This provides codebase for the CVPR 2019 Workshop Paper
Note/TODO: Currently, only the evaluation code for pre-trained models and some skeleton code is provided. Yet to complete end-end training pipeline. This codebase and Readme.md build upon Integral Human Pose Regression codebase.
- Download MPII image from MPII Human Pose Dataset
- Organize data like this
${PROJECT_ROOT}
`-- data
`-- mpii
|-- images
|-- annot
|-- mpii_train_cache
|-- mpii_valid_cache
`-- hm36
|-- images
|-- annot
|-- HM36_train_cache
|-- HM36_validmin_cache
To run evaluations on MPII Val dataset
Place the models in pytorch_projects/integral_human_pose/output/
cd pytorch_projects/integral_human_pose
python3 test.py --cfg experiments/hm36/resnet50v1_ft/d-mh_ps-256_dj_l1_adam_bs32-4gpus_x140-90-120/lr1e-3_u.yaml --dataroot ../../data/ --model output/covariance.pth.tar --is_cov True
python3 test.py --cfg experiments/hm36/resnet50v1_ft/d-mh_ps-256_dj_l1_adam_bs32-4gpus_x140-90-120/lr1e-3_u.yaml --dataroot ../../data/ --model output/diag.pth.tar --is_cov False
@article{gundavarapu2019structured,
title={Structured Aleatoric Uncertainty in Human Pose Estimation.},
author={Gundavarapu, Nitesh B and Srivastava, Divyansh and Mitra, Rahul and Sharma, Abhishek and Jain, Arjun},
journal={CVPR Workshops},
year={2019}
}