Skip to content

PKU-ICST-MIPL/SIM-Trans_ACMMM2022

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

8 Commits
 
 
 
 
 
 
 
 

Repository files navigation

Introduction

This is the source code of our ACM MM 2022 paper "SIM-Trans: Structure Information Modeling Transformer for Fine-grained Visual Categorization". Please cite the following paper if you use our code.

Hongbo Sun, Xiangteng He and Yuxin Peng, "SIM-Trans: Structure Information Modeling Transformer for Fine-grained Visual Categorization", 30th ACM Multimedia Conference (ACM MM), 2022.

Dependencies

Python 3.7.7

PyTorch 1.5.0

Torchvision 0.6.0

Data Preparation

Download the CUB-200-2011 dataset and iNaturalist 2017 dataset from official websites and put them in corresponding folders.

Usage

Start training by executing the following commands. This will train the model on CUB-200-2011 dataset.

CUDA_VISIBLE_DEVICES=0,1,2,3 python -m torch.distributed.launch --master_port 10715 --nproc_per_node=4 train.py --dataset CUB_200_2011 --split overlap --num_steps 10000 --eval_every 1000 --fp16 --name sample_run --train_batch_size 5

For any questions, feel free to contact us ([email protected]).

Welcome to our Laboratory Homepage for more information about our papers, source codes, and datasets.

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages