This is the official implementation of the paper "Federated Deep AUC Maximization for Heterogeneous Data with a Constant Communication Complexity" published on ICML2021.
Tensorflow >= 2.0.0
PyTorch >= 1.3.0
python -m torch.distributed.launch --nproc_per_node=4 --nnodes=1 --node_rank=0 --master_addr='YOUR IP' --master_port=8888 \
main_codasca_cifar.py --T0=4000 --imratio=0.1 --gamma=500 --lr=0.1 --I=8 --local_batchsize=32 --total_iter=20000
If you find this repo helpful, please cite the following paper:
@InProceedings{DBLP:conf/icml/YuanGXYY21,
title = {Federated Deep AUC Maximization for Hetergeneous Data with a Constant Communication Complexity},
author = {Yuan, Zhuoning and Guo, Zhishuai and Xu, Yi and Ying, Yiming and Yang, Tianbao},
booktitle = {Proceedings of the 38th International Conference on Machine Learning},
pages = {12219--12229},
year = {2021},
editor = {Meila, Marina and Zhang, Tong},
volume = {139},
series = {Proceedings of Machine Learning Research},
month = {18--24 Jul},
publisher = {PMLR},
pdf = {http://proceedings.mlr.press/v139/yuan21a/yuan21a.pdf},
url = {https://proceedings.mlr.press/v139/yuan21a.html},
}