Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Release v3.5.1 #252

Merged
merged 2 commits into from
Apr 22, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
4 changes: 2 additions & 2 deletions DESCRIPTION
Original file line number Diff line number Diff line change
@@ -1,8 +1,8 @@
Package: FeatureExtraction
Type: Package
Title: Generating Features for a Cohort
Version: 3.5.0
Date: 2024-04-18
Version: 3.5.1
Date: 2024-04-22
Authors@R: c(
person("Martijn", "Schuemie", , "[email protected]", role = c("aut")),
person("Marc", "Suchard", role = c("aut")),
Expand Down
7 changes: 7 additions & 0 deletions NEWS.md
Original file line number Diff line number Diff line change
@@ -1,3 +1,10 @@
FeatureExtraction 3.5.1
=======================

Bug Fixes:

- Minimum threshold for covariate mean should be inclusive of the value parameter (#249)

FeatureExtraction 3.5.0
=======================

Expand Down
36 changes: 22 additions & 14 deletions R/CovariateData.R
Original file line number Diff line number Diff line change
Expand Up @@ -279,20 +279,28 @@ createEmptyCovariateData <- function(cohortIds, aggregated, temporal) {
if (!is.null(temporal) && temporal) {
dummy$timeId <- 1
}
covariateData <- Andromeda::andromeda(covariates = dummy[!1, ],
covariateRef = tibble(covariateId = 1,
covariateName = "",
analysisId = 1,
conceptId = 1)[!1, ],
analysisRef = tibble(analysisId = 1,
analysisName = "",
domainId = "",
startDay = 1,
endDay = 1,
isBinary = "",
missingMeansZero = "")[!1, ])
attr(covariateData, "metaData") <- list(populationSize = 0,
cohortIds = cohortIds)
covariateData <- Andromeda::andromeda(
covariates = dummy[!1, ],
covariateRef = tibble(
covariateId = 1,
covariateName = "",
analysisId = 1,
conceptId = 1
)[!1, ],
analysisRef = tibble(
analysisId = 1,
analysisName = "",
domainId = "",
startDay = 1,
endDay = 1,
isBinary = "",
missingMeansZero = ""
)[!1, ]
)
attr(covariateData, "metaData") <- list(
populationSize = 0,
cohortIds = cohortIds
)
class(covariateData) <- "CovariateData"
return(covariateData)
}
50 changes: 29 additions & 21 deletions R/GetCovariates.R
Original file line number Diff line number Diff line change
Expand Up @@ -59,7 +59,7 @@
#' of the createCovariate functions, or a list of such objects.
#' @param aggregated Should aggregate statistics be computed instead of covariates per
#' cohort entry?
#' @param minCharacterizationMean The minimum mean value for characterization output. Values below this will be cut off from output. This
#' @param minCharacterizationMean The minimum mean value for characterization output. Values below this will be cut off from output. This
#' will help reduce the file size of the characterization output, but will remove information
#' on covariates that have very low values. The default is 0.
#'
Expand Down Expand Up @@ -115,13 +115,13 @@ getDbCovariateData <- function(connectionDetails = NULL,
if (cdmVersion == "4") {
stop("CDM version 4 is not supported any more")
}
if (!missing(cohortId)) {
if (!missing(cohortId)) {
warning("cohortId argument has been deprecated, please use cohortIds")
cohortIds <- cohortId
}
errorMessages <- checkmate::makeAssertCollection()
minCharacterizationMean <- utils::type.convert(minCharacterizationMean, as.is = TRUE)
checkmate::assertNumeric(x = minCharacterizationMean, lower = 0, add = errorMessages)
checkmate::assertNumeric(x = minCharacterizationMean, lower = 0, upper = 1, add = errorMessages)
checkmate::reportAssertions(collection = errorMessages)
if (!is.null(connectionDetails)) {
connection <- DatabaseConnector::connect(connectionDetails)
Expand All @@ -137,12 +137,16 @@ getDbCovariateData <- function(connectionDetails = NULL,
cohortDatabaseSchemaTable <- paste(cohortDatabaseSchema, cohortTable, sep = ".")
}
sql <- "SELECT cohort_definition_id, COUNT_BIG(*) AS population_size FROM @cohort_database_schema_table {@cohort_ids != -1} ? {WHERE cohort_definition_id IN (@cohort_ids)} GROUP BY cohort_definition_id;"
sql <- SqlRender::render(sql = sql,
cohort_database_schema_table = cohortDatabaseSchemaTable,
cohort_ids = cohortIds)
sql <- SqlRender::translate(sql = sql,
targetDialect = attr(connection, "dbms"),
oracleTempSchema = oracleTempSchema)
sql <- SqlRender::render(
sql = sql,
cohort_database_schema_table = cohortDatabaseSchemaTable,
cohort_ids = cohortIds
)
sql <- SqlRender::translate(
sql = sql,
targetDialect = attr(connection, "dbms"),
oracleTempSchema = oracleTempSchema
)
temp <- DatabaseConnector::querySql(connection, sql, snakeCaseToCamelCase = TRUE)
if (aggregated) {
populationSize <- temp$populationSize
Expand All @@ -164,16 +168,18 @@ getDbCovariateData <- function(connectionDetails = NULL,
}
for (i in 1:length(covariateSettings)) {
fun <- attr(covariateSettings[[i]], "fun")
args <- list(connection = connection,
oracleTempSchema = oracleTempSchema,
cdmDatabaseSchema = cdmDatabaseSchema,
cohortTable = cohortDatabaseSchemaTable,
cohortIds = cohortIds,
cdmVersion = cdmVersion,
rowIdField = rowIdField,
covariateSettings = covariateSettings[[i]],
aggregated = aggregated,
minCharacterizationMean = minCharacterizationMean)
args <- list(
connection = connection,
oracleTempSchema = oracleTempSchema,
cdmDatabaseSchema = cdmDatabaseSchema,
cohortTable = cohortDatabaseSchemaTable,
cohortIds = cohortIds,
cdmVersion = cdmVersion,
rowIdField = rowIdField,
covariateSettings = covariateSettings[[i]],
aggregated = aggregated,
minCharacterizationMean = minCharacterizationMean
)
tempCovariateData <- do.call(eval(parse(text = fun)), args)
if (is.null(covariateData)) {
covariateData <- tempCovariateData
Expand All @@ -199,8 +205,10 @@ getDbCovariateData <- function(connectionDetails = NULL,
attr(covariateData, "metaData")[[name]] <- attr(tempCovariateData, "metaData")[[name]]
} else {
attr(covariateData, "metaData")[[name]] <- list(
c(unlist(attr(covariateData, "metaData")[[name]]),
attr(tempCovariateData, "metaData")[[name]])
c(
unlist(attr(covariateData, "metaData")[[name]]),
attr(tempCovariateData, "metaData")[[name]]
)
)
}
}
Expand Down
10 changes: 5 additions & 5 deletions R/GetCovariatesFromCohortAttributes.R
Original file line number Diff line number Diff line change
Expand Up @@ -85,7 +85,7 @@ getDbCohortAttrCovariatesData <- function(connection,
if (cdmVersion == "4") {
stop("Common Data Model version 4 is not supported")
}
if (!missing(cohortId)) {
if (!missing(cohortId)) {
warning("cohortId argument has been deprecated, please use cohortIds")
cohortIds <- cohortId
}
Expand Down Expand Up @@ -160,10 +160,10 @@ getDbCohortAttrCovariatesData <- function(connection,
writeLines(paste("Loading took", signif(delta, 3), attr(delta, "units")))

result <- createEmptyCovariateData(cohortIds, aggregated, covariateSettings$temporal)
result$covariates = covariates
result$covariateRef = covariateRef
result$analysisRef = analysisRef
result$covariates <- covariates
result$covariateRef <- covariateRef
result$analysisRef <- analysisRef

return(result)
}

Expand Down
6 changes: 3 additions & 3 deletions R/GetCovariatesFromOtherCohorts.R
Original file line number Diff line number Diff line change
Expand Up @@ -22,7 +22,7 @@
#' @param covariateSettings An object of type \code{covariateSettings} as created using the
#' \code{\link{createCohortBasedCovariateSettings}} or
#' \code{\link{createCohortBasedTemporalCovariateSettings}} functions.
#' @param minCharacterizationMean The minimum mean value for characterization output. Values below this will be cut off from output. This
#' @param minCharacterizationMean The minimum mean value for binary characterization output. Values below this will be cut off from output. This
#' will help reduce the file size of the characterization output, but will remove information
#' on covariates that have very low values. The default is 0.
#' @template GetCovarParams
Expand Down Expand Up @@ -50,9 +50,9 @@ getDbCohortBasedCovariatesData <- function(connection,
checkmate::assertClass(covariateSettings, "covariateSettings", add = errorMessages)
checkmate::assertLogical(aggregated, len = 1, add = errorMessages)
minCharacterizationMean <- utils::type.convert(minCharacterizationMean, as.is = TRUE)
checkmate::assertNumeric(x = minCharacterizationMean, lower = 0, add = errorMessages)
checkmate::assertNumeric(x = minCharacterizationMean, lower = 0, upper = 1, add = errorMessages)
checkmate::reportAssertions(collection = errorMessages)
if (!missing(cohortId)) {
if (!missing(cohortId)) {
warning("cohortId argument has been deprecated, please use cohortIds")
cohortIds <- cohortId
}
Expand Down
23 changes: 12 additions & 11 deletions R/GetDefaultCovariates.R
Original file line number Diff line number Diff line change
Expand Up @@ -31,7 +31,7 @@
#' it is a temp table, do not specify \code{targetDatabaseSchema}.
#' @param targetCovariateRefTable (Optional) The name of the table where the covariate reference will be stored.
#' @param targetAnalysisRefTable (Optional) The name of the table where the analysis reference will be stored.
#' @param minCharacterizationMean The minimum mean value for characterization output. Values below this will be cut off from output. This
#' @param minCharacterizationMean The minimum mean value for binary characterization output. Values below this will be cut off from output. This
#' will help reduce the file size of the characterization output, but will remove information
#' on covariates that have very low values. The default is 0.
#'
Expand Down Expand Up @@ -79,15 +79,15 @@ getDbDefaultCovariateData <- function(connection,
if (!missing(targetCovariateTable) && !is.null(targetCovariateTable) && aggregated) {
stop("Writing aggregated results to database is currently not supported")
}
if (!missing(cohortId)) {
if (!missing(cohortId)) {
warning("cohortId argument has been deprecated, please use cohortIds")
cohortIds <- cohortId
}
errorMessages <- checkmate::makeAssertCollection()
minCharacterizationMean <- utils::type.convert(minCharacterizationMean, as.is = TRUE)
checkmate::assertNumeric(x = minCharacterizationMean, lower = 0, add = errorMessages)
checkmate::assertNumeric(x = minCharacterizationMean, lower = 0, upper = 1, add = errorMessages)
checkmate::reportAssertions(collection = errorMessages)

settings <- .toJson(covariateSettings)
rJava::J("org.ohdsi.featureExtraction.FeatureExtraction")$init(system.file("", package = "FeatureExtraction"))
json <- rJava::J("org.ohdsi.featureExtraction.FeatureExtraction")$createSql(settings, aggregated, cohortTable, rowIdField, rJava::.jarray(as.character(cohortIds)), cdmDatabaseSchema)
Expand Down Expand Up @@ -152,7 +152,6 @@ getDbDefaultCovariateData <- function(connection,
andromedaTableName = "covariatesContinuous",
snakeCaseToCamelCase = TRUE
)
filterCovariateDataCovariates(covariateData, "covariatesContinuous", minCharacterizationMean)
}

# Covariate reference
Expand Down Expand Up @@ -275,9 +274,11 @@ getDbDefaultCovariateData <- function(connection,
attr(covariateData, "metaData") <- list()
if (is.null(covariateData$covariates) && is.null(covariateData$covariatesContinuous)) {
warning("No data found, probably because no covariates were specified.")
covariateData <- createEmptyCovariateData(cohortIds = cohortIds,
aggregated = aggregated,
temporal = covariateSettings$temporal)
covariateData <- createEmptyCovariateData(
cohortIds = cohortIds,
aggregated = aggregated,
temporal = covariateSettings$temporal
)
}
class(covariateData) <- "CovariateData"
attr(class(covariateData), "package") <- "FeatureExtraction"
Expand All @@ -289,12 +290,12 @@ getDbDefaultCovariateData <- function(connection,
#'
#' @param covariateData The covariate data
#' @param covariatesName The name of the covariates object inside the covariateData
#' @param minCharacterizationMean The minimum mean value for characterization output. Values below this will be cut off from output. This
#' @param minCharacterizationMean The minimum mean value for characterization output. Values below this will be cut off from output. This
#' will help reduce the file size of the characterization output, but will remove information
#' on covariates that have very low values. The default is 0.
filterCovariateDataCovariates <- function(covariateData, covariatesName, minCharacterizationMean = 0) {
if ("averageValue" %in% colnames(covariateData[[covariatesName]]) && minCharacterizationMean != 0) {
covariateData[[covariatesName]] <- covariateData[[covariatesName]] %>%
dplyr::filter(.data$averageValue > minCharacterizationMean)
dplyr::filter(.data$averageValue >= minCharacterizationMean)
}
}
}
6 changes: 3 additions & 3 deletions R/HelperFunctions.R
Original file line number Diff line number Diff line change
Expand Up @@ -86,7 +86,7 @@ filterByRowId <- function(covariateData, rowIds) {
#' }
#'
#' @export
filterByCohortDefinitionId <- function(covariateData,
filterByCohortDefinitionId <- function(covariateData,
cohortId = 1,
cohortIds = c(1)) {
if (!isCovariateData(covariateData)) {
Expand All @@ -98,11 +98,11 @@ filterByCohortDefinitionId <- function(covariateData,
if (!isAggregatedCovariateData(covariateData)) {
stop("Can only filter aggregated data by cohortIds")
}
if (!missing(cohortId)) {
if (!missing(cohortId)) {
warning("cohortId argument has been deprecated, please use cohortIds")
cohortIds <- cohortId
}

if (is.null(covariateData$covariates)) {
covariates <- NULL
} else {
Expand Down
31 changes: 17 additions & 14 deletions R/UnitTestHelperFunctions.R
Original file line number Diff line number Diff line change
Expand Up @@ -59,7 +59,7 @@
#' of the createCovariate functions, or a list of such objects.
#' @param aggregated Should aggregate statistics be computed instead of covariates per
#' cohort entry?
#' @param minCharacterizationMean The minimum mean value for characterization output. Values below this will be cut off from output. This
#' @param minCharacterizationMean The minimum mean value for binary characterization output. Values below this will be cut off from output. This
#' will help reduce the file size of the characterization output, but will remove information
#' on covariates that have very low values. The default is 0.
#' @return
Expand Down Expand Up @@ -107,20 +107,23 @@
}

# Some SQL to construct the covariate:
sql <- paste("SELECT @row_id_field AS row_id, 1 AS covariate_id,",
"DATEDIFF(DAY, observation_period_start_date, cohort_start_date)",
"AS covariate_value",
"FROM @cohort_table c",
"INNER JOIN @cdm_database_schema.observation_period op",
"ON op.person_id = c.subject_id",
"WHERE cohort_start_date >= observation_period_start_date",
"AND cohort_start_date <= observation_period_end_date",
"{@cohort_ids != -1} ? {AND cohort_definition_id IN @cohort_ids}")
sql <- paste(
"SELECT @row_id_field AS row_id, 1 AS covariate_id,",
"DATEDIFF(DAY, observation_period_start_date, cohort_start_date)",
"AS covariate_value",
"FROM @cohort_table c",
"INNER JOIN @cdm_database_schema.observation_period op",
"ON op.person_id = c.subject_id",
"WHERE cohort_start_date >= observation_period_start_date",
"AND cohort_start_date <= observation_period_end_date",
"{@cohort_ids != -1} ? {AND cohort_definition_id IN @cohort_ids}"
)
sql <- SqlRender::render(sql,
cohort_table = cohortTable,
cohort_ids = cohortIds,
row_id_field = rowIdField,
cdm_database_schema = cdmDatabaseSchema)
cohort_table = cohortTable,
cohort_ids = cohortIds,
row_id_field = rowIdField,
cdm_database_schema = cdmDatabaseSchema
)
sql <- SqlRender::translate(sql, targetDialect = attr(connection, "dbms"))
# Retrieve the covariate:
covariates <- DatabaseConnector::querySql(connection, sql, snakeCaseToCamelCase = TRUE)
Expand Down
2 changes: 1 addition & 1 deletion docs/404.html

Some generated files are not rendered by default. Learn more about how customized files appear on GitHub.

4 changes: 2 additions & 2 deletions docs/articles/CreatingCovariatesBasedOnOtherCohorts.html

Some generated files are not rendered by default. Learn more about how customized files appear on GitHub.

Loading
Loading