Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Match tracking update #92

Merged
merged 2 commits into from
Sep 26, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
24 changes: 16 additions & 8 deletions artlib/common/BaseART.py
Original file line number Diff line number Diff line change
Expand Up @@ -340,7 +340,7 @@ def step_fit(self, x: np.ndarray, match_reset_func: Optional[Callable] = None, m
return 0
else:

if match_reset_method == "MY~" and match_reset_func is not None:
if match_reset_method in ["MT~"] and match_reset_func is not None:
T_values, T_cache = zip(*[
self.category_choice(x, w, params=self.params)
if match_reset_func(x, w, c_, params=self.params, cache=None)
Expand All @@ -355,17 +355,20 @@ def step_fit(self, x: np.ndarray, match_reset_func: Optional[Callable] = None, m
w = self.W[c_]
cache = T_cache[c_]
m, cache = self.match_criterion_bin(x, w, params=self.params, cache=cache, op=mt_operator)
no_match_reset = (
match_reset_func is None or
match_reset_func(x, w, c_, params=self.params, cache=cache)
)
if match_reset_method in ["MT~"] and match_reset_func is not None:
no_match_reset = True
else:
no_match_reset = (
match_reset_func is None or
match_reset_func(x, w, c_, params=self.params, cache=cache)
)
if m and no_match_reset:
self.set_weight(c_, self.update(x, w, self.params, cache=cache))
self._set_params(base_params)
return c_
else:
T[c_] = np.nan
if not no_match_reset:
if m and not no_match_reset:
keep_searching = self._match_tracking(cache, epsilon, self.params, match_reset_method)
if not keep_searching:
T[:] = np.nan
Expand Down Expand Up @@ -427,7 +430,7 @@ def post_fit(self, X: np.ndarray):
pass


def fit(self, X: np.ndarray, y: Optional[np.ndarray] = None, match_reset_func: Optional[Callable] = None, max_iter=1, match_reset_method:Literal["MT+", "MT-", "MT0", "MT1", "MT~"] = "MT+", epsilon: float = 0.0):
def fit(self, X: np.ndarray, y: Optional[np.ndarray] = None, match_reset_func: Optional[Callable] = None, max_iter=1, match_reset_method:Literal["MT+", "MT-", "MT0", "MT1", "MT~"] = "MT+", epsilon: float = 0.0, verbose: bool = False):
"""
Fit the model to the data

Expand All @@ -453,7 +456,12 @@ def fit(self, X: np.ndarray, y: Optional[np.ndarray] = None, match_reset_func: O
self.W: list[np.ndarray] = []
self.labels_ = np.zeros((X.shape[0], ), dtype=int)
for _ in range(max_iter):
for i, x in enumerate(X):
if verbose:
from tqdm import tqdm
x_iter = tqdm(enumerate(X), total=int(X.shape[0]))
else:
x_iter = enumerate(X)
for i, x in x_iter:
self.pre_step_fit(X)
c = self.step_fit(x, match_reset_func=match_reset_func, match_reset_method=match_reset_method, epsilon=epsilon)
self.labels_[i] = c
Expand Down
36 changes: 26 additions & 10 deletions artlib/elementary/GaussianART.py
Original file line number Diff line number Diff line change
Expand Up @@ -5,6 +5,7 @@
"""

import numpy as np
from decimal import Decimal
from typing import Optional, Iterable, List
from matplotlib.axes import Axes
from artlib.common.BaseART import BaseART
Expand All @@ -13,20 +14,22 @@

class GaussianART(BaseART):
# implementation of GaussianART
pi2 = np.pi*2
def __init__(self, rho: float, sigma_init: np.ndarray):
def __init__(self, rho: float, sigma_init: np.ndarray, alpha: float = 1e-10):
"""
Parameters:
- rho: vigilance parameter
- sigma_init: initial estimate of the diagonal std
- alpha: used to prevent division by zero errors

"""
params = {
"rho": rho,
"sigma_init": sigma_init,
"alpha": alpha
}
super().__init__(params)


@staticmethod
def validate_params(params: dict):
"""
Expand All @@ -38,7 +41,9 @@ def validate_params(params: dict):
"""
assert "rho" in params
assert "sigma_init" in params
assert 1.0 >= params["rho"] > 0.
assert "alpha" in params
assert 1.0 >= params["rho"] >= 0.
assert params["alpha"] > 0.
assert isinstance(params["rho"], float)
assert isinstance(params["sigma_init"], np.ndarray)

Expand All @@ -57,15 +62,19 @@ def category_choice(self, i: np.ndarray, w: np.ndarray, params: dict) -> tuple[f

"""
mean = w[:self.dim_]
sigma = w[self.dim_:-1]
# sigma = w[self.dim_:2*self.dim]
inv_sig = w[2*self.dim_:3*self.dim_]
sqrt_det_sig = w[-2]
n = w[-1]
sig = np.diag(np.multiply(sigma,sigma))

dist = mean-i
exp_dist_sig_dist = np.exp(-0.5*np.matmul(dist.T, np.matmul(np.linalg.inv(sig), dist)))
exp_dist_sig_dist = np.exp(-0.5 * np.dot(dist, np.multiply(inv_sig, dist)))

cache = {
"exp_dist_sig_dist": exp_dist_sig_dist
}
p_i_cj = exp_dist_sig_dist/np.sqrt((self.pi2**self.dim_)*np.linalg.det(sig))
# ignore the (2*pi)^d term as that is constant
p_i_cj = exp_dist_sig_dist/(params["alpha"]+sqrt_det_sig)
p_cj = n/np.sum(w_[-1] for w_ in self.W)

activation = p_i_cj*p_cj
Expand Down Expand Up @@ -109,14 +118,18 @@ def update(self, i: np.ndarray, w: np.ndarray, params: dict, cache: Optional[dic

"""
mean = w[:self.dim_]
sigma = w[self.dim_:-1]
sigma = w[self.dim_:2*self.dim_]
n = w[-1]

n_new = n+1
mean_new = (1-(1/n_new))*mean + (1/n_new)*i
sigma_new = np.sqrt((1-(1/n_new))*np.multiply(sigma, sigma) + (1/n_new)*((mean_new - i)**2))

return np.concatenate([mean_new, sigma_new, [n_new]])
sigma2 = np.multiply(sigma_new, sigma_new)
inv_sig = 1 / sigma2
det_sig = np.sqrt(np.prod(sigma2))

return np.concatenate([mean_new, sigma_new, inv_sig, [det_sig], [n_new]])


def new_weight(self, i: np.ndarray, params: dict) -> np.ndarray:
Expand All @@ -132,7 +145,10 @@ def new_weight(self, i: np.ndarray, params: dict) -> np.ndarray:
updated cluster weight

"""
return np.concatenate([i, params["sigma_init"], [1.]])
sigma2 = np.multiply(params["sigma_init"], params["sigma_init"])
inv_sig_init = 1 / sigma2
det_sig_init = np.sqrt(np.prod(sigma2))
return np.concatenate([i, params["sigma_init"], inv_sig_init, [det_sig_init], [1.]])

def get_cluster_centers(self) -> List[np.ndarray]:
"""
Expand Down
9 changes: 7 additions & 2 deletions artlib/supervised/SimpleARTMAP.py
Original file line number Diff line number Diff line change
Expand Up @@ -129,7 +129,7 @@ def step_fit(self, x: np.ndarray, c_b: int, match_reset_method: Literal["MT+", "
assert self.map[c_a] == c_b
return c_a

def fit(self, X: np.ndarray, y: np.ndarray, max_iter=1, match_reset_method: Literal["MT+", "MT-", "MT0", "MT1", "MT~"] = "MT+", epsilon: float = 1e-10):
def fit(self, X: np.ndarray, y: np.ndarray, max_iter=1, match_reset_method: Literal["MT+", "MT-", "MT0", "MT1", "MT~"] = "MT+", epsilon: float = 1e-10, verbose: bool = False):
"""
Fit the model to the data

Expand All @@ -155,7 +155,12 @@ def fit(self, X: np.ndarray, y: np.ndarray, max_iter=1, match_reset_method: Lite
self.module_a.labels_ = np.zeros((X.shape[0],), dtype=int)

for _ in range(max_iter):
for i, (x, c_b) in enumerate(zip(X, y)):
if verbose:
from tqdm import tqdm
x_y_iter = tqdm(enumerate(zip(X, y)), total=int(X.shape[0]))
else:
x_y_iter = enumerate(zip(X, y))
for i, (x, c_b) in x_y_iter:
self.module_a.pre_step_fit(X)
c_a = self.step_fit(x, c_b, match_reset_method=match_reset_method, epsilon=epsilon)
self.module_a.labels_[i] = c_a
Expand Down