-
Notifications
You must be signed in to change notification settings - Fork 2.5k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Shanmugam Ramasamy
committed
Nov 13, 2024
1 parent
7c0a38d
commit 07674de
Showing
5 changed files
with
228 additions
and
30 deletions.
There are no files selected for viewing
36 changes: 36 additions & 0 deletions
36
examples/multimodal_autoregressive/conf/megatron_mm_ar_inference_image_generation.yaml
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,36 @@ | ||
inference: | ||
greedy: True # Whether or not to use sampling ; use greedy decoding otherwise | ||
top_k: 0 # The number of highest probability vocabulary tokens to keep for top-k-filtering. | ||
top_p: 0.9 # If set to float < 1, only the most probable tokens with probabilities that add up to top_p or higher are kept for generation. | ||
temperature: 1.0 # sampling temperature | ||
add_BOS: True # add the bos token at the begining of the prompt | ||
tokens_to_generate: 30 # The minimum length of the sequence to be generated. | ||
all_probs: False # whether return the log prob for all the tokens in vocab | ||
repetition_penalty: 1.2 # The parameter for repetition penalty. 1.0 means no penalty. | ||
min_tokens_to_generate: 0 # The minimum length of the sequence to be generated. | ||
compute_logprob: False # a flag used to compute logprob of all the input text, a very special case of running inference, default False | ||
end_strings: ["<|extra_204|>"] # generation will stop when one of these tokens is generated | ||
|
||
trainer: | ||
devices: 1 | ||
num_nodes: 1 | ||
accelerator: gpu | ||
logger: False # logger provided by exp_manager | ||
precision: bf16 # 16, 32, or bf16 | ||
use_distributed_sampler: False | ||
|
||
tensor_model_parallel_size: -1 | ||
pipeline_model_parallel_size: -1 | ||
pipeline_model_parallel_split_rank: -1 # used for encoder and decoder model (0 for others) | ||
megatron_amp_O2: False # Enable O2-level automatic mixed precision to save memory | ||
image_encoder: Cosmos-Tokenizer-DV8x16x16 | ||
gpt_model_file: null # GPT nemo file path | ||
checkpoint_dir: null # checkpoint file dir. This is used to load the PTL checkpoint generated during the GPT training | ||
checkpoint_name: null # PTL checkpoint file name, only used for PTL checkpoint loading | ||
hparams_file: null # model configuration file, only used for PTL checkpoint loading | ||
captions: # prompts for GPT inference | ||
- "a drawing of a green pokemon with red eyes" | ||
- "a red pokemon with green eyes" | ||
- "a cartoon fish with a big smile" | ||
images_output_path: null # Path to the directory to store the output images | ||
|
2 changes: 1 addition & 1 deletion
2
...essive/conf/megatron_mm_ar_inference.yaml → ...mm_ar_inference_vision_understanding.yaml
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
184 changes: 184 additions & 0 deletions
184
examples/multimodal_autoregressive/megatron_mm_autoregressive_eval_image_generation.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,184 @@ | ||
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
import re | ||
import os | ||
import math | ||
import datetime | ||
import torch | ||
import torchvision | ||
from pytorch_lightning.trainer.trainer import Trainer | ||
|
||
from nemo.collections.common.video_tokenizers.cosmos_tokenizer import CausalVideoTokenizer | ||
from nemo.collections.nlp.modules.common.transformer.text_generation import LengthParam, SamplingParam | ||
from nemo.collections.nlp.parts.nlp_overrides import CustomProgressBar, NLPDDPStrategy | ||
from nemo.core.config import hydra_runner | ||
from examples.nlp.language_modeling.megatron_gpt_eval import load_model_from_config,round_to_mult, remove_padded_prompts | ||
|
||
""" | ||
This is the script to run multimodal autoregresssive text generation. | ||
Make sure you install tiktoken==0.6.0 | ||
Usage: | ||
Assume the model has TP=1, PP=1 in the following use cases. | ||
a. run greedy inference from a nemo file: | ||
python megatron_mm_autoregresssive_eval.py \ | ||
gpt_model_file=PATH_TO_MODEL \ | ||
inference.greedy=True \ | ||
inference.add_BOS=True \ | ||
trainer.devices=1 \ | ||
trainer.num_nodes=1 \ | ||
tensor_model_parallel_size=-1 \ | ||
pipeline_model_parallel_size=-1 \ | ||
captions=[caption1,caption2] | ||
b. run greedy inference from a PTL checkpoint file: | ||
python megatron_mm_autoregresssive_eval.py \ | ||
checkpoint_dir=PATH_TO_CHECKPOINT_FILE \ | ||
checkpoint_name=CHECKPOINT_FILE_NAME \ | ||
hparams_file=HPARAMS_FILE \ | ||
inference.greedy=True \ | ||
inference.add_BOS=True \ | ||
trainer.devices=1 \ | ||
trainer.num_nodes=1 \ | ||
tensor_model_parallel_size=-1 \ | ||
pipeline_model_parallel_size=-1 \ | ||
captions=[caption1,caption2] | ||
c. run top_p inference from a nemo file: | ||
python megatron_mm_autoregresssive_eval.py \ | ||
gpt_model_file=PATH_TO_MODEL \ | ||
inference.greedy=False \ | ||
inference.top_k=0 \ | ||
inference.top_p=0.9 \ | ||
inference.repetition_penalty=1.2 \ | ||
inference.add_BOS=True \ | ||
trainer.devices=1 \ | ||
trainer.num_nodes=1 \ | ||
tensor_model_parallel_size=-1 \ | ||
pipeline_model_parallel_size=-1 \ | ||
captions=[caption1,caption2] | ||
d. If you don't need to generate tokens and need model to compute logprobs: | ||
python megatron_mm_autoregresssive_eval.py \ | ||
gpt_model_file=PATH_TO_MODEL \ | ||
inference.compute_logprob=True \ | ||
trainer.devices=1 \ | ||
trainer.num_nodes=1 \ | ||
tensor_model_parallel_size=-1 \ | ||
pipeline_model_parallel_size=-1 \ | ||
captions=[caption1,caption2] | ||
""" | ||
|
||
|
||
def to_img(tokens_string, image_tokenizer): | ||
visual_token_pattern = r"<\|visual token (\d+)\|>" | ||
visual_tokens = [int(match) for match in re.findall(visual_token_pattern, tokens_string)] | ||
# We assume image is square. So if 64 tokensa are present, we reshape it to 8x8 and then pass it to decoder | ||
dim = int(math.sqrt(len(visual_tokens))) | ||
visual_tokens_tensor = torch.tensor(visual_tokens[:dim*dim]) | ||
# Decoder accepts input of the following format [bs, channel_dim, h, w] | ||
visual_tokens_tensor_reshaped = visual_tokens_tensor.reshape((dim, dim)).unsqueeze(0).unsqueeze(0) | ||
visual_tokens_final = visual_tokens_tensor_reshaped.to(image_tokenizer._device) | ||
img = image_tokenizer.decode(visual_tokens_final) | ||
|
||
# Convert from bf16 to 16 and to format [channel_dim, h, w] | ||
image = torchvision.transforms.functional.to_pil_image(img.float().squeeze()) | ||
return image | ||
|
||
|
||
def load_prompts(cfg): | ||
prompts = [] | ||
for caption in cfg.captions: | ||
prompt = f'You are a helpful assistant. Draw a picture for the caption given by the user. USER: {caption}. ASSISTANT: ' | ||
prompts.append(prompt) | ||
return prompts | ||
|
||
if not torch.cuda.is_available(): | ||
raise EnvironmentError("GPU is needed for the inference") | ||
|
||
@hydra_runner(config_path="conf", config_name="megatron_mm_ar_inference_image_generation") | ||
def main(cfg) -> None: | ||
|
||
callbacks = [] | ||
# enable_progress_bar is True by default. If cfg.trainer.enable_progress_bar=False, CustomProgressBar is not appended to callbacks | ||
if 'enable_progress_bar' not in cfg.trainer or cfg.trainer.enable_progress_bar: | ||
callbacks.append(CustomProgressBar()) | ||
# trainer required for restoring model parallel models | ||
trainer = Trainer( | ||
strategy=NLPDDPStrategy(timeout=datetime.timedelta(seconds=18000)), | ||
**cfg.trainer, | ||
callbacks=callbacks, | ||
) | ||
|
||
image_tokenizer = CausalVideoTokenizer.from_pretrained( | ||
tokenizer_type=cfg.image_encoder, | ||
load_encoder=False, | ||
load_decoder=True, | ||
load_full_model=False | ||
) | ||
|
||
model = load_model_from_config(trainer, cfg) | ||
model.freeze() | ||
|
||
# Have to turn off activations_checkpoint_method for inference | ||
try: | ||
model.model.language_model.encoder.activations_checkpoint_method = None | ||
except AttributeError: | ||
Check notice Code scanning / CodeQL Empty except Note
'except' clause does nothing but pass and there is no explanatory comment.
|
||
pass | ||
|
||
length_params: LengthParam = { | ||
"max_length": cfg.inference.tokens_to_generate, | ||
"min_length": cfg.inference.min_tokens_to_generate, | ||
} | ||
|
||
sampling_params: SamplingParam = { | ||
"use_greedy": cfg.inference.greedy, | ||
"temperature": cfg.inference.temperature, | ||
"top_k": cfg.inference.top_k, | ||
"top_p": cfg.inference.top_p, | ||
"repetition_penalty": cfg.inference.repetition_penalty, | ||
"add_BOS": cfg.inference.add_BOS, | ||
"all_probs": cfg.inference.all_probs, | ||
"compute_logprob": cfg.inference.compute_logprob, | ||
"end_strings": cfg.inference.end_strings, | ||
} | ||
|
||
prompts = [] | ||
with torch.no_grad(): | ||
prompts = load_prompts(cfg) | ||
|
||
fp8_enabled = hasattr(model.cfg, "fp8") and (model.cfg.fp8 == True) | ||
if fp8_enabled and len(prompts) > 0: | ||
padded_len = round_to_mult(len(prompts), 8) | ||
nb_paddings = padded_len - len(prompts) | ||
if nb_paddings > 0: | ||
nb_paddings += [''] * nb_paddings | ||
|
||
# First method of running text generation, call model.generate method | ||
response = model.generate(inputs=prompts, length_params=length_params, sampling_params=sampling_params) | ||
|
||
if fp8_enabled: | ||
response = remove_padded_prompts(response, nb_paddings) | ||
|
||
output_tokens_strings = response['sentences'] | ||
for idx, output_token_string in enumerate(output_tokens_strings): | ||
image = to_img(output_token_string, image_tokenizer) | ||
image.save(os.path.join(cfg.images_output_path, f'{idx}.jpg')) | ||
|
||
print(f'Images saved to {cfg.images_output_path}') | ||
|
||
if __name__ == '__main__': | ||
main() # noqa pylint: disable=no-value-for-parameter |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters