Skip to content

Commit

Permalink
Merge pull request #34 from Efficient-Large-Model/vila1.5
Browse files Browse the repository at this point in the history
vila1.5 release
  • Loading branch information
Efficient-Large-Language-Model authored May 3, 2024
2 parents eaadb1e + 6b941da commit 7261d39
Show file tree
Hide file tree
Showing 257 changed files with 22,376 additions and 2,607 deletions.
152 changes: 98 additions & 54 deletions README.md

Large diffs are not rendered by default.

121 changes: 88 additions & 33 deletions data_prepare/README.md
Original file line number Diff line number Diff line change
@@ -1,41 +1,34 @@

# Data Preparation for Training VILA

To train VILA, we used the following datasets:

| Stage | Datasets |
| ----------------------- | --------------------------- |
| 1. Initialize projector | CC3M |
| 2. Pre-training | MMC4-core, COYO-700M subset |
| 3. SFT | LLaVA-1.5, VFLAN, ShareGPT, TextFLAN |
| Stage | Datasets |
| ----------------------- | -------------------------------------------------------------------------------- |
| 1. Initialize projector | CC3M |
| 2. Pre-training | MMC4-core, COYO-700M, ShreGPT4V_pretrain |
| 3. SFT | LLaVA-Next mixture, VFLAN, WIT, GSM8K-ScRel-SFT, Sherlock, ScienceQA, Shot2story, Video_ChatGPT, Youcook2, Vatex, ShareGPT_Video |

### LLaVa-CC3M-Pretrain
We use [LLaVA-CC3M-Pretrain-595K](https://huggingface.co/datasets/liuhaotian/LLaVA-CC3M-Pretrain-595K/blob/main/chat.json) to train the visual language projector

```bash
mkdir -p ./playground/data/LLaVA-Pretrain
cd ./playground/data/LLaVA-Pretrain

# download chat.json and process
huggingface-cli download liuhaotian/LLaVA-CC3M-Pretrain-595K chat.json --repo-type dataset --local-dir . --local-dir-use-symlinks False
mv chat.json LLaVA-CC3M-Pretrain-595K.json

# download images.zip and process
huggingface-cli download liuhaotian/LLaVA-CC3M-Pretrain-595K images.zip --repo-type dataset --local-dir . --local-dir-use-symlinks False
unzip images.zip -d images
```
### LLaVa-CC3M-Pretrain

We use [LLaVA-CC3M-Pretrain-595K](https://huggingface.co/datasets/liuhaotian/LLaVA-CC3M-Pretrain-595K/blob/main/chat.json) to train the visual language projector

### MMC4-Core Dataset
Due to the limit of compute, we pre-train VILA on the smaller core set of MMC4 instead of the full set.

1. Firstly, download the annotations of the MMC4-core dataset here: https://github.com/allenai/mmc4. We used the non-fewer-face split, and you may need to request the access [here](https://forms.gle/VYtcNY8aYaUANK9f8).
Due to the limit of compute, we pre-train VILA on the smaller core set of MMC4 instead of the full set.

1. Firstly, download the annotations of the MMC4-core dataset here: https://github.com/allenai/mmc4. We used the non-fewer-face split, and you may need to request the access [here](https://forms.gle/VYtcNY8aYaUANK9f8).

2. Now modify the input and output path in `mmc4_downloader.py` and run the following script to scrawl the MMC4 images:

```bash
cd mmc4
python mmc4_downloader.py
```
Note that due to the expiration of image urls, you may end up getting a subset of the entire corpus.

Note that due to the expiration of image urls, you may end up getting a subset of the entire corpus.

The scrawling may take a long time. Optionally, you can also shard the workload over multiple jobs/machines concurrently to speed up the process:

Expand All @@ -59,39 +52,43 @@ python mmc4_merger.py
```

### COYO-700M Dataset

1. Download the metadata of COYO-700M:

```bash
huggingface-cli download kakaobrain/coyo-700m --repo-type dataset --local-dir coyo-700m --local-dir-use-symlinks False
```

2. Scrawl the COYO images. Note that here we only keep a 20% subset in each shard with the highest CLIP similarity, to balance compute budget and data quality.
2. Scrawl the COYO images. Note that here we only keep a 20% subset in each shard with the highest CLIP similarity, to balance compute budget and data quality.

There are totally 128 shards of annotations. Now download each one with the script:

```bash
cd coyo
for SHARD in {0..127}; do
python coyo_downloader.py $SHARD
python coyo_downloader.py $SHARD
done
```

3. Split downloaded COYO data into multiple shards:

```bash
python coyo_splitter.py
```

### LLaVA-1.5 Instruction Data
### LLaVA-1.5 Instruction Data

We use this [file](https://huggingface.co/datasets/liuhaotian/LLaVA-Instruct-150K/blob/main/llava_v1_5_mix665k.json) in our experiments. Please download this dataset from LLaVA authors.

```bash
mkdir -p ./playground/data/LLaVA-Pretrain
cd ./playground/data/LLaVA-Pretrain
huggingface-cli download liuhaotian/LLaVA-Instruct-150K llava_v1_5_mix665k.json --repo-type dataset
```


### VFlan dataset
1. Download FLAN datasets:

#### TextFLAN

1. Download FLAN datasets:

```bash
huggingface-cli download Open-Orca/FLAN --repo-type dataset --local-dir FLAN --local-dir-use-symlinks False
Expand All @@ -104,7 +101,8 @@ cd sft
python preprocess_flan.py
```

### M3IT Dataset
#### M3IT Dataset

1. Download M3IT datasets:

```bash
Expand All @@ -123,11 +121,68 @@ python preprocess_m3it.py
python split_vflan.py
```

### ShareGPT4v
### LLaVA-Next mixture

You can follow this [page](https://github.com/OpenGVLab/InternVL/tree/main/internvl_chat#prepare-training-datasets) to prepare the data mixture that is proposed by LLaVA-Next.

### Shot2story

Please follow this [page](https://github.com/bytedance/Shot2Story/blob/master/DATA.md) to download the videos. The JSON file can be downloaded with

```bash
huggingface-cli download mit-han-lab/vila-dataset shot2story_shotonly.json
--repo-type dataset --local-dir shot2story --local-dir-use-symlinks False
```


The ShareGPT data can be obtained [mit-han-lab/ShareGPT4V](https://huggingface.co/datasets/mit-han-lab/ShareGPT4V).
* Note the original ShareGPT4v dataset contains some samples with file ids (sa_XXXX) and repeative response. We filter those bad examples and reduced the samples from 100K -> 96K (for caption) and 1.2m -> 1.17m (for pretraining). Then we re-combine them into a single file.
### Video_ChatGPT

You can follow this [page](https://github.com/mbzuai-oryx/Video-ChatGPT/blob/main/README.md#video-instruction-dataset-open_file_folder) to prepare Video_ChatGPT dataset.

### Youcook2

Please follow this [page](http://youcook2.eecs.umich.edu/) to download the videos. The JSON file can be downloaded with

```bash
huggingface-cli download mit-han-lab/vila-dataset youcook_filtered_v3.json --repo-type dataset --local-dir youcook2 --local-dir-use-symlinks False
```

### Vatex

Please follow this [page](https://eric-xw.github.io/vatex-website/download.html) to download the videos. The JSON file can be downloaded with

```bash
huggingface-cli download mit-han-lab/vila-dataset vatex_filtered_v3.json --repo-type dataset --local-dir vatex --local-dir-use-symlinks False
```

### ShareGPT_Video

You can follow this [page](https://huggingface.co/datasets/ShareGPTVideo/train_video_and_instruction) to prepare ShareGPT_Video dataset.

### WIT

The original WIT data can be obtained [google-research-datasets/wit](https://github.com/google-research-datasets/wit/tree/main). \* We subsample ~538K english data from the original WIT dataset and curate a llava conversation format JSON file.

```bash
huggingface-cli download mit-han-lab/ShareGPT4V --repo-type dataset --local-dir coyo-700m --local-dir-use-symlinks False
huggingface-cli download mit-han-lab/vila-dataset wit_processed_538k.json --repo-type dataset --local-dir WIT --local-dir-use-symlinks False
```

### GSM8K-ScRel-SFT

We add some math data [gsm8k-ScRel](https://github.com/OFA-Sys/gsm8k-ScRel/blob/main/data/train_use.jsonl) to our SFT stage.

### Sherlock

The image files of Sherlock can be obtained from [VisualGenome](https://visualgenome.org/api/v0/api_home.html) and [VCR](https://visualcommonsense.com/download/) separately. The llava conversation format JSON file can be downloaded with

```bash
huggingface-cli download mit-han-lab/vila-dataset sherlock_317k.json --repo-type dataset --local-dir sherlock --local-dir-use-symlinks False
```

### ScienceQA

We use the train split of ScienceQA. The image data of the train split can be obtained from [ScienceQA](https://huggingface.co/datasets/derek-thomas/ScienceQA) or their [huggingface repo](https://huggingface.co/datasets/derek-thomas/ScienceQA). The llava conversation format JSON file can be downloaded with

```bash
huggingface-cli download mit-han-lab/vila-dataset scienceqa_train_12k.json --repo-type dataset --local-dir scienceqa --local-dir-use-symlinks False
```
Empty file modified demo_images/av.png
100755 → 100644
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
121 changes: 121 additions & 0 deletions demo_trt_llm/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,121 @@
# Run VILA demo on x86_64 machine

## Build TensorRT-LLM
The first step to build TensorRT-LLM is to fetch the sources:
```bash
# TensorRT-LLM uses git-lfs, which needs to be installed in advance.
apt-get update && apt-get -y install git git-lfs
git lfs install

git clone https://github.com/NVIDIA/TensorRT-LLM.git
cd TensorRT-LLM
git checkout 66ef1df492f7bc9c8eeb01d7e14db01838e3f0bd
git submodule update --init --recursive
git lfs pull
```
Create a TensorRT-LLM Docker image and approximate disk space required to build the image is 63 GB:
```bash
make -C docker release_build
```

After launching the docker image, please install the following dependency:
```bash
pip install git+https://github.com/bfshi/scaling_on_scales.git
pip install git+https://github.com/huggingface/[email protected]
```
## Build TensorRT engine of VILA model

### For Vila 1.0:

Please refer to the [documentation from TRT-LLM](https://github.com/NVIDIA/TensorRT-LLM/tree/main/examples/multimodal#llava-and-vila) to deploy the model.

### For Vila 1.5:

1. Setup
```bash
# clone vila
git clone https://github.com/Efficient-Large-Model/VILA.git

# enter the demo folder
cd <VILA-repo>/demo_trt_llm

# apply patch to /usr/local/lib/python3.10/dist-packages/tensorrt_llm/models/llama/convert.py for vila1.5
sh apply_patch.sh

# download vila checkpoint
export MODEL_NAME="vila1.5-2.7b"
git clone https://huggingface.co/Efficient-Large-Model/${MODEL_NAME} tmp/hf_models/${MODEL_NAME}
```

2. TensorRT Engine building using `FP16` and inference

Build TensorRT engine for LLaMA part of VILA from HF checkpoint using `FP16`:
```bash
python convert_checkpoint.py \
--model_dir tmp/hf_models/${MODEL_NAME} \
--output_dir tmp/trt_models/${MODEL_NAME}/fp16/1-gpu \
--dtype float16

trtllm-build \
--checkpoint_dir tmp/trt_models/${MODEL_NAME}/fp16/1-gpu \
--output_dir trt_engines/${MODEL_NAME}/fp16/1-gpu \
--gemm_plugin float16 \
--use_fused_mlp \
--max_batch_size 1 \
--max_input_len 2048 \
--max_output_len 512 \
--max_multimodal_len 4096
```

3. Build TensorRT engines for visual components

```bash
python build_visual_engine.py --model_path tmp/hf_models/${MODEL_NAME} --model_type vila --vila_path ../
```

4. Run the example script
```bash
python run.py \
--max_new_tokens 100 \
--hf_model_dir tmp/hf_models/${MODEL_NAME} \
--visual_engine_dir visual_engines/${MODEL_NAME} \
--llm_engine_dir trt_engines/${MODEL_NAME}/fp16/1-gpu \
--image_file=av.png,https://storage.googleapis.com/sfr-vision-language-research/LAVIS/assets/merlion.png \
--input_text="<image>\n<image>\n Please elaborate what you see in the images?" \
--run_profiling

# example output:
...
[Q] <image>\n<image>\n Please elaborate what you see in the images?
[04/30/2024-21:32:11] [TRT-LLM] [I]
[A] ['The first image shows a busy street scene with a car driving through a crosswalk. There are several people walking on the sidewalk, and a cyclist is also visible. The second image captures a beautiful sunset with the iconic Merlion statue spouting water into the water body in the foreground. The Merlion statue is a famous landmark in Singapore, and the water spout is a popular feature of the statue.']
...
```

5. (Optional) One can also use VILA with other quantization options, like SmoothQuant and INT4 AWQ, that are supported by LLaMA. Instructions in LLaMA README to enable SmoothQuant and INT4 AWQ can be re-used to generate quantized TRT engines for LLM component of VILA.
```bash
python quantization/quantize.py \
--model_dir tmp/hf_models/${MODEL_NAME} \
--output_dir tmp/trt_models/${MODEL_NAME}/int4_awq/1-gpu \
--dtype float16 \
--qformat int4_awq \
--calib_size 32

trtllm-build \
--checkpoint_dir tmp/trt_models/${MODEL_NAME}/int4_awq/1-gpu \
--output_dir trt_engines/${MODEL_NAME}/int4_awq/1-gpu \
--gemm_plugin float16 \
--max_batch_size 1 \
--max_input_len 2048 \
--max_output_len 512 \
--max_multimodal_len 4096

python run.py \
--max_new_tokens 100 \
--hf_model_dir tmp/hf_models/${MODEL_NAME} \
--visual_engine_dir visual_engines/${MODEL_NAME} \
--llm_engine_dir trt_engines/${MODEL_NAME}/int4_awq/1-gpu \
--image_file=av.png,https://storage.googleapis.com/sfr-vision-language-research/LAVIS/assets/merlion.png \
--input_text="<image>\n<image>\n Please elaborate what you see in the images?" \
--run_profiling
```
14 changes: 14 additions & 0 deletions demo_trt_llm/apply_patch.sh
Original file line number Diff line number Diff line change
@@ -0,0 +1,14 @@
#!/bin/bash

# Define the file to be modified
FILE_PATH="/usr/local/lib/python3.10/dist-packages/tensorrt_llm/models/llama/convert.py"

# Backup the original file before modification
cp $FILE_PATH "${FILE_PATH}.bak"

# Replace the strings
# sed -i ':a;N;$!ba;s|hf_config = LlavaConfig.from_pretrained(hf_model).text_config|hf_config = LlavaConfig.from_pretrained(hf_model).text_config\n if hf_config.model_type == "llava_llama":\n hf_config.llm_cfg["architecture"] = hf_config.llm_cfg["architectures"]\n hf_config.llm_cfg["dtype"] = hf_config.llm_cfg["torch_dtype"]\n hf_config = PretrainedConfig.from_dict(hf_config.llm_cfg)|g' $FILE_PATH
sed -i ':a;N;$!ba;s|if "vila" in model_dir:\n sys.path.append(model_dir + "/../VILA")\n from llava.model import LlavaConfig, LlavaLlamaForCausalLM\n AutoConfig.register("llava_llama", LlavaConfig)\n AutoModelForCausalLM.register(LlavaConfig, LlavaLlamaForCausalLM)|# if "vila" in model_dir:\n# sys.path.append(model_dir + "/../VILA")\n# from llava.model import LlavaConfig, LlavaLlamaForCausalLM\n# AutoConfig.register("llava_llama", LlavaConfig)\n# AutoModelForCausalLM.register(LlavaConfig, LlavaLlamaForCausalLM)|g' $FILE_PATH

# Inform the user
echo "Replacement done. Original file backed up as ${FILE_PATH}.bak"
Binary file added demo_trt_llm/av.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading

0 comments on commit 7261d39

Please sign in to comment.