Skip to content

Repository containing code from team Kingsterdam for the Hateful Memes Challenge

License

Notifications You must be signed in to change notification settings

Nithin-Holla/meme_challenge

Repository files navigation

Facebook Hateful Memes Challenge - Team Kingsterdam

This is the code from team Kingsterdam for the Hateful Memes Challenge by Facebook AI.

Installation

  • Create a virtual environment with Python 3.7.5 using either virtualenv or conda.
  • Activate the virtual environment.
  • Install the required packages using pip install -r requirements.txt. It includes PyTorch for CUDA version 10.1.
  • Install Nvidia Apex as follows:
git clone https://github.com/NVIDIA/apex
cd apex
pip install -v --no-cache-dir --global-option="--cpp_ext" --global-option="--cuda_ext" ./

Clone the repository

Clone the repository using git clone [email protected]:Nithin-Holla/meme_challenge.git.

Download the pretrained model

  • Navigate to the directory: cd meme_challenge.
  • The pretrained UNITER-base model can be downloaded using wget 'https://convaisharables.blob.core.windows.net/uniter/pretrained/uniter-base.pt'.
  • Next, convert the model's state_dict to work with the code using the following snippet:
import torch
model_name = 'uniter-base.pt'
checkpoint = torch.load(model_name)
state_dict = {'model_state_dict': checkpoint}
torch.save(state_dict, model_name)

Obtain image features

  • Make a new directory: mkdir data.
  • Copy the HatefulMemes dataset to the data directory.
  • Extract image features as detailed here into data/own_features.
  • Alternatively, we provide the extracted features here.

Training

The directory structure is assumed to be as follows:

.
├── meme_challenge/
├── data
│   ├── img/
│   ├── own_features/
│   ├── train.jsonl
│   ├── dev_seen.jsonl
│   ├── dev_unseen.jsonl
│   ├── test_seen.jsonl
│   ├── test_unseen.jsonl

To train the model from the root of the aforementioned directory structure, run the following:

python -u train_uniter.py --config meme_challenge/config/uniter-base.json --data_path data/ --model_path meme_challenge/ --pretrained_model_file uniter-base.pt --feature_path data/own_features/ --lr 3e-5 --scheduler warmup_cosine --warmup_steps 500 --max_epoch 30 --batch_size 16 --patience 5 --gradient_accumulation 2 --confounder_repeat 3 --pos_wt 1.8 --model_save_name meme.pt --seed 43 --num_folds -1 --crossval_dev_size 200 --crossval_use_dev

The results will be exported as CSV files in the meme_challenge directory. The results from the individual folds would be named meme_fold_1*.csv to meme_fold_14*.csv. The ensemble test predictions are named meme_test_seen_ensemble.csv and meme_test_unseen_ensemble.csv.

Inference

We provide the trained models, one each from the 15 folds. To run inference, run the following:

python -u train_uniter.py --config meme_challenge/config/uniter-base.json --data_path data/ --model_path meme_challenge/ --feature_path data/own_features/ --lr 3e-5 --scheduler warmup_cosine --warmup_steps 500 --max_epoch 0 --batch_size 16 --patience 5 --gradient_accumulation 2 --confounder_repeat 3 --pos_wt 1.8 --model_save_name meme.pt --seed 43 --num_folds -1 --crossval_dev_size 200 --crossval_use_dev

Our trained models and CSV files corresponding to the results are available here. The models are named reproduce_fold_*.pt. To run inference with these models, run the aforementioned command by replacing meme.pt with reproduce.pt.

Citation

If you use this code, please consider citing the paper:

@article{lippe2020multimodal,
  title={A Multimodal Framework for the Detection of Hateful Memes},
  author={Lippe, Phillip and Holla, Nithin and Chandra, Shantanu and Rajamanickam, Santhosh and Antoniou, Georgios and Shutova, Ekaterina and Yannakoudakis, Helen},
  journal={arXiv preprint arXiv:2012.12871},
  year={2020}
}

About

Repository containing code from team Kingsterdam for the Hateful Memes Challenge

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 3

  •  
  •  
  •  

Languages