
if (algorithm_type_ == "dpmsolver++") { | ||
FDTensor x0_pred; | ||
if (predict_epsilon_) { | ||
FDTensor alpha_t, sigma_t; | ||
function::Slice(alpha_t_, {0}, {timestep}, {timestep + 1}, &alpha_t); | ||
function::Slice(sigma_t_, {0}, {timestep}, {timestep + 1}, &sigma_t); | ||
alpha_t.Squeeze(); | ||
sigma_t_.Squeeze(); | ||
x0_pred = (sample - sigma_t * model_output) / alpha_t; | ||
} else { | ||
x0_pred = model_output; | ||
} | ||
if (thresholding_) { | ||
FDTensor dynamic_max_val, x0_pred_abs; | ||
function::Abs(x0_pred, &x0_pred_abs); | ||
x0_pred_abs.Reshape({x0_pred_abs.Shape()[0], -1}); | ||
function::Quantile(x0_pred_abs, {dynamic_thresholding_ratio_}, {1}, | ||
&dynamic_max_val); | ||
|
||
FDTensor max_value, dy_max_val; | ||
function::FullLike(dynamic_max_val, sample_max_value_, &max_value, | ||
dynamic_max_val.Dtype()); | ||
function::Maximum(dynamic_max_val, max_value, &dy_max_val); | ||
int expand_dims = x0_pred.Shape().size() - 1; | ||
for (int i = 0; i < expand_dims; ++i) { | ||
dy_max_val.ExpandDim(dy_max_val.Shape().size()); | ||
} | ||
float clip_max = reinterpret_cast<float*>(dy_max_val.Data())[0]; | ||
function::Clip(x0_pred, -clip_max, clip_max, &x0_pred); | ||
x0_pred = x0_pred / dy_max_val; | ||
} | ||
*out = std::move(x0_pred); | ||
} else if (algorithm_type_ == "dpmsolver") { | ||
if (predict_epsilon_) { | ||
*out = model_output; | ||
} else { | ||
FDTensor alpha_t, sigma_t; | ||
function::Slice(alpha_t_, {0}, {timestep}, {timestep + 1}, &alpha_t); | ||
function::Slice(sigma_t_, {0}, {timestep}, {timestep + 1}, &sigma_t); | ||
alpha_t.Squeeze(); | ||
sigma_t_.Squeeze(); | ||
*out = (sample - alpha_t * model_output) / sigma_t; | ||
} | ||
} | ||
} | ||
|
||
void DPMSolverMultistepScheduler::SetTimesteps(int num_inference_steps) { | ||
num_inference_steps_ = num_inference_steps; | ||
function::Linspace(0, num_train_timesteps_ - 1, num_inference_steps + 1, | ||
×teps_); | ||
function::Round(timesteps_, ×teps_); | ||
// Reverse timesteps | ||
float* timesteps_data = reinterpret_cast<float*>(timesteps_.Data()); | ||
std::reverse(timesteps_data, timesteps_data + timesteps_.Numel()); | ||
FDTensor timestep_tmp; | ||
timestep_tmp.Allocate({num_inference_steps}, timesteps_.Dtype()); | ||
float* timestep_tmp_data = reinterpret_cast<float*>(timestep_tmp.Data()); | ||
std::copy(timesteps_data, timesteps_data + num_inference_steps, | ||
timestep_tmp_data); | ||
timesteps_ = std::move(timestep_tmp); | ||
|
||
function::Cast(timesteps_, ×teps_, FDDataType::INT64); | ||
|
||
model_outputs_.clear(); | ||
model_outputs_.resize(solver_order_); | ||
|
||
lower_order_nums_ = 0; | ||
} | ||
|
||
void DPMSolverMultistepScheduler::Step(const FDTensor& model_output, | ||
int timestep, const FDTensor& sample, | ||
FDTensor* prev_sample) {} | ||
|
||
} // namespace fastdeploy |
70 changes: 70 additions & 0 deletions
70
examples/multimodal/stable_diffusion/cpp/dpm_solver_multistep_scheduler.h
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,70 @@ | ||
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. | ||
// | ||
// Licensed under the Apache License, Version 2.0 (the "License"); | ||
// you may not use this file except in compliance with the License. | ||
// You may obtain a copy of the License at | ||
// | ||
// http://www.apache.org/licenses/LICENSE-2.0 | ||
// | ||
// Unless required by applicable law or agreed to in writing, software | ||
// distributed under the License is distributed on an "AS IS" BASIS, | ||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
// See the License for the specific language governing permissions and | ||
// limitations under the License. | ||
|
||
#pragma once | ||
|
||
#include "fastdeploy/core/fd_tensor.h" | ||
#include "./scheduler.h" | ||
|
||
namespace fastdeploy { | ||
|
||
class DPMSolverMultistepScheduler : public Scheduler { | ||
public: | ||
DPMSolverMultistepScheduler(int num_train_timesteps = 1000, | ||
float beta_start = 0.0001, float beta_end = 0.02, | ||
const std::string& beta_schedule = "linear", | ||
const std::vector<float>& trained_betas = {}, | ||
int solver_order = 2, bool predict_epsilon = true, | ||
bool thresholding = false, | ||
float dynamic_thresholding_ratio = 0.995, | ||
float sample_max_value = 1.0, | ||
const std::string& algorithm_type = "dpmsolver++", | ||
const std::string& solver_type = "midpoint", | ||
bool lower_order_final = true); | ||
void BetaForAlphaBar(FDTensor* out, int num_diffusion_timesteps, | ||
float max_beta = 0.999); | ||
void ConvertModelOutput(const FDTensor& model_output, int timestep, | ||
const FDTensor& sample, FDTensor* out); | ||
|
||
void SetTimesteps(int num_inference_steps) override; | ||
void Step(const FDTensor& model_output, int timestep, const FDTensor& sample, | ||
FDTensor* prev_sample) override; | ||
|
||
private: | ||
FDTensor betas_; | ||
FDTensor alphas_; | ||
FDTensor alphas_cumprod_; | ||
FDTensor alpha_t_; | ||
FDTensor sigma_t_; | ||
FDTensor lambda_t_; | ||
int num_inference_steps_; | ||
FDTensor timesteps_; | ||
int lower_order_nums_; | ||
std::vector<FDTensor> model_outputs_; | ||
|
||
int num_train_timesteps_; | ||
float beta_start_; | ||
float beta_end_; | ||
std::string beta_schedule_; | ||
int solver_order_; | ||
bool predict_epsilon_; | ||
bool thresholding_; | ||
float dynamic_thresholding_ratio_; | ||
float sample_max_value_; | ||
std::string algorithm_type_; | ||
std::string solver_type_; | ||
bool lower_order_final_; | ||
}; | ||
|
||
} // namespace fastdeploy |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,18 @@ | ||
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. | ||
// | ||
// Licensed under the Apache License, Version 2.0 (the "License"); | ||
// you may not use this file except in compliance with the License. | ||
// You may obtain a copy of the License at | ||
// | ||
// http://www.apache.org/licenses/LICENSE-2.0 | ||
// | ||
// Unless required by applicable law or agreed to in writing, software | ||
// distributed under the License is distributed on an "AS IS" BASIS, | ||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
// See the License for the specific language governing permissions and | ||
// limitations under the License. | ||
|
||
#include "dpm_solver_multistep_scheduler.h" | ||
#include <iostream> | ||
|
||
int main() { return 0; } |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,27 @@ | ||
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. | ||
// | ||
// Licensed under the Apache License, Version 2.0 (the "License"); | ||
// you may not use this file except in compliance with the License. | ||
// You may obtain a copy of the License at | ||
// | ||
// http://www.apache.org/licenses/LICENSE-2.0 | ||
// | ||
// Unless required by applicable law or agreed to in writing, software | ||
// distributed under the License is distributed on an "AS IS" BASIS, | ||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
// See the License for the specific language governing permissions and | ||
// limitations under the License. | ||
|
||
#pragma once | ||
|
||
#include "fastdeploy/core/fd_tensor.h" | ||
|
||
namespace fastdeploy { | ||
|
||
class Scheduler { | ||
virtual void SetTimesteps(int num_inference_steps) = 0; | ||
virtual void Step(const FDTensor& model_output, int timestep, | ||
const FDTensor& sample, FDTensor* prev_sample) = 0; | ||
}; | ||
|
||
} // namespace fastdeploy |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters