This repository contains the implementation of our paper.
- Install this package by running in the root directory of this repo:
pip3 install -U -e .
- Install the packages in requirements.txt.
Download the SemanticKITTI dataset inside the directory data/kitti/
. The directory structure should look like this:
./
└── data/
└── kitti
└── sequences
├── 00/
│ ├── velodyne/
| | ├── 000000.bin
| | ├── 000001.bin
| | └── ...
│ └── labels/
| ├── 000000.label
| ├── 000001.label
| └── ...
├── 08/ # for validation
├── 11/ # 11-21 for testing
└── 21/
└── ...
We use nuscenes2kitti to convert the nuScenes format into the SemanticKITTI format and store it in data/nuscenes/
.
In the scripts, use the --nuscenes
flag to train or evaluate using this dataset.
python3 scripts/evaluate_model.py --w [path_to_model]
python3 scripts/train_model.py
@article{marcuzzi2023ral,
author = {R. Marcuzzi and L. Nunes and L. Wiesmann and J. Behley and C. Stachniss},
title = {{Mask-Based Panoptic LiDAR Segmentation for Autonomous Driving}},
journal = ral,
volume = {8},
number = {2},
pages = {1141--1148},
year = 2023,
doi = {10.1109/LRA.2023.3236568},
url = {https://www.ipb.uni-bonn.de/wp-content/papercite-data/pdf/marcuzzi2023ral.pdf},
}
Copyright 2023, Rodrigo Marcuzzi, Cyrill Stachniss, Photogrammetry and Robotics Lab, University of Bonn.
This project is free software made available under the MIT License. For details see the LICENSE file