Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

add fit_gif method #119

Merged
merged 2 commits into from
Oct 29, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
96 changes: 96 additions & 0 deletions artlib/common/BaseART.py
Original file line number Diff line number Diff line change
Expand Up @@ -646,6 +646,102 @@ def partial_fit(
self.labels_[i + j] = c
return self

def fit_gif(
self,
X: np.ndarray,
y: Optional[np.ndarray] = None,
match_reset_func: Optional[Callable] = None,
max_iter=1,
match_tracking: Literal["MT+", "MT-", "MT0", "MT1", "MT~"] = "MT+",
epsilon: float = 0.0,
verbose: bool = False,
ax: Optional[Axes] = None,
filename: Optional[str] = None,
colors: Optional[IndexableOrKeyable] = None,
n_cluster_estimate: int = 20,
fps: int = 5,
**kwargs,
):
"""Fit the model to the data and make a gif of the process.

Parameters
----------
X : np.ndarray
The dataset.
y : np.ndarray, optional
Not used. For compatibility.
match_reset_func : callable, optional
A callable that influences cluster creation.
max_iter : int, default=1
Number of iterations to fit the model on the same dataset.
match_tracking : {"MT+", "MT-", "MT0", "MT1", "MT~"}, default="MT+"
Method for resetting match criterion.
epsilon : float, default=0.0
Epsilon value used for adjusting match criterion.
verbose : bool, default=False
If True, displays progress of the fitting process.
ax : matplotlib.axes.Axes, optional
Figure axes.
colors : IndexableOrKeyable, optional
Colors to use for each cluster.
n_cluster_estimate : int, default=20
estimate of number of clusters. Used for coloring plot.
fps : int, default=5
gif frames per second
**kwargs : dict
see :func: `artlib.common.BaseART.visualize`

"""
import matplotlib.pyplot as plt
from matplotlib.animation import PillowWriter

if ax is None:
fig, ax = plt.subplots()
ax.set_xlim(-0.1, 1.1)
ax.set_ylim(-0.1, 1.1)
if filename is None:
filename = f"fit_gif_{self.__class__.__name__}.gif"
if colors is None:
from matplotlib.pyplot import cm

colors = cm.rainbow(np.linspace(0, 1, n_cluster_estimate))
black = np.array([[0, 0, 0, 1]]) # RGBA for black
colors = np.vstack((colors, black)) # Add black at the end

self.validate_data(X)
self.check_dimensions(X)
self.is_fitted_ = True

self.W = []
self.labels_ = -np.ones((X.shape[0],), dtype=int)

writer = PillowWriter(fps=fps)
with writer.saving(fig, filename, dpi=80):
for _ in range(max_iter):
if verbose:
from tqdm import tqdm

x_iter = tqdm(enumerate(X), total=int(X.shape[0]))
else:
x_iter = enumerate(X)
for i, x in x_iter:
self.pre_step_fit(X)
c = self.step_fit(
x,
match_reset_func=match_reset_func,
match_tracking=match_tracking,
epsilon=epsilon,
)
self.labels_[i] = c
self.post_step_fit(X)
ax.clear()
ax.set_xlim(-0.1, 1.1)
ax.set_ylim(-0.1, 1.1)
self.visualize(X, self.labels_, ax, colors=colors, **kwargs)
writer.grab_frame()
self.post_fit(X)
return self

def predict(self, X: np.ndarray) -> np.ndarray:
"""Predict labels for the data.

Expand Down
33 changes: 33 additions & 0 deletions examples/demo_make_gif.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,33 @@
from sklearn.datasets import make_blobs
import matplotlib.pyplot as plt

from artlib import FuzzyART


def cluster_blobs():
data, target = make_blobs(
n_samples=150,
centers=3,
cluster_std=0.50,
random_state=0,
shuffle=False,
)
print("Data has shape:", data.shape)

params = {"rho": 0.5, "alpha": 0.0, "beta": 1.0}
cls = FuzzyART(**params)

X = cls.prepare_data(data)
print("Prepared data has shape:", X.shape)

cls = cls.fit_gif(X, filename="fit_gif_FuzzyART.gif", n_cluster_estimate=3)
y = cls.labels_

print(f"{cls.n_clusters} clusters found")

cls.visualize(X, y)
plt.show()


if __name__ == "__main__":
cluster_blobs()
Loading