Skip to content

Commit

Permalink
Add the codes of YOLOS
Browse files Browse the repository at this point in the history
  • Loading branch information
Osilly committed Apr 17, 2024
1 parent a5e9192 commit a6c60d9
Show file tree
Hide file tree
Showing 55 changed files with 6,754 additions and 0 deletions.
Binary file added Figs/pipeline.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
17 changes: 17 additions & 0 deletions ToE/YOLOS/.gitignore
Original file line number Diff line number Diff line change
@@ -0,0 +1,17 @@
.nfs*
*.pyc
.dumbo.json
.DS_Store
.*.swp
*.pth
**/__pycache__/**
.ipynb_checkpoints/
datasets/data/
experiment-*
*.tmp
*.pkl
**/.mypy_cache/*
.mypy_cache/*
not_tracked_dir/
output/
.vscode
21 changes: 21 additions & 0 deletions ToE/YOLOS/LICENSE
Original file line number Diff line number Diff line change
@@ -0,0 +1,21 @@
MIT License

Copyright (c) 2021 Hust Visual Learning Team

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
522 changes: 522 additions & 0 deletions ToE/YOLOS/VisualizeAttention.ipynb

Large diffs are not rendered by default.

262 changes: 262 additions & 0 deletions ToE/YOLOS/cocoval_gtclsjson_generation.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,262 @@
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
import argparse
import datetime
import json
import random
import time
from pathlib import Path

# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
import argparse
import datetime
import json
import random
import time
from pathlib import Path
import os
import numpy as np
import torch
import torch.nn as nn
from torch.utils.data import DataLoader, DistributedSampler

import datasets
import util.misc as utils
from models import build_model as build_yolos_model
from datasets import build_dataset, get_coco_api_from_dataset

# from timm.scheduler import create_scheduler
# from new_models import build_model
from util.scheduler import create_scheduler
from datasets.coco_eval import CocoEvaluator
from util import box_ops
import torch.nn.functional as F


@torch.no_grad()
def get_val_json(data_loader, base_ds, device, output_dir, args):
jdict = []
for samples, targets in data_loader:
# samples = samples.to(device)
# import pdb;pdb.set_trace()
targets = [{k: v for k, v in t.items()} for t in targets]
for target in targets:
labels = target["labels"].tolist()
for label in labels:
jdict.append({"category_id": int(label)})

output_json = os.path.join(output_dir, "coco-valsplit-cls-dist.json")
with open(output_json, "w") as f:
json.dump(jdict, f)

# for target, output in zip(targets, results):
# jdict
print("%s done" % output_json)
return


def get_args_parser():
parser = argparse.ArgumentParser("Set YOLOS", add_help=False)
parser.add_argument("--lr", default=1e-4, type=float)
parser.add_argument("--lr_backbone", default=1e-5, type=float)
parser.add_argument("--batch_size", default=2, type=int)
parser.add_argument("--weight_decay", default=1e-4, type=float)
parser.add_argument("--epochs", default=150, type=int)
parser.add_argument("--eval_size", default=800, type=int)

parser.add_argument(
"--clip_max_norm", default=0.1, type=float, help="gradient clipping max norm"
)

# scheduler
# Learning rate schedule parameters
parser.add_argument(
"--sched",
default="warmupcos",
type=str,
metavar="SCHEDULER",
help='LR scheduler (default: "step", options:"step", "warmupcos"',
)
## step
parser.add_argument("--lr_drop", default=100, type=int)
## warmupcosine

# parser.add_argument('--lr-noise', type=float, nargs='+', default=None, metavar='pct, pct',
# help='learning rate noise on/off epoch percentages')
# parser.add_argument('--lr-noise-pct', type=float, default=0.67, metavar='PERCENT',
# help='learning rate noise limit percent (default: 0.67)')
# parser.add_argument('--lr-noise-std', type=float, default=1.0, metavar='STDDEV',
# help='learning rate noise std-dev (default: 1.0)')
parser.add_argument(
"--warmup-lr",
type=float,
default=1e-6,
metavar="LR",
help="warmup learning rate (default: 1e-6)",
)
parser.add_argument(
"--min-lr",
type=float,
default=1e-7,
metavar="LR",
help="lower lr bound for cyclic schedulers that hit 0 (1e-5)",
)
parser.add_argument(
"--warmup-epochs",
type=int,
default=0,
metavar="N",
help="epochs to warmup LR, if scheduler supports",
)
parser.add_argument(
"--decay-rate",
"--dr",
type=float,
default=0.1,
metavar="RATE",
help="LR decay rate (default: 0.1)",
)

# * model setting
parser.add_argument(
"--det_token_num",
default=100,
type=int,
help="Number of det token in the deit backbone",
)
parser.add_argument(
"--backbone_name",
default="tiny",
type=str,
help="Name of the deit backbone to use",
)
parser.add_argument(
"--pre_trained",
default="",
help="set imagenet pretrained model path if not train yolos from scatch",
)
parser.add_argument(
"--init_pe_size", nargs="+", type=int, help="init pe size (h,w)"
)
parser.add_argument("--mid_pe_size", nargs="+", type=int, help="mid pe size (h,w)")
# * Matcher
parser.add_argument(
"--set_cost_class",
default=1,
type=float,
help="Class coefficient in the matching cost",
)
parser.add_argument(
"--set_cost_bbox",
default=5,
type=float,
help="L1 box coefficient in the matching cost",
)
parser.add_argument(
"--set_cost_giou",
default=2,
type=float,
help="giou box coefficient in the matching cost",
)
# * Loss coefficients

parser.add_argument("--dice_loss_coef", default=1, type=float)
parser.add_argument("--bbox_loss_coef", default=5, type=float)
parser.add_argument("--giou_loss_coef", default=2, type=float)
parser.add_argument(
"--eos_coef",
default=0.1,
type=float,
help="Relative classification weight of the no-object class",
)

# dataset parameters
parser.add_argument("--dataset_file", default="coco")
parser.add_argument("--coco_path", type=str)
parser.add_argument("--coco_panoptic_path", type=str)
parser.add_argument("--remove_difficult", action="store_true")

parser.add_argument(
"--output_dir", default="", help="path where to save, empty for no saving"
)
parser.add_argument(
"--device", default="cuda", help="device to use for training / testing"
)
parser.add_argument("--seed", default=42, type=int)
parser.add_argument("--resume", default="", help="resume from checkpoint")
parser.add_argument(
"--start_epoch", default=0, type=int, metavar="N", help="start epoch"
)
parser.add_argument("--eval", action="store_true")
parser.add_argument("--num_workers", default=2, type=int)

# distributed training parameters
parser.add_argument(
"--world_size", default=1, type=int, help="number of distributed processes"
)
parser.add_argument(
"--dist_url", default="env://", help="url used to set up distributed training"
)
return parser


def main(args):
utils.init_distributed_mode(args)
# print("git:\n {}\n".format(utils.get_sha()))

print(args)

device = torch.device(args.device)

# fix the seed for reproducibility
seed = args.seed + utils.get_rank()
torch.manual_seed(seed)
np.random.seed(seed)
random.seed(seed)
# import pdb;pdb.set_trace()

dataset_train = build_dataset(image_set="train", args=args)
dataset_val = build_dataset(image_set="val", args=args)
# import pdb;pdb.set_trace()
if args.distributed:
sampler_train = DistributedSampler(dataset_train)
sampler_val = DistributedSampler(dataset_val, shuffle=False)
else:
sampler_train = torch.utils.data.RandomSampler(dataset_train)
sampler_val = torch.utils.data.SequentialSampler(dataset_val)

batch_sampler_train = torch.utils.data.BatchSampler(
sampler_train, args.batch_size, drop_last=True
)

data_loader_train = DataLoader(
dataset_train,
batch_sampler=batch_sampler_train,
collate_fn=utils.collate_fn,
num_workers=args.num_workers,
)
data_loader_val = DataLoader(
dataset_val,
args.batch_size,
sampler=sampler_val,
drop_last=False,
collate_fn=utils.collate_fn,
num_workers=args.num_workers,
)

base_ds = get_coco_api_from_dataset(dataset_val)

output_dir = Path(args.output_dir)

get_val_json(data_loader_val, base_ds, device, args.output_dir, args)

return


if __name__ == "__main__":
parser = argparse.ArgumentParser(
"Get YOLOS pred json file", parents=[get_args_parser()]
)
args = parser.parse_args()
if args.output_dir:
Path(args.output_dir).mkdir(parents=True, exist_ok=True)
main(args)
Loading

0 comments on commit a6c60d9

Please sign in to comment.