-
Notifications
You must be signed in to change notification settings - Fork 74
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Pad bug fixes and added Upsample support
- Loading branch information
Showing
4 changed files
with
161 additions
and
22 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,3 +1,3 @@ | ||
from onnx2tf.onnx2tf import convert, main | ||
|
||
__version__ = '1.0.26' | ||
__version__ = '1.0.27' |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,130 @@ | ||
import random | ||
random.seed(0) | ||
import numpy as np | ||
np.random.seed(0) | ||
import tensorflow as tf | ||
import onnx_graphsurgeon as gs | ||
from onnx2tf.utils.common_functions import ( | ||
get_constant_or_variable, | ||
print_node_info, | ||
inverted_operation_enable_disable, | ||
make_tf_node_info, | ||
) | ||
|
||
|
||
@print_node_info | ||
@inverted_operation_enable_disable | ||
def make_node( | ||
*, | ||
graph_node: gs.Node, | ||
tf_layers_dict: dict, | ||
**kwargs: dict, | ||
): | ||
"""Upsample | ||
Parameters | ||
---------- | ||
graph_node: gs.Node | ||
graph_surgeon Node | ||
tf_layers_dict: dict | ||
optype, shape, dtype, tensorflow graph | ||
""" | ||
before_op_output_shape_trans_1 = \ | ||
tf_layers_dict.get(graph_node.inputs[0].name, {}).get('before_op_output_shape_trans', True) | ||
|
||
before_op_output_shape_trans = \ | ||
before_op_output_shape_trans_1 | ||
|
||
input_tensor = get_constant_or_variable( | ||
graph_node.inputs[0], | ||
before_op_output_shape_trans, | ||
) | ||
scales = None | ||
if len(graph_node.inputs) >= 2: | ||
scales = get_constant_or_variable( | ||
graph_node.inputs[1], | ||
before_op_output_shape_trans, | ||
) | ||
else: | ||
scales = get_constant_or_variable( | ||
graph_node.attrs.get('scales', scales), | ||
before_op_output_shape_trans, | ||
) | ||
|
||
graph_node_output: gs.Variable = graph_node.outputs[0] | ||
shape = graph_node_output.shape | ||
dtype = graph_node_output.dtype | ||
|
||
input_tensor = tf_layers_dict[input_tensor.name]['tf_node'] \ | ||
if isinstance(input_tensor, gs.Variable) else input_tensor | ||
input_tensor_shape = input_tensor.shape | ||
scales = tf_layers_dict[scales.name]['tf_node'] \ | ||
if isinstance(scales, gs.Variable) else scales | ||
|
||
mode = graph_node.attrs.get('mode', 'nearest') | ||
|
||
# Preserving Graph Structure (Dict) | ||
tf_layers_dict[graph_node_output.name] = { | ||
'optype': graph_node.op, | ||
'shape': shape, | ||
'dtype': dtype, | ||
} | ||
|
||
# Generation of TF OP | ||
new_size = None | ||
if hasattr(graph_node.outputs[0], 'shape') \ | ||
and graph_node.outputs[0].shape is not None \ | ||
and isinstance(graph_node.outputs[0].shape[-2], int) \ | ||
and isinstance(graph_node.outputs[0].shape[-1], int): | ||
new_size = graph_node.outputs[0].shape[-2:len(graph_node.outputs[0].shape)] # Estimated from ONNX output shape | ||
else: | ||
h_w_scale = scales[1:3] | ||
h_w_shape = input_tensor_shape[1:3] | ||
new_size = tf.cast(h_w_scale * tf.cast(h_w_shape, scales.dtype), tf.int32) | ||
|
||
if hasattr(new_size, 'set_shape'): | ||
new_size.set_shape([2]) | ||
|
||
if hasattr(new_size, '_inferred_value'): | ||
new_size_values = new_size._inferred_value | ||
if new_size_values.count(None) == len(new_size_values): | ||
tensor_rank = len(graph_node_output.shape) | ||
convertion_table = [0] + [i for i in range(2, tensor_rank)] + [1] | ||
new_values = [0] * tensor_rank | ||
for new_idx, idx in enumerate(convertion_table): | ||
new_values[new_idx] = graph_node_output.shape[idx] | ||
new_size = new_values[-3:-1] | ||
|
||
resized_tensor = None | ||
tf_op_type = None | ||
if mode.lower() == "bilinear" or mode.lower() == "linear": | ||
mode = tf.image.ResizeMethod.BILINEAR | ||
else: | ||
mode = tf.image.ResizeMethod.NEAREST_NEIGHBOR | ||
|
||
resized_tensor = tf.image.resize( | ||
images=input_tensor, | ||
size=new_size, | ||
method=mode, | ||
name=graph_node.name, | ||
) | ||
tf_op_type = tf.image.resize | ||
|
||
tf_layers_dict[graph_node_output.name]['tf_node'] = resized_tensor | ||
|
||
# Generation of Debug Info | ||
tf_layers_dict[graph_node_output.name]['tf_node_info'] = \ | ||
make_tf_node_info( | ||
node_info={ | ||
'tf_op_type': tf_op_type, | ||
'tf_inputs': { | ||
'images': input_tensor, | ||
'new_size/crop_size': new_size, | ||
'method': mode, | ||
}, | ||
'tf_outputs': { | ||
'output': tf_layers_dict[graph_node_output.name]['tf_node'], | ||
}, | ||
} | ||
) |