Skip to content

NiteshBharadwaj/structured_aleatoric_uncertainty_for_human_pose

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

25 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Structured Aleatoric Uncertainty In Human Pose Estimation

This provides codebase for the CVPR 2019 Workshop Paper

Note/TODO: Currently, only the evaluation code for pre-trained models and some skeleton code is provided. Yet to complete end-end training pipeline. This codebase and Readme.md build upon Integral Human Pose Regression codebase.

Loss Function

Network

Preparation for Training & Testing

  1. Download MPII image from MPII Human Pose Dataset
  2. Organize data like this
${PROJECT_ROOT}
 `-- data
     `-- mpii
        |-- images
        |-- annot
        |-- mpii_train_cache
        |-- mpii_valid_cache
     `-- hm36
        |-- images
        |-- annot
        |-- HM36_train_cache
        |-- HM36_validmin_cache

Usage

Test

To run evaluations on MPII Val dataset

Place the models in pytorch_projects/integral_human_pose/output/

cd pytorch_projects/integral_human_pose
python3 test.py --cfg experiments/hm36/resnet50v1_ft/d-mh_ps-256_dj_l1_adam_bs32-4gpus_x140-90-120/lr1e-3_u.yaml --dataroot ../../data/ --model output/covariance.pth.tar --is_cov True
python3 test.py --cfg experiments/hm36/resnet50v1_ft/d-mh_ps-256_dj_l1_adam_bs32-4gpus_x140-90-120/lr1e-3_u.yaml --dataroot ../../data/ --model output/diag.pth.tar --is_cov False

Cite

@article{gundavarapu2019structured,
  title={Structured Aleatoric Uncertainty in Human Pose Estimation.},
  author={Gundavarapu, Nitesh B and Srivastava, Divyansh and Mitra, Rahul and Sharma, Abhishek and Jain, Arjun},
  journal={CVPR Workshops},
  year={2019}
}

About

CVPR Workshop Paper

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published