Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Describe how to check for broken links #1719

Merged

Conversation

mikemckiernan
Copy link
Member

This is one way to check for broken links,
but I'm happy to adopt something that is
better.

This is one way to check for broken links,
but I'm happy to adopt something that is
better.
@mikemckiernan
Copy link
Member Author

Let's review and merge after #1711. Several broken links are resolved in that PR.

@nvidia-merlin-bot
Copy link
Contributor

Click to view CI Results
GitHub pull request #1719 of commit 0f3608c168e39aa4933c856d12dadc4d3f6016a8, no merge conflicts.
Running as SYSTEM
Setting status of 0f3608c168e39aa4933c856d12dadc4d3f6016a8 to PENDING with url http://merlin-infra1.nvidia.com:8080/job/nvtabular_tests/4908/ and message: 'Build started for merge commit.'
Using context: Jenkins Unit Test Run
Building on master in workspace /var/jenkins_home/workspace/nvtabular_tests
using credential nvidia-merlin-bot
Cloning the remote Git repository
Cloning repository https://github.com/NVIDIA-Merlin/NVTabular.git
 > git init /var/jenkins_home/workspace/nvtabular_tests/nvtabular # timeout=10
Fetching upstream changes from https://github.com/NVIDIA-Merlin/NVTabular.git
 > git --version # timeout=10
using GIT_ASKPASS to set credentials This is the bot credentials for our CI/CD
 > git fetch --tags --force --progress -- https://github.com/NVIDIA-Merlin/NVTabular.git +refs/heads/*:refs/remotes/origin/* # timeout=10
 > git config remote.origin.url https://github.com/NVIDIA-Merlin/NVTabular.git # timeout=10
 > git config --add remote.origin.fetch +refs/heads/*:refs/remotes/origin/* # timeout=10
 > git config remote.origin.url https://github.com/NVIDIA-Merlin/NVTabular.git # timeout=10
Fetching upstream changes from https://github.com/NVIDIA-Merlin/NVTabular.git
using GIT_ASKPASS to set credentials This is the bot credentials for our CI/CD
 > git fetch --tags --force --progress -- https://github.com/NVIDIA-Merlin/NVTabular.git +refs/pull/1719/*:refs/remotes/origin/pr/1719/* # timeout=10
 > git rev-parse 0f3608c168e39aa4933c856d12dadc4d3f6016a8^{commit} # timeout=10
Checking out Revision 0f3608c168e39aa4933c856d12dadc4d3f6016a8 (detached)
 > git config core.sparsecheckout # timeout=10
 > git checkout -f 0f3608c168e39aa4933c856d12dadc4d3f6016a8 # timeout=10
Commit message: "Describe how to check for broken links"
 > git rev-list --no-walk 78db85db82def8a1a3ef4a72ece337fd5ed2422d # timeout=10
First time build. Skipping changelog.
[nvtabular_tests] $ /bin/bash /tmp/jenkins749166207764677682.sh
GLOB sdist-make: /var/jenkins_home/workspace/nvtabular_tests/nvtabular/setup.py
test-gpu create: /var/jenkins_home/workspace/nvtabular_tests/nvtabular/.tox/test-gpu
test-gpu installdeps: pytest, pytest-cov
WARNING: Discarding $PYTHONPATH from environment, to override specify PYTHONPATH in 'passenv' in your configuration.
test-gpu inst: /var/jenkins_home/workspace/nvtabular_tests/nvtabular/.tox/.tmp/package/1/nvtabular-1.6.0+12.g0f3608c1.zip
WARNING: Discarding $PYTHONPATH from environment, to override specify PYTHONPATH in 'passenv' in your configuration.
test-gpu installed: absl-py==1.2.0,aiohttp==3.8.1,aiosignal==1.2.0,alabaster==0.7.12,alembic==1.8.1,anyio==3.6.1,argon2-cffi==21.3.0,argon2-cffi-bindings==21.2.0,astroid==2.5.6,asttokens==2.0.8,astunparse==1.6.3,asv==0.5.1,asvdb==0.4.2,async-timeout==4.0.2,attrs==22.1.0,autopage==0.5.1,awscli==1.27.18,Babel==2.10.3,backcall==0.2.0,beautifulsoup4==4.11.1,betterproto==1.2.5,black==22.6.0,bleach==5.0.1,boto3==1.24.75,botocore==1.29.18,Brotli==1.0.9,cachetools==5.2.0,certifi==2019.11.28,cffi==1.15.1,chardet==3.0.4,charset-normalizer==2.1.1,clang==5.0,click==8.1.3,cliff==4.1.0,cloudpickle==2.2.0,cmaes==0.9.0,cmake==3.24.1.1,cmd2==2.4.2,colorama==0.4.4,colorlog==6.7.0,contourpy==1.0.5,coverage==6.5.0,cuda-python==11.7.1,cupy-cuda117==10.6.0,cycler==0.11.0,Cython==0.29.32,dask==2022.1.1,dbus-python==1.2.16,debugpy==1.6.3,decorator==5.1.1,defusedxml==0.7.1,dill==0.3.5.1,distlib==0.3.6,distributed==2022.5.1,distro==1.7.0,dm-tree==0.1.6,docker-pycreds==0.4.0,docutils==0.16,emoji==1.7.0,entrypoints==0.4,execnet==1.9.0,executing==1.0.0,faiss==1.7.2,faiss-gpu==1.7.2,fastai==2.7.9,fastapi==0.85.0,fastavro==1.6.1,fastcore==1.5.27,fastdownload==0.0.7,fastjsonschema==2.16.1,fastprogress==1.0.3,fastrlock==0.8,feast==0.19.4,fiddle==0.2.2,filelock==3.8.0,flatbuffers==1.12,fonttools==4.37.3,frozenlist==1.3.1,fsspec==2022.5.0,gast==0.4.0,gevent==21.12.0,geventhttpclient==2.0.2,gitdb==4.0.9,GitPython==3.1.27,google==3.0.0,google-api-core==2.10.1,google-auth==2.11.1,google-auth-oauthlib==0.4.6,google-pasta==0.2.0,googleapis-common-protos==1.52.0,graphviz==0.20.1,greenlet==1.1.3,grpcio==1.41.0,grpcio-channelz==1.49.0,grpcio-reflection==1.48.1,grpclib==0.4.3,h11==0.13.0,h2==4.1.0,h5py==3.7.0,HeapDict==1.0.1,horovod==0.26.1,hpack==4.0.0,httptools==0.5.0,hugectr2onnx==0.0.0,huggingface-hub==0.9.1,hyperframe==6.0.1,idna==2.8,imagesize==1.4.1,implicit==0.6.1,importlib-metadata==4.12.0,importlib-resources==5.9.0,iniconfig==1.1.1,ipykernel==6.15.3,ipython==8.5.0,ipython-genutils==0.2.0,ipywidgets==7.7.0,jedi==0.18.1,Jinja2==3.1.2,jmespath==1.0.1,joblib==1.2.0,json5==0.9.10,jsonschema==4.16.0,jupyter-cache==0.4.3,jupyter-core==4.11.1,jupyter-server==1.18.1,jupyter-server-mathjax==0.2.5,jupyter-sphinx==0.3.2,jupyter_client==7.3.5,jupyterlab==3.4.7,jupyterlab-pygments==0.2.2,jupyterlab-widgets==1.1.0,jupyterlab_server==2.15.1,keras==2.9.0,Keras-Preprocessing==1.1.2,kiwisolver==1.4.4,lazy-object-proxy==1.8.0,libclang==14.0.6,libcst==0.4.7,lightfm==1.16,lightgbm==3.3.2,linkify-it-py==1.0.3,llvmlite==0.39.1,locket==1.0.0,lxml==4.9.1,Mako==1.2.4,Markdown==3.4.1,markdown-it-py==1.1.0,MarkupSafe==2.1.1,matplotlib==3.6.0,matplotlib-inline==0.1.6,mdit-py-plugins==0.2.8,merlin-core==0.6.0+1.g5926fcf,merlin-dataloader==0.0.3,merlin-models==0.7.0+11.g280956aa4,merlin-systems==0.5.0+4.g15074ad,mistune==2.0.4,mmh3==3.0.0,mpi4py==3.1.3,msgpack==1.0.4,multidict==6.0.2,mypy-extensions==0.4.3,myst-nb==0.13.2,myst-parser==0.15.2,natsort==8.1.0,nbclassic==0.4.3,nbclient==0.6.8,nbconvert==7.0.0,nbdime==3.1.1,nbformat==5.5.0,nest-asyncio==1.5.5,ninja==1.10.2.3,notebook==6.4.12,notebook-shim==0.1.0,numba==0.56.2,numpy==1.22.4,nvidia-pyindex==1.0.9,-e git+https://github.com/NVIDIA-Merlin/NVTabular.git@0f3608c168e39aa4933c856d12dadc4d3f6016a8#egg=nvtabular,nvtx==0.2.5,oauthlib==3.2.1,oldest-supported-numpy==2022.8.16,onnx==1.12.0,onnxruntime==1.11.1,opt-einsum==3.3.0,optuna==3.0.3,packaging==21.3,pandas==1.3.5,pandavro==1.5.2,pandocfilters==1.5.0,parso==0.8.3,partd==1.3.0,pathtools==0.1.2,pbr==5.11.0,pexpect==4.8.0,pickleshare==0.7.5,Pillow==9.2.0,pkgutil_resolve_name==1.3.10,platformdirs==2.5.2,plotly==5.11.0,pluggy==1.0.0,prettytable==3.5.0,prometheus-client==0.14.1,promise==2.3,prompt-toolkit==3.0.31,proto-plus==1.19.6,protobuf==3.19.5,psutil==5.9.2,ptyprocess==0.7.0,pure-eval==0.2.2,py==1.11.0,pyarrow==7.0.0,pyasn1==0.4.8,pyasn1-modules==0.2.8,pybind11==2.10.0,pycparser==2.21,pydantic==1.10.2,pydot==1.4.2,Pygments==2.13.0,PyGObject==3.36.0,pynvml==11.4.1,pyparsing==3.0.9,pyperclip==1.8.2,pyrsistent==0.18.1,pytest==7.1.3,pytest-cov==4.0.0,pytest-xdist==3.0.2,python-apt==2.0.0+ubuntu0.20.4.8,python-dateutil==2.8.2,python-dotenv==0.21.0,python-rapidjson==1.8,pytz==2022.2.1,PyYAML==5.4.1,pyzmq==24.0.0,regex==2022.9.13,requests==2.22.0,requests-oauthlib==1.3.1,requests-unixsocket==0.2.0,rsa==4.7.2,s3fs==2022.2.0,s3transfer==0.6.0,sacremoses==0.0.53,scikit-build==0.15.0,scikit-learn==1.1.2,scipy==1.8.1,seedir==0.3.0,Send2Trash==1.8.0,sentry-sdk==1.9.8,setproctitle==1.3.2,setuptools-scm==7.0.5,shortuuid==1.0.9,six==1.15.0,sklearn==0.0,smmap==5.0.0,sniffio==1.3.0,snowballstemmer==2.2.0,sortedcontainers==2.4.0,soupsieve==2.3.2.post1,Sphinx==5.3.0,sphinx-multiversion==0.2.4,sphinx-togglebutton==0.3.1,sphinx_external_toc==0.3.0,sphinxcontrib-applehelp==1.0.2,sphinxcontrib-copydirs @ git+https://github.com/mikemckiernan/sphinxcontrib-copydirs.git@bd8c5d79b3f91cf5f1bb0d6995aeca3fe84b670e,sphinxcontrib-devhelp==1.0.2,sphinxcontrib-htmlhelp==2.0.0,sphinxcontrib-jsmath==1.0.1,sphinxcontrib-qthelp==1.0.3,sphinxcontrib-serializinghtml==1.1.5,SQLAlchemy==1.4.44,stack-data==0.5.0,starlette==0.20.4,stevedore==4.1.1,stringcase==1.2.0,supervisor==4.1.0,tabulate==0.8.10,tblib==1.7.0,tdqm==0.0.1,tenacity==8.0.1,tensorboard==2.9.1,tensorboard-data-server==0.6.1,tensorboard-plugin-wit==1.8.1,tensorflow==2.9.2,tensorflow-estimator==2.9.0,tensorflow-gpu==2.9.2,tensorflow-io-gcs-filesystem==0.27.0,tensorflow-metadata==1.10.0,termcolor==2.0.1,terminado==0.15.0,testbook==0.4.2,threadpoolctl==3.1.0,tinycss2==1.1.1,tokenizers==0.10.3,toml==0.10.2,tomli==2.0.1,toolz==0.12.0,torch==1.12.1+cu113,torchmetrics==0.3.2,tornado==6.2,tox==3.26.0,tqdm==4.64.1,traitlets==5.4.0,transformers==4.12.0,transformers4rec==0.1.12+2.gbcc939255,treelite==2.3.0,treelite-runtime==2.3.0,tritonclient==2.25.0,typing-inspect==0.8.0,typing_extensions==4.3.0,uc-micro-py==1.0.1,urllib3==1.26.12,uvicorn==0.18.3,uvloop==0.17.0,versioneer==0.20,virtualenv==20.16.5,wandb==0.13.3,watchfiles==0.17.0,wcwidth==0.2.5,webencodings==0.5.1,websocket-client==1.4.1,websockets==10.3,Werkzeug==2.2.2,widgetsnbextension==3.6.0,wrapt==1.12.1,xgboost==1.6.2,yarl==1.8.1,zict==2.2.0,zipp==3.8.1,zope.event==4.5.0,zope.interface==5.4.0
test-gpu run-test-pre: PYTHONHASHSEED='46473190'
test-gpu run-test: commands[0] | python -m pip install --upgrade git+https://github.com/NVIDIA-Merlin/core.git
Looking in indexes: https://pypi.org/simple, https://pypi.ngc.nvidia.com
Collecting git+https://github.com/NVIDIA-Merlin/core.git
  Cloning https://github.com/NVIDIA-Merlin/core.git to /tmp/pip-req-build-au539hib
  Running command git clone --filter=blob:none --quiet https://github.com/NVIDIA-Merlin/core.git /tmp/pip-req-build-au539hib
  Resolved https://github.com/NVIDIA-Merlin/core.git to commit 78f1f0b0952fd14b76913b0dd258565c06694abe
  Installing build dependencies: started
  Installing build dependencies: finished with status 'done'
  Getting requirements to build wheel: started
  Getting requirements to build wheel: finished with status 'done'
  Preparing metadata (pyproject.toml): started
  Preparing metadata (pyproject.toml): finished with status 'done'
Requirement already satisfied: dask>=2022.3.0 in /var/jenkins_home/.local/lib/python3.8/site-packages (from merlin-core==0.9.0+13.g78f1f0b) (2022.3.0)
Requirement already satisfied: tqdm>=4.0 in /usr/local/lib/python3.8/dist-packages (from merlin-core==0.9.0+13.g78f1f0b) (4.64.1)
Requirement already satisfied: tensorflow-metadata>=1.2.0 in /usr/local/lib/python3.8/dist-packages (from merlin-core==0.9.0+13.g78f1f0b) (1.10.0)
Requirement already satisfied: packaging in /usr/local/lib/python3.8/dist-packages (from merlin-core==0.9.0+13.g78f1f0b) (21.3)
Requirement already satisfied: protobuf>=3.0.0 in /usr/local/lib/python3.8/dist-packages (from merlin-core==0.9.0+13.g78f1f0b) (3.19.5)
Requirement already satisfied: numba>=0.54 in /var/jenkins_home/.local/lib/python3.8/site-packages (from merlin-core==0.9.0+13.g78f1f0b) (0.55.1)
Requirement already satisfied: pyarrow>=5.0.0 in /usr/local/lib/python3.8/dist-packages (from merlin-core==0.9.0+13.g78f1f0b) (7.0.0)
Requirement already satisfied: betterproto<2.0.0 in /usr/local/lib/python3.8/dist-packages (from merlin-core==0.9.0+13.g78f1f0b) (1.2.5)
Requirement already satisfied: distributed>=2022.3.0 in /var/jenkins_home/.local/lib/python3.8/site-packages (from merlin-core==0.9.0+13.g78f1f0b) (2022.3.0)
Requirement already satisfied: fsspec==2022.5.0 in /var/jenkins_home/.local/lib/python3.8/site-packages (from merlin-core==0.9.0+13.g78f1f0b) (2022.5.0)
Requirement already satisfied: pandas<1.4.0dev0,>=1.2.0 in /var/jenkins_home/.local/lib/python3.8/site-packages (from merlin-core==0.9.0+13.g78f1f0b) (1.3.5)
Requirement already satisfied: stringcase in /usr/local/lib/python3.8/dist-packages (from betterproto<2.0.0->merlin-core==0.9.0+13.g78f1f0b) (1.2.0)
Requirement already satisfied: grpclib in /usr/local/lib/python3.8/dist-packages (from betterproto<2.0.0->merlin-core==0.9.0+13.g78f1f0b) (0.4.3)
Requirement already satisfied: cloudpickle>=1.1.1 in /usr/local/lib/python3.8/dist-packages (from dask>=2022.3.0->merlin-core==0.9.0+13.g78f1f0b) (2.2.0)
Requirement already satisfied: pyyaml>=5.3.1 in /var/jenkins_home/.local/lib/python3.8/site-packages/PyYAML-5.4.1-py3.8-linux-x86_64.egg (from dask>=2022.3.0->merlin-core==0.9.0+13.g78f1f0b) (5.4.1)
Requirement already satisfied: toolz>=0.8.2 in /usr/local/lib/python3.8/dist-packages (from dask>=2022.3.0->merlin-core==0.9.0+13.g78f1f0b) (0.12.0)
Requirement already satisfied: partd>=0.3.10 in /var/jenkins_home/.local/lib/python3.8/site-packages/partd-1.2.0-py3.8.egg (from dask>=2022.3.0->merlin-core==0.9.0+13.g78f1f0b) (1.2.0)
Requirement already satisfied: tornado>=6.0.3 in /var/jenkins_home/.local/lib/python3.8/site-packages/tornado-6.1-py3.8-linux-x86_64.egg (from distributed>=2022.3.0->merlin-core==0.9.0+13.g78f1f0b) (6.1)
Requirement already satisfied: msgpack>=0.6.0 in /usr/local/lib/python3.8/dist-packages (from distributed>=2022.3.0->merlin-core==0.9.0+13.g78f1f0b) (1.0.4)
Requirement already satisfied: click>=6.6 in /usr/local/lib/python3.8/dist-packages (from distributed>=2022.3.0->merlin-core==0.9.0+13.g78f1f0b) (8.1.3)
Requirement already satisfied: psutil>=5.0 in /var/jenkins_home/.local/lib/python3.8/site-packages/psutil-5.8.0-py3.8-linux-x86_64.egg (from distributed>=2022.3.0->merlin-core==0.9.0+13.g78f1f0b) (5.8.0)
Requirement already satisfied: sortedcontainers!=2.0.0,!=2.0.1 in /var/jenkins_home/.local/lib/python3.8/site-packages/sortedcontainers-2.4.0-py3.8.egg (from distributed>=2022.3.0->merlin-core==0.9.0+13.g78f1f0b) (2.4.0)
Requirement already satisfied: zict>=0.1.3 in /var/jenkins_home/.local/lib/python3.8/site-packages/zict-2.0.0-py3.8.egg (from distributed>=2022.3.0->merlin-core==0.9.0+13.g78f1f0b) (2.0.0)
Requirement already satisfied: tblib>=1.6.0 in /var/jenkins_home/.local/lib/python3.8/site-packages/tblib-1.7.0-py3.8.egg (from distributed>=2022.3.0->merlin-core==0.9.0+13.g78f1f0b) (1.7.0)
Requirement already satisfied: jinja2 in /usr/local/lib/python3.8/dist-packages (from distributed>=2022.3.0->merlin-core==0.9.0+13.g78f1f0b) (3.1.2)
Requirement already satisfied: numpy<1.22,>=1.18 in /var/jenkins_home/.local/lib/python3.8/site-packages (from numba>=0.54->merlin-core==0.9.0+13.g78f1f0b) (1.20.3)
Requirement already satisfied: llvmlite<0.39,>=0.38.0rc1 in ./.tox/test-gpu/lib/python3.8/site-packages (from numba>=0.54->merlin-core==0.9.0+13.g78f1f0b) (0.38.1)
Requirement already satisfied: setuptools in ./.tox/test-gpu/lib/python3.8/site-packages (from numba>=0.54->merlin-core==0.9.0+13.g78f1f0b) (65.5.1)
Requirement already satisfied: pyparsing!=3.0.5,>=2.0.2 in /usr/local/lib/python3.8/dist-packages (from packaging->merlin-core==0.9.0+13.g78f1f0b) (3.0.9)
Requirement already satisfied: pytz>=2017.3 in /usr/local/lib/python3.8/dist-packages (from pandas<1.4.0dev0,>=1.2.0->merlin-core==0.9.0+13.g78f1f0b) (2022.2.1)
Requirement already satisfied: python-dateutil>=2.7.3 in /usr/local/lib/python3.8/dist-packages (from pandas<1.4.0dev0,>=1.2.0->merlin-core==0.9.0+13.g78f1f0b) (2.8.2)
Requirement already satisfied: absl-py<2.0.0,>=0.9 in /usr/local/lib/python3.8/dist-packages (from tensorflow-metadata>=1.2.0->merlin-core==0.9.0+13.g78f1f0b) (1.2.0)
Requirement already satisfied: googleapis-common-protos<2,>=1.52.0 in /usr/local/lib/python3.8/dist-packages (from tensorflow-metadata>=1.2.0->merlin-core==0.9.0+13.g78f1f0b) (1.52.0)
Requirement already satisfied: locket in /var/jenkins_home/.local/lib/python3.8/site-packages/locket-0.2.1-py3.8.egg (from partd>=0.3.10->dask>=2022.3.0->merlin-core==0.9.0+13.g78f1f0b) (0.2.1)
Requirement already satisfied: six>=1.5 in /var/jenkins_home/.local/lib/python3.8/site-packages (from python-dateutil>=2.7.3->pandas<1.4.0dev0,>=1.2.0->merlin-core==0.9.0+13.g78f1f0b) (1.15.0)
Requirement already satisfied: heapdict in /var/jenkins_home/.local/lib/python3.8/site-packages/HeapDict-1.0.1-py3.8.egg (from zict>=0.1.3->distributed>=2022.3.0->merlin-core==0.9.0+13.g78f1f0b) (1.0.1)
Requirement already satisfied: h2<5,>=3.1.0 in /usr/local/lib/python3.8/dist-packages (from grpclib->betterproto<2.0.0->merlin-core==0.9.0+13.g78f1f0b) (4.1.0)
Requirement already satisfied: multidict in /usr/local/lib/python3.8/dist-packages (from grpclib->betterproto<2.0.0->merlin-core==0.9.0+13.g78f1f0b) (6.0.2)
Requirement already satisfied: MarkupSafe>=2.0 in /usr/local/lib/python3.8/dist-packages (from jinja2->distributed>=2022.3.0->merlin-core==0.9.0+13.g78f1f0b) (2.1.1)
Requirement already satisfied: hyperframe<7,>=6.0 in /usr/local/lib/python3.8/dist-packages (from h2<5,>=3.1.0->grpclib->betterproto<2.0.0->merlin-core==0.9.0+13.g78f1f0b) (6.0.1)
Requirement already satisfied: hpack<5,>=4.0 in /usr/local/lib/python3.8/dist-packages (from h2<5,>=3.1.0->grpclib->betterproto<2.0.0->merlin-core==0.9.0+13.g78f1f0b) (4.0.0)
Building wheels for collected packages: merlin-core
  Building wheel for merlin-core (pyproject.toml): started
  Building wheel for merlin-core (pyproject.toml): finished with status 'done'
  Created wheel for merlin-core: filename=merlin_core-0.9.0+13.g78f1f0b-py3-none-any.whl size=118889 sha256=124c7bf2fdf1f081e3c7f999e2d97fcade43298ecdf2d4b3c3d5677fbc480131
  Stored in directory: /tmp/pip-ephem-wheel-cache-lk9d3v5o/wheels/c8/38/16/a6968787eafcec5fa772148af8408b089562f71af0752e8e84
Successfully built merlin-core
Installing collected packages: merlin-core
  Attempting uninstall: merlin-core
    Found existing installation: merlin-core 0.3.0+12.g78ecddd
    Not uninstalling merlin-core at /var/jenkins_home/.local/lib/python3.8/site-packages, outside environment /var/jenkins_home/workspace/nvtabular_tests/nvtabular/.tox/test-gpu
    Can't uninstall 'merlin-core'. No files were found to uninstall.
Successfully installed merlin-core-0.9.0+13.g78f1f0b
test-gpu run-test: commands[1] | python -m pip install --upgrade git+https://github.com/NVIDIA-Merlin/dataloader.git
Looking in indexes: https://pypi.org/simple, https://pypi.ngc.nvidia.com
Collecting git+https://github.com/NVIDIA-Merlin/dataloader.git
  Cloning https://github.com/NVIDIA-Merlin/dataloader.git to /tmp/pip-req-build-u7g6xo43
  Running command git clone --filter=blob:none --quiet https://github.com/NVIDIA-Merlin/dataloader.git /tmp/pip-req-build-u7g6xo43
  Resolved https://github.com/NVIDIA-Merlin/dataloader.git to commit f1f380cda85c9f4c557971683672397abd0ac040
  Installing build dependencies: started
  Installing build dependencies: finished with status 'done'
  Getting requirements to build wheel: started
  Getting requirements to build wheel: finished with status 'done'
  Preparing metadata (pyproject.toml): started
  Preparing metadata (pyproject.toml): finished with status 'done'
Requirement already satisfied: merlin-core>=0.8.0 in ./.tox/test-gpu/lib/python3.8/site-packages (from merlin-dataloader==0.0.2+20.gf1f380c) (0.9.0+13.g78f1f0b)
Requirement already satisfied: dask>=2022.3.0 in /var/jenkins_home/.local/lib/python3.8/site-packages (from merlin-core>=0.8.0->merlin-dataloader==0.0.2+20.gf1f380c) (2022.3.0)
Requirement already satisfied: tqdm>=4.0 in /usr/local/lib/python3.8/dist-packages (from merlin-core>=0.8.0->merlin-dataloader==0.0.2+20.gf1f380c) (4.64.1)
Requirement already satisfied: tensorflow-metadata>=1.2.0 in /usr/local/lib/python3.8/dist-packages (from merlin-core>=0.8.0->merlin-dataloader==0.0.2+20.gf1f380c) (1.10.0)
Requirement already satisfied: packaging in /usr/local/lib/python3.8/dist-packages (from merlin-core>=0.8.0->merlin-dataloader==0.0.2+20.gf1f380c) (21.3)
Requirement already satisfied: protobuf>=3.0.0 in /usr/local/lib/python3.8/dist-packages (from merlin-core>=0.8.0->merlin-dataloader==0.0.2+20.gf1f380c) (3.19.5)
Requirement already satisfied: numba>=0.54 in /var/jenkins_home/.local/lib/python3.8/site-packages (from merlin-core>=0.8.0->merlin-dataloader==0.0.2+20.gf1f380c) (0.55.1)
Requirement already satisfied: pyarrow>=5.0.0 in /usr/local/lib/python3.8/dist-packages (from merlin-core>=0.8.0->merlin-dataloader==0.0.2+20.gf1f380c) (7.0.0)
Requirement already satisfied: betterproto<2.0.0 in /usr/local/lib/python3.8/dist-packages (from merlin-core>=0.8.0->merlin-dataloader==0.0.2+20.gf1f380c) (1.2.5)
Requirement already satisfied: distributed>=2022.3.0 in /var/jenkins_home/.local/lib/python3.8/site-packages (from merlin-core>=0.8.0->merlin-dataloader==0.0.2+20.gf1f380c) (2022.3.0)
Requirement already satisfied: fsspec==2022.5.0 in /var/jenkins_home/.local/lib/python3.8/site-packages (from merlin-core>=0.8.0->merlin-dataloader==0.0.2+20.gf1f380c) (2022.5.0)
Requirement already satisfied: pandas<1.4.0dev0,>=1.2.0 in /var/jenkins_home/.local/lib/python3.8/site-packages (from merlin-core>=0.8.0->merlin-dataloader==0.0.2+20.gf1f380c) (1.3.5)
Requirement already satisfied: stringcase in /usr/local/lib/python3.8/dist-packages (from betterproto<2.0.0->merlin-core>=0.8.0->merlin-dataloader==0.0.2+20.gf1f380c) (1.2.0)
Requirement already satisfied: grpclib in /usr/local/lib/python3.8/dist-packages (from betterproto<2.0.0->merlin-core>=0.8.0->merlin-dataloader==0.0.2+20.gf1f380c) (0.4.3)
Requirement already satisfied: cloudpickle>=1.1.1 in /usr/local/lib/python3.8/dist-packages (from dask>=2022.3.0->merlin-core>=0.8.0->merlin-dataloader==0.0.2+20.gf1f380c) (2.2.0)
Requirement already satisfied: pyyaml>=5.3.1 in /var/jenkins_home/.local/lib/python3.8/site-packages/PyYAML-5.4.1-py3.8-linux-x86_64.egg (from dask>=2022.3.0->merlin-core>=0.8.0->merlin-dataloader==0.0.2+20.gf1f380c) (5.4.1)
Requirement already satisfied: toolz>=0.8.2 in /usr/local/lib/python3.8/dist-packages (from dask>=2022.3.0->merlin-core>=0.8.0->merlin-dataloader==0.0.2+20.gf1f380c) (0.12.0)
Requirement already satisfied: partd>=0.3.10 in /var/jenkins_home/.local/lib/python3.8/site-packages/partd-1.2.0-py3.8.egg (from dask>=2022.3.0->merlin-core>=0.8.0->merlin-dataloader==0.0.2+20.gf1f380c) (1.2.0)
Requirement already satisfied: tornado>=6.0.3 in /var/jenkins_home/.local/lib/python3.8/site-packages/tornado-6.1-py3.8-linux-x86_64.egg (from distributed>=2022.3.0->merlin-core>=0.8.0->merlin-dataloader==0.0.2+20.gf1f380c) (6.1)
Requirement already satisfied: msgpack>=0.6.0 in /usr/local/lib/python3.8/dist-packages (from distributed>=2022.3.0->merlin-core>=0.8.0->merlin-dataloader==0.0.2+20.gf1f380c) (1.0.4)
Requirement already satisfied: click>=6.6 in /usr/local/lib/python3.8/dist-packages (from distributed>=2022.3.0->merlin-core>=0.8.0->merlin-dataloader==0.0.2+20.gf1f380c) (8.1.3)
Requirement already satisfied: psutil>=5.0 in /var/jenkins_home/.local/lib/python3.8/site-packages/psutil-5.8.0-py3.8-linux-x86_64.egg (from distributed>=2022.3.0->merlin-core>=0.8.0->merlin-dataloader==0.0.2+20.gf1f380c) (5.8.0)
Requirement already satisfied: sortedcontainers!=2.0.0,!=2.0.1 in /var/jenkins_home/.local/lib/python3.8/site-packages/sortedcontainers-2.4.0-py3.8.egg (from distributed>=2022.3.0->merlin-core>=0.8.0->merlin-dataloader==0.0.2+20.gf1f380c) (2.4.0)
Requirement already satisfied: zict>=0.1.3 in /var/jenkins_home/.local/lib/python3.8/site-packages/zict-2.0.0-py3.8.egg (from distributed>=2022.3.0->merlin-core>=0.8.0->merlin-dataloader==0.0.2+20.gf1f380c) (2.0.0)
Requirement already satisfied: tblib>=1.6.0 in /var/jenkins_home/.local/lib/python3.8/site-packages/tblib-1.7.0-py3.8.egg (from distributed>=2022.3.0->merlin-core>=0.8.0->merlin-dataloader==0.0.2+20.gf1f380c) (1.7.0)
Requirement already satisfied: jinja2 in /usr/local/lib/python3.8/dist-packages (from distributed>=2022.3.0->merlin-core>=0.8.0->merlin-dataloader==0.0.2+20.gf1f380c) (3.1.2)
Requirement already satisfied: numpy<1.22,>=1.18 in /var/jenkins_home/.local/lib/python3.8/site-packages (from numba>=0.54->merlin-core>=0.8.0->merlin-dataloader==0.0.2+20.gf1f380c) (1.20.3)
Requirement already satisfied: llvmlite<0.39,>=0.38.0rc1 in ./.tox/test-gpu/lib/python3.8/site-packages (from numba>=0.54->merlin-core>=0.8.0->merlin-dataloader==0.0.2+20.gf1f380c) (0.38.1)
Requirement already satisfied: setuptools in ./.tox/test-gpu/lib/python3.8/site-packages (from numba>=0.54->merlin-core>=0.8.0->merlin-dataloader==0.0.2+20.gf1f380c) (65.5.1)
Requirement already satisfied: pyparsing!=3.0.5,>=2.0.2 in /usr/local/lib/python3.8/dist-packages (from packaging->merlin-core>=0.8.0->merlin-dataloader==0.0.2+20.gf1f380c) (3.0.9)
Requirement already satisfied: pytz>=2017.3 in /usr/local/lib/python3.8/dist-packages (from pandas<1.4.0dev0,>=1.2.0->merlin-core>=0.8.0->merlin-dataloader==0.0.2+20.gf1f380c) (2022.2.1)
Requirement already satisfied: python-dateutil>=2.7.3 in /usr/local/lib/python3.8/dist-packages (from pandas<1.4.0dev0,>=1.2.0->merlin-core>=0.8.0->merlin-dataloader==0.0.2+20.gf1f380c) (2.8.2)
Requirement already satisfied: absl-py<2.0.0,>=0.9 in /usr/local/lib/python3.8/dist-packages (from tensorflow-metadata>=1.2.0->merlin-core>=0.8.0->merlin-dataloader==0.0.2+20.gf1f380c) (1.2.0)
Requirement already satisfied: googleapis-common-protos<2,>=1.52.0 in /usr/local/lib/python3.8/dist-packages (from tensorflow-metadata>=1.2.0->merlin-core>=0.8.0->merlin-dataloader==0.0.2+20.gf1f380c) (1.52.0)
Requirement already satisfied: locket in /var/jenkins_home/.local/lib/python3.8/site-packages/locket-0.2.1-py3.8.egg (from partd>=0.3.10->dask>=2022.3.0->merlin-core>=0.8.0->merlin-dataloader==0.0.2+20.gf1f380c) (0.2.1)
Requirement already satisfied: six>=1.5 in /var/jenkins_home/.local/lib/python3.8/site-packages (from python-dateutil>=2.7.3->pandas<1.4.0dev0,>=1.2.0->merlin-core>=0.8.0->merlin-dataloader==0.0.2+20.gf1f380c) (1.15.0)
Requirement already satisfied: heapdict in /var/jenkins_home/.local/lib/python3.8/site-packages/HeapDict-1.0.1-py3.8.egg (from zict>=0.1.3->distributed>=2022.3.0->merlin-core>=0.8.0->merlin-dataloader==0.0.2+20.gf1f380c) (1.0.1)
Requirement already satisfied: h2<5,>=3.1.0 in /usr/local/lib/python3.8/dist-packages (from grpclib->betterproto<2.0.0->merlin-core>=0.8.0->merlin-dataloader==0.0.2+20.gf1f380c) (4.1.0)
Requirement already satisfied: multidict in /usr/local/lib/python3.8/dist-packages (from grpclib->betterproto<2.0.0->merlin-core>=0.8.0->merlin-dataloader==0.0.2+20.gf1f380c) (6.0.2)
Requirement already satisfied: MarkupSafe>=2.0 in /usr/local/lib/python3.8/dist-packages (from jinja2->distributed>=2022.3.0->merlin-core>=0.8.0->merlin-dataloader==0.0.2+20.gf1f380c) (2.1.1)
Requirement already satisfied: hyperframe<7,>=6.0 in /usr/local/lib/python3.8/dist-packages (from h2<5,>=3.1.0->grpclib->betterproto<2.0.0->merlin-core>=0.8.0->merlin-dataloader==0.0.2+20.gf1f380c) (6.0.1)
Requirement already satisfied: hpack<5,>=4.0 in /usr/local/lib/python3.8/dist-packages (from h2<5,>=3.1.0->grpclib->betterproto<2.0.0->merlin-core>=0.8.0->merlin-dataloader==0.0.2+20.gf1f380c) (4.0.0)
Building wheels for collected packages: merlin-dataloader
  Building wheel for merlin-dataloader (pyproject.toml): started
  Building wheel for merlin-dataloader (pyproject.toml): finished with status 'done'
  Created wheel for merlin-dataloader: filename=merlin_dataloader-0.0.2+20.gf1f380c-py3-none-any.whl size=40215 sha256=22a05d7f7825cfc985ca7305385b4b62a54e7a041fc8e3b4a377d08d5a98b81f
  Stored in directory: /tmp/pip-ephem-wheel-cache-inye0ydf/wheels/de/f5/d9/251909f4627d2920fb15548f5ffd6daf1bf24c3c56bb4977b1
Successfully built merlin-dataloader
Installing collected packages: merlin-dataloader
  Attempting uninstall: merlin-dataloader
    Found existing installation: merlin-dataloader 0.0.3
    Uninstalling merlin-dataloader-0.0.3:
      Successfully uninstalled merlin-dataloader-0.0.3
Successfully installed merlin-dataloader-0.0.2+20.gf1f380c
test-gpu run-test: commands[2] | python -m pip install --upgrade git+https://github.com/NVIDIA-Merlin/models.git
Looking in indexes: https://pypi.org/simple, https://pypi.ngc.nvidia.com
Collecting git+https://github.com/NVIDIA-Merlin/models.git
  Cloning https://github.com/NVIDIA-Merlin/models.git to /tmp/pip-req-build-y5uezqv7
  Running command git clone --filter=blob:none --quiet https://github.com/NVIDIA-Merlin/models.git /tmp/pip-req-build-y5uezqv7
  Resolved https://github.com/NVIDIA-Merlin/models.git to commit 3124b03033723de762d90d47085bac3191f37ff5
  Installing build dependencies: started
  Installing build dependencies: finished with status 'done'
  Getting requirements to build wheel: started
  Getting requirements to build wheel: finished with status 'done'
  Preparing metadata (pyproject.toml): started
  Preparing metadata (pyproject.toml): finished with status 'done'
Requirement already satisfied: merlin-core>=0.2.0 in ./.tox/test-gpu/lib/python3.8/site-packages (from merlin-models==0.9.0+59.g3124b030) (0.9.0+13.g78f1f0b)
Requirement already satisfied: dask>=2022.3.0 in /var/jenkins_home/.local/lib/python3.8/site-packages (from merlin-core>=0.2.0->merlin-models==0.9.0+59.g3124b030) (2022.3.0)
Requirement already satisfied: tqdm>=4.0 in /usr/local/lib/python3.8/dist-packages (from merlin-core>=0.2.0->merlin-models==0.9.0+59.g3124b030) (4.64.1)
Requirement already satisfied: tensorflow-metadata>=1.2.0 in /usr/local/lib/python3.8/dist-packages (from merlin-core>=0.2.0->merlin-models==0.9.0+59.g3124b030) (1.10.0)
Requirement already satisfied: packaging in /usr/local/lib/python3.8/dist-packages (from merlin-core>=0.2.0->merlin-models==0.9.0+59.g3124b030) (21.3)
Requirement already satisfied: protobuf>=3.0.0 in /usr/local/lib/python3.8/dist-packages (from merlin-core>=0.2.0->merlin-models==0.9.0+59.g3124b030) (3.19.5)
Requirement already satisfied: numba>=0.54 in /var/jenkins_home/.local/lib/python3.8/site-packages (from merlin-core>=0.2.0->merlin-models==0.9.0+59.g3124b030) (0.55.1)
Requirement already satisfied: pyarrow>=5.0.0 in /usr/local/lib/python3.8/dist-packages (from merlin-core>=0.2.0->merlin-models==0.9.0+59.g3124b030) (7.0.0)
Requirement already satisfied: betterproto<2.0.0 in /usr/local/lib/python3.8/dist-packages (from merlin-core>=0.2.0->merlin-models==0.9.0+59.g3124b030) (1.2.5)
Requirement already satisfied: distributed>=2022.3.0 in /var/jenkins_home/.local/lib/python3.8/site-packages (from merlin-core>=0.2.0->merlin-models==0.9.0+59.g3124b030) (2022.3.0)
Requirement already satisfied: fsspec==2022.5.0 in /var/jenkins_home/.local/lib/python3.8/site-packages (from merlin-core>=0.2.0->merlin-models==0.9.0+59.g3124b030) (2022.5.0)
Requirement already satisfied: pandas<1.4.0dev0,>=1.2.0 in /var/jenkins_home/.local/lib/python3.8/site-packages (from merlin-core>=0.2.0->merlin-models==0.9.0+59.g3124b030) (1.3.5)
Requirement already satisfied: stringcase in /usr/local/lib/python3.8/dist-packages (from betterproto<2.0.0->merlin-core>=0.2.0->merlin-models==0.9.0+59.g3124b030) (1.2.0)
Requirement already satisfied: grpclib in /usr/local/lib/python3.8/dist-packages (from betterproto<2.0.0->merlin-core>=0.2.0->merlin-models==0.9.0+59.g3124b030) (0.4.3)
Requirement already satisfied: cloudpickle>=1.1.1 in /usr/local/lib/python3.8/dist-packages (from dask>=2022.3.0->merlin-core>=0.2.0->merlin-models==0.9.0+59.g3124b030) (2.2.0)
Requirement already satisfied: pyyaml>=5.3.1 in /var/jenkins_home/.local/lib/python3.8/site-packages/PyYAML-5.4.1-py3.8-linux-x86_64.egg (from dask>=2022.3.0->merlin-core>=0.2.0->merlin-models==0.9.0+59.g3124b030) (5.4.1)
Requirement already satisfied: toolz>=0.8.2 in /usr/local/lib/python3.8/dist-packages (from dask>=2022.3.0->merlin-core>=0.2.0->merlin-models==0.9.0+59.g3124b030) (0.12.0)
Requirement already satisfied: partd>=0.3.10 in /var/jenkins_home/.local/lib/python3.8/site-packages/partd-1.2.0-py3.8.egg (from dask>=2022.3.0->merlin-core>=0.2.0->merlin-models==0.9.0+59.g3124b030) (1.2.0)
Requirement already satisfied: tornado>=6.0.3 in /var/jenkins_home/.local/lib/python3.8/site-packages/tornado-6.1-py3.8-linux-x86_64.egg (from distributed>=2022.3.0->merlin-core>=0.2.0->merlin-models==0.9.0+59.g3124b030) (6.1)
Requirement already satisfied: msgpack>=0.6.0 in /usr/local/lib/python3.8/dist-packages (from distributed>=2022.3.0->merlin-core>=0.2.0->merlin-models==0.9.0+59.g3124b030) (1.0.4)
Requirement already satisfied: click>=6.6 in /usr/local/lib/python3.8/dist-packages (from distributed>=2022.3.0->merlin-core>=0.2.0->merlin-models==0.9.0+59.g3124b030) (8.1.3)
Requirement already satisfied: psutil>=5.0 in /var/jenkins_home/.local/lib/python3.8/site-packages/psutil-5.8.0-py3.8-linux-x86_64.egg (from distributed>=2022.3.0->merlin-core>=0.2.0->merlin-models==0.9.0+59.g3124b030) (5.8.0)
Requirement already satisfied: sortedcontainers!=2.0.0,!=2.0.1 in /var/jenkins_home/.local/lib/python3.8/site-packages/sortedcontainers-2.4.0-py3.8.egg (from distributed>=2022.3.0->merlin-core>=0.2.0->merlin-models==0.9.0+59.g3124b030) (2.4.0)
Requirement already satisfied: zict>=0.1.3 in /var/jenkins_home/.local/lib/python3.8/site-packages/zict-2.0.0-py3.8.egg (from distributed>=2022.3.0->merlin-core>=0.2.0->merlin-models==0.9.0+59.g3124b030) (2.0.0)
Requirement already satisfied: tblib>=1.6.0 in /var/jenkins_home/.local/lib/python3.8/site-packages/tblib-1.7.0-py3.8.egg (from distributed>=2022.3.0->merlin-core>=0.2.0->merlin-models==0.9.0+59.g3124b030) (1.7.0)
Requirement already satisfied: jinja2 in /usr/local/lib/python3.8/dist-packages (from distributed>=2022.3.0->merlin-core>=0.2.0->merlin-models==0.9.0+59.g3124b030) (3.1.2)
Requirement already satisfied: numpy<1.22,>=1.18 in /var/jenkins_home/.local/lib/python3.8/site-packages (from numba>=0.54->merlin-core>=0.2.0->merlin-models==0.9.0+59.g3124b030) (1.20.3)
Requirement already satisfied: llvmlite<0.39,>=0.38.0rc1 in ./.tox/test-gpu/lib/python3.8/site-packages (from numba>=0.54->merlin-core>=0.2.0->merlin-models==0.9.0+59.g3124b030) (0.38.1)
Requirement already satisfied: setuptools in ./.tox/test-gpu/lib/python3.8/site-packages (from numba>=0.54->merlin-core>=0.2.0->merlin-models==0.9.0+59.g3124b030) (65.5.1)
Requirement already satisfied: pyparsing!=3.0.5,>=2.0.2 in /usr/local/lib/python3.8/dist-packages (from packaging->merlin-core>=0.2.0->merlin-models==0.9.0+59.g3124b030) (3.0.9)
Requirement already satisfied: pytz>=2017.3 in /usr/local/lib/python3.8/dist-packages (from pandas<1.4.0dev0,>=1.2.0->merlin-core>=0.2.0->merlin-models==0.9.0+59.g3124b030) (2022.2.1)
Requirement already satisfied: python-dateutil>=2.7.3 in /usr/local/lib/python3.8/dist-packages (from pandas<1.4.0dev0,>=1.2.0->merlin-core>=0.2.0->merlin-models==0.9.0+59.g3124b030) (2.8.2)
Requirement already satisfied: absl-py<2.0.0,>=0.9 in /usr/local/lib/python3.8/dist-packages (from tensorflow-metadata>=1.2.0->merlin-core>=0.2.0->merlin-models==0.9.0+59.g3124b030) (1.2.0)
Requirement already satisfied: googleapis-common-protos<2,>=1.52.0 in /usr/local/lib/python3.8/dist-packages (from tensorflow-metadata>=1.2.0->merlin-core>=0.2.0->merlin-models==0.9.0+59.g3124b030) (1.52.0)
Requirement already satisfied: locket in /var/jenkins_home/.local/lib/python3.8/site-packages/locket-0.2.1-py3.8.egg (from partd>=0.3.10->dask>=2022.3.0->merlin-core>=0.2.0->merlin-models==0.9.0+59.g3124b030) (0.2.1)
Requirement already satisfied: six>=1.5 in /var/jenkins_home/.local/lib/python3.8/site-packages (from python-dateutil>=2.7.3->pandas<1.4.0dev0,>=1.2.0->merlin-core>=0.2.0->merlin-models==0.9.0+59.g3124b030) (1.15.0)
Requirement already satisfied: heapdict in /var/jenkins_home/.local/lib/python3.8/site-packages/HeapDict-1.0.1-py3.8.egg (from zict>=0.1.3->distributed>=2022.3.0->merlin-core>=0.2.0->merlin-models==0.9.0+59.g3124b030) (1.0.1)
Requirement already satisfied: h2<5,>=3.1.0 in /usr/local/lib/python3.8/dist-packages (from grpclib->betterproto<2.0.0->merlin-core>=0.2.0->merlin-models==0.9.0+59.g3124b030) (4.1.0)
Requirement already satisfied: multidict in /usr/local/lib/python3.8/dist-packages (from grpclib->betterproto<2.0.0->merlin-core>=0.2.0->merlin-models==0.9.0+59.g3124b030) (6.0.2)
Requirement already satisfied: MarkupSafe>=2.0 in /usr/local/lib/python3.8/dist-packages (from jinja2->distributed>=2022.3.0->merlin-core>=0.2.0->merlin-models==0.9.0+59.g3124b030) (2.1.1)
Requirement already satisfied: hyperframe<7,>=6.0 in /usr/local/lib/python3.8/dist-packages (from h2<5,>=3.1.0->grpclib->betterproto<2.0.0->merlin-core>=0.2.0->merlin-models==0.9.0+59.g3124b030) (6.0.1)
Requirement already satisfied: hpack<5,>=4.0 in /usr/local/lib/python3.8/dist-packages (from h2<5,>=3.1.0->grpclib->betterproto<2.0.0->merlin-core>=0.2.0->merlin-models==0.9.0+59.g3124b030) (4.0.0)
Building wheels for collected packages: merlin-models
  Building wheel for merlin-models (pyproject.toml): started
  Building wheel for merlin-models (pyproject.toml): finished with status 'done'
  Created wheel for merlin-models: filename=merlin_models-0.9.0+59.g3124b030-py3-none-any.whl size=366427 sha256=fd93e6c5b6deb383560baf7dd8772966f9d71ab9967c6c7913ba221f8822ee7e
  Stored in directory: /tmp/pip-ephem-wheel-cache-y8_2ybwx/wheels/5a/43/99/d50fe2c33b4f4686db73207ce3865e0d6be6609ffb03abade5
Successfully built merlin-models
Installing collected packages: merlin-models
  Attempting uninstall: merlin-models
    Found existing installation: merlin-models 0.7.0+11.g280956aa4
    Not uninstalling merlin-models at /usr/local/lib/python3.8/dist-packages, outside environment /var/jenkins_home/workspace/nvtabular_tests/nvtabular/.tox/test-gpu
    Can't uninstall 'merlin-models'. No files were found to uninstall.
Successfully installed merlin-models-0.9.0+59.g3124b030
test-gpu run-test: commands[3] | python -m pytest --cov-report term --cov merlin -rxs tests/unit
============================= test session starts ==============================
platform linux -- Python 3.8.10, pytest-7.1.3, pluggy-1.0.0
cachedir: .tox/test-gpu/.pytest_cache
rootdir: /var/jenkins_home/workspace/nvtabular_tests/nvtabular, configfile: pyproject.toml
plugins: anyio-3.5.0, xdist-3.0.2, cov-4.0.0
collected 1439 items / 1 skipped

tests/unit/test_dask_nvt.py ............................................ [ 3%]
........................................................................ [ 8%]
.... [ 8%]
tests/unit/test_notebooks.py ..F. [ 8%]
tests/unit/test_tf4rec.py . [ 8%]
tests/unit/test_tools.py ...................... [ 10%]
tests/unit/test_triton_inference.py ................................ [ 12%]
tests/unit/examples/test_01-Getting-started.py . [ 12%]
tests/unit/examples/test_02-Advanced-NVTabular-workflow.py . [ 12%]
tests/unit/examples/test_03-Running-on-multiple-GPUs-or-on-CPU.py F [ 12%]
tests/unit/framework_utils/test_tf_feature_columns.py . [ 12%]
tests/unit/framework_utils/test_tf_layers.py ........................... [ 14%]
................................................... [ 18%]
tests/unit/framework_utils/test_torch_layers.py . [ 18%]
tests/unit/loader/test_tf_dataloader.py ................................ [ 20%]
........................................s.. [ 23%]
tests/unit/loader/test_torch_dataloader.py ............................. [ 25%]
......................................FFFF........... [ 29%]
tests/unit/ops/test_categorify.py ...................................... [ 31%]
........................................................................ [ 36%]
..................................................... [ 40%]
tests/unit/ops/test_column_similarity.py ........................ [ 42%]
tests/unit/ops/test_drop_low_cardinality.py .. [ 42%]
tests/unit/ops/test_fill.py ............................................ [ 45%]
........ [ 45%]
tests/unit/ops/test_groupyby.py ....................... [ 47%]
tests/unit/ops/test_hash_bucket.py ......................... [ 49%]
tests/unit/ops/test_join.py ............................................ [ 52%]
........................................................................ [ 57%]
.................................. [ 59%]
tests/unit/ops/test_lambda.py .......... [ 60%]
tests/unit/ops/test_normalize.py ....................................... [ 63%]
.. [ 63%]
tests/unit/ops/test_ops.py ............................................. [ 66%]
.................... [ 67%]
tests/unit/ops/test_ops_schema.py ...................................... [ 70%]
........................................................................ [ 75%]
........................................................................ [ 80%]
........................................................................ [ 85%]
....................................... [ 88%]
tests/unit/ops/test_reduce_dtype_size.py .. [ 88%]
tests/unit/ops/test_target_encode.py ..................... [ 89%]
tests/unit/ops/test_value_count.py ... [ 89%]
tests/unit/workflow/test_cpu_workflow.py ...... [ 90%]
tests/unit/workflow/test_workflow.py ................................... [ 92%]
.......................................................... [ 96%]
tests/unit/workflow/test_workflow_chaining.py ... [ 96%]
tests/unit/workflow/test_workflow_node.py ........... [ 97%]
tests/unit/workflow/test_workflow_ops.py ... [ 97%]
tests/unit/workflow/test_workflow_schemas.py ........................... [ 99%]
... [100%]

=================================== FAILURES ===================================
____________________________ test_movielens_example ____________________________

tmpdir = local('/tmp/pytest-of-jenkins/pytest-8/test_movielens_example0')

def test_movielens_example(tmpdir):
    _get_random_movielens_data(tmpdir, 10000, dataset="movie")
    _get_random_movielens_data(tmpdir, 10000, dataset="ratings")
    _get_random_movielens_data(tmpdir, 5000, dataset="ratings", valid=True)

    triton_model_path = os.path.join(tmpdir, "models")
    os.environ["INPUT_DATA_DIR"] = str(tmpdir)
    os.environ["MODEL_PATH"] = triton_model_path

    notebook_path = os.path.join(
        dirname(TEST_PATH),
        "examples/getting-started-movielens/",
        "02-ETL-with-NVTabular.ipynb",
    )
    _run_notebook(tmpdir, notebook_path)

    def _modify_tf_nb(line):
        return line.replace(
            # don't require graphviz/pydot
            "tf.keras.utils.plot_model(model)",
            "# tf.keras.utils.plot_model(model)",
        )

    def _modify_tf_triton(line):
        # models are already preloaded
        line = line.replace("triton_client.load_model", "# triton_client.load_model")
        line = line.replace("triton_client.unload_model", "# triton_client.unload_model")
        return line

    notebooks = []
    try:
        import torch  # noqa

        notebooks.append("03-Training-with-PyTorch.ipynb")
    except Exception:
        pass
    try:
        import nvtabular.inference.triton  # noqa
        import nvtabular.loader.tensorflow  # noqa

        notebooks.append("03-Training-with-TF.ipynb")
        has_tf = True

    except Exception:
        has_tf = False

    for notebook in notebooks:
        notebook_path = os.path.join(
            dirname(TEST_PATH),
            "examples/getting-started-movielens/",
            notebook,
        )
        if notebook == "03-Training-with-TF.ipynb":
            _run_notebook(tmpdir, notebook_path, transform=_modify_tf_nb)
        else:
          _run_notebook(tmpdir, notebook_path)

tests/unit/test_notebooks.py:169:


tests/unit/test_notebooks.py:223: in _run_notebook
subprocess.check_output([sys.executable, script_path])
/usr/lib/python3.8/subprocess.py:415: in check_output
return run(*popenargs, stdout=PIPE, timeout=timeout, check=True,


input = None, capture_output = False, timeout = None, check = True
popenargs = (['/var/jenkins_home/workspace/nvtabular_tests/nvtabular/.tox/test-gpu/bin/python', '/tmp/pytest-of-jenkins/pytest-8/test_movielens_example0/notebook.py'],)
kwargs = {'stdout': -1}, process = <subprocess.Popen object at 0x7fbbe377e130>
stdout = b'Total batches: 0\n', stderr = None, retcode = 1

def run(*popenargs,
        input=None, capture_output=False, timeout=None, check=False, **kwargs):
    """Run command with arguments and return a CompletedProcess instance.

    The returned instance will have attributes args, returncode, stdout and
    stderr. By default, stdout and stderr are not captured, and those attributes
    will be None. Pass stdout=PIPE and/or stderr=PIPE in order to capture them.

    If check is True and the exit code was non-zero, it raises a
    CalledProcessError. The CalledProcessError object will have the return code
    in the returncode attribute, and output & stderr attributes if those streams
    were captured.

    If timeout is given, and the process takes too long, a TimeoutExpired
    exception will be raised.

    There is an optional argument "input", allowing you to
    pass bytes or a string to the subprocess's stdin.  If you use this argument
    you may not also use the Popen constructor's "stdin" argument, as
    it will be used internally.

    By default, all communication is in bytes, and therefore any "input" should
    be bytes, and the stdout and stderr will be bytes. If in text mode, any
    "input" should be a string, and stdout and stderr will be strings decoded
    according to locale encoding, or by "encoding" if set. Text mode is
    triggered by setting any of text, encoding, errors or universal_newlines.

    The other arguments are the same as for the Popen constructor.
    """
    if input is not None:
        if kwargs.get('stdin') is not None:
            raise ValueError('stdin and input arguments may not both be used.')
        kwargs['stdin'] = PIPE

    if capture_output:
        if kwargs.get('stdout') is not None or kwargs.get('stderr') is not None:
            raise ValueError('stdout and stderr arguments may not be used '
                             'with capture_output.')
        kwargs['stdout'] = PIPE
        kwargs['stderr'] = PIPE

    with Popen(*popenargs, **kwargs) as process:
        try:
            stdout, stderr = process.communicate(input, timeout=timeout)
        except TimeoutExpired as exc:
            process.kill()
            if _mswindows:
                # Windows accumulates the output in a single blocking
                # read() call run on child threads, with the timeout
                # being done in a join() on those threads.  communicate()
                # _after_ kill() is required to collect that and add it
                # to the exception.
                exc.stdout, exc.stderr = process.communicate()
            else:
                # POSIX _communicate already populated the output so
                # far into the TimeoutExpired exception.
                process.wait()
            raise
        except:  # Including KeyboardInterrupt, communicate handled that.
            process.kill()
            # We don't call process.wait() as .__exit__ does that for us.
            raise
        retcode = process.poll()
        if check and retcode:
          raise CalledProcessError(retcode, process.args,
                                     output=stdout, stderr=stderr)

E subprocess.CalledProcessError: Command '['/var/jenkins_home/workspace/nvtabular_tests/nvtabular/.tox/test-gpu/bin/python', '/tmp/pytest-of-jenkins/pytest-8/test_movielens_example0/notebook.py']' returned non-zero exit status 1.

/usr/lib/python3.8/subprocess.py:516: CalledProcessError
----------------------------- Captured stderr call -----------------------------
Traceback (most recent call last):
File "/tmp/pytest-of-jenkins/pytest-8/test_movielens_example0/notebook.py", line 166, in
train_loss, y_pred, y = process_epoch(train_loader,
File "/var/jenkins_home/workspace/nvtabular_tests/nvtabular/.tox/test-gpu/lib/python3.8/site-packages/nvtabular/framework_utils/torch/utils.py", line 117, in process_epoch
y = torch.cat(y_list)
RuntimeError: torch.cat(): expected a non-empty list of Tensors
_______________________________ test_example_03 ________________________________

def test_example_03():
    with testbook(
        REPO_ROOT / "examples" / "03-Running-on-multiple-GPUs-or-on-CPU.ipynb",
        execute=False,
        timeout=180,
    ) as tb:
        tb.inject(
            """
            import os
            from unittest.mock import patch
            from merlin.datasets.synthetic import generate_data
            mock_train, mock_valid = generate_data(
                input="movielens-1m",
                num_rows=1000,
                set_sizes=(0.8, 0.2)
            )
            input_path = os.environ.get(
                "INPUT_DATA_DIR",
                os.path.expanduser("~/merlin-framework/movielens/")
            )
            from pathlib import Path
            Path(f'{input_path}ml-1m').mkdir(parents=True, exist_ok=True)
            mock_train.compute().to_parquet(f'{input_path}ml-1m/train.parquet')
            mock_train.compute().to_parquet(f'{input_path}ml-1m/valid.parquet')

            p1 = patch(
                "merlin.datasets.entertainment.get_movielens",
                return_value=[mock_train, mock_valid]
            )
            p1.start()

            """
        )
      tb.execute()

tests/unit/examples/test_03-Running-on-multiple-GPUs-or-on-CPU.py:59:


../../../.local/lib/python3.8/site-packages/testbook/client.py:147: in execute
super().execute_cell(cell, index)
../../../.local/lib/python3.8/site-packages/nbclient/util.py:84: in wrapped
return just_run(coro(*args, **kwargs))
../../../.local/lib/python3.8/site-packages/nbclient/util.py:62: in just_run
return loop.run_until_complete(coro)
/usr/local/lib/python3.8/dist-packages/nest_asyncio.py:89: in run_until_complete
return f.result()
/usr/lib/python3.8/asyncio/futures.py:178: in result
raise self._exception
/usr/lib/python3.8/asyncio/tasks.py:280: in __step
result = coro.send(None)
../../../.local/lib/python3.8/site-packages/nbclient/client.py:965: in async_execute_cell
await self._check_raise_for_error(cell, cell_index, exec_reply)


self = <testbook.client.TestbookNotebookClient object at 0x7fbb83c0c6a0>
cell = {'cell_type': 'code', 'execution_count': 8, 'id': '8d204def', 'metadata': {'execution': {'iopub.status.busy': '2022-11...ge)\nexample_workflow.fit_transform(train).to_parquet('train')\nexample_workflow.transform(valid).to_parquet('valid')"}
cell_index = 16
exec_reply = {'buffers': [], 'content': {'ename': 'RuntimeError', 'engine_info': {'engine_id': -1, 'engine_uuid': '19495ff7-84a7-41...e, 'engine': '19495ff7-84a7-41ae-a599-28775807307d', 'started': '2022-11-29T17:54:39.834269Z', 'status': 'error'}, ...}

async def _check_raise_for_error(
    self, cell: NotebookNode, cell_index: int, exec_reply: t.Optional[t.Dict]
) -> None:

    if exec_reply is None:
        return None

    exec_reply_content = exec_reply['content']
    if exec_reply_content['status'] != 'error':
        return None

    cell_allows_errors = (not self.force_raise_errors) and (
        self.allow_errors
        or exec_reply_content.get('ename') in self.allow_error_names
        or "raises-exception" in cell.metadata.get("tags", [])
    )
    await run_hook(self.on_cell_error, cell=cell, cell_index=cell_index)
    if not cell_allows_errors:
      raise CellExecutionError.from_cell_and_msg(cell, exec_reply_content)

E nbclient.exceptions.CellExecutionError: An error occurred while executing the following cell:
E ------------------
E categories = ['userId', 'movieId', 'zipcode'] >> nvt.ops.Categorify(freq_threshold=10)
E age = ['age'] >> nvt.ops.Bucketize([0, 10, 21, 45])
E
E example_workflow = nvt.Workflow(categories + age)
E example_workflow.fit_transform(train).to_parquet('train')
E example_workflow.transform(valid).to_parquet('valid')
E ------------------
E
E �[0;31m---------------------------------------------------------------------------�[0m
E �[0;31mRuntimeError�[0m Traceback (most recent call last)
E Cell �[0;32mIn [8], line 5�[0m
E �[1;32m 2�[0m age �[38;5;241m=�[39m [�[38;5;124m'�[39m�[38;5;124mage�[39m�[38;5;124m'�[39m] �[38;5;241m>>�[39m nvt�[38;5;241m.�[39mops�[38;5;241m.�[39mBucketize([�[38;5;241m0�[39m, �[38;5;241m10�[39m, �[38;5;241m21�[39m, �[38;5;241m45�[39m])
E �[1;32m 4�[0m example_workflow �[38;5;241m=�[39m nvt�[38;5;241m.�[39mWorkflow(categories �[38;5;241m+�[39m age)
E �[0;32m----> 5�[0m �[43mexample_workflow�[49m�[38;5;241;43m.�[39;49m�[43mfit_transform�[49m�[43m(�[49m�[43mtrain�[49m�[43m)�[49m�[38;5;241m.�[39mto_parquet(�[38;5;124m'�[39m�[38;5;124mtrain�[39m�[38;5;124m'�[39m)
E �[1;32m 6�[0m example_workflow�[38;5;241m.�[39mtransform(valid)�[38;5;241m.�[39mto_parquet(�[38;5;124m'�[39m�[38;5;124mvalid�[39m�[38;5;124m'�[39m)
E
E File �[0;32m~/workspace/nvtabular_tests/nvtabular/nvtabular/workflow/workflow.py:234�[0m, in �[0;36mWorkflow.fit_transform�[0;34m(self, dataset)�[0m
E �[1;32m 214�[0m �[38;5;28;01mdef�[39;00m �[38;5;21mfit_transform�[39m(�[38;5;28mself�[39m, dataset: Dataset) �[38;5;241m-�[39m�[38;5;241m>�[39m Dataset:
E �[1;32m 215�[0m �[38;5;124;03m"""Convenience method to both fit the workflow and transform the dataset in a single�[39;00m
E �[1;32m 216�[0m �[38;5;124;03m call. Equivalent to calling workflow.fit(dataset) followed by�[39;00m
E �[1;32m 217�[0m �[38;5;124;03m workflow.transform(dataset)�[39;00m
E �[0;32m (...)�[0m
E �[1;32m 232�[0m �[38;5;124;03m transform�[39;00m
E �[1;32m 233�[0m �[38;5;124;03m """�[39;00m
E �[0;32m--> 234�[0m �[38;5;28;43mself�[39;49m�[38;5;241;43m.�[39;49m�[43mfit�[49m�[43m(�[49m�[43mdataset�[49m�[43m)�[49m
E �[1;32m 235�[0m �[38;5;28;01mreturn�[39;00m �[38;5;28mself�[39m�[38;5;241m.�[39mtransform(dataset)
E
E File �[0;32m~/workspace/nvtabular_tests/nvtabular/nvtabular/workflow/workflow.py:198�[0m, in �[0;36mWorkflow.fit�[0;34m(self, dataset)�[0m
E �[1;32m 194�[0m �[38;5;28;01mif�[39;00m �[38;5;129;01mnot�[39;00m current_phase:
E �[1;32m 195�[0m �[38;5;66;03m# this shouldn't happen, but lets not infinite loop just in case�[39;00m
E �[1;32m 196�[0m �[38;5;28;01mraise�[39;00m �[38;5;167;01mRuntimeError�[39;00m(�[38;5;124m"�[39m�[38;5;124mfailed to find dependency-free StatOperator to fit�[39m�[38;5;124m"�[39m)
E �[0;32m--> 198�[0m �[38;5;28;43mself�[39;49m�[38;5;241;43m.�[39;49m�[43mexecutor�[49m�[38;5;241;43m.�[39;49m�[43mfit�[49m�[43m(�[49m�[43mddf�[49m�[43m,�[49m�[43m �[49m�[43mcurrent_phase�[49m�[43m)�[49m
E �[1;32m 200�[0m �[38;5;66;03m# Remove all the operators we processed in this phase, and remove�[39;00m
E �[1;32m 201�[0m �[38;5;66;03m# from the dependencies of other ops too�[39;00m
E �[1;32m 202�[0m �[38;5;28;01mfor�[39;00m node �[38;5;129;01min�[39;00m current_phase:
E
E File �[0;32m~/workspace/nvtabular_tests/nvtabular/.tox/test-gpu/lib/python3.8/site-packages/merlin/dag/executors.py:334�[0m, in �[0;36mDaskExecutor.fit�[0;34m(self, ddf, nodes)�[0m
E �[1;32m 332�[0m dask_client �[38;5;241m=�[39m global_dask_client()
E �[1;32m 333�[0m �[38;5;28;01mif�[39;00m dask_client:
E �[0;32m--> 334�[0m results �[38;5;241m=�[39m [r�[38;5;241m.�[39mresult() �[38;5;28;01mfor�[39;00m r �[38;5;129;01min�[39;00m dask_client�[38;5;241m.�[39mcompute(stats)]
E �[1;32m 335�[0m �[38;5;28;01melse�[39;00m:
E �[1;32m 336�[0m results �[38;5;241m=�[39m dask�[38;5;241m.�[39mcompute(stats, scheduler�[38;5;241m=�[39m�[38;5;124m"�[39m�[38;5;124msynchronous�[39m�[38;5;124m"�[39m)[�[38;5;241m0�[39m]
E
E File �[0;32m~/workspace/nvtabular_tests/nvtabular/.tox/test-gpu/lib/python3.8/site-packages/merlin/dag/executors.py:334�[0m, in �[0;36m�[0;34m(.0)�[0m
E �[1;32m 332�[0m dask_client �[38;5;241m=�[39m global_dask_client()
E �[1;32m 333�[0m �[38;5;28;01mif�[39;00m dask_client:
E �[0;32m--> 334�[0m results �[38;5;241m=�[39m [�[43mr�[49m�[38;5;241;43m.�[39;49m�[43mresult�[49m�[43m(�[49m�[43m)�[49m �[38;5;28;01mfor�[39;00m r �[38;5;129;01min�[39;00m dask_client�[38;5;241m.�[39mcompute(stats)]
E �[1;32m 335�[0m �[38;5;28;01melse�[39;00m:
E �[1;32m 336�[0m results �[38;5;241m=�[39m dask�[38;5;241m.�[39mcompute(stats, scheduler�[38;5;241m=�[39m�[38;5;124m"�[39m�[38;5;124msynchronous�[39m�[38;5;124m"�[39m)[�[38;5;241m0�[39m]
E
E File �[0;32m~/.local/lib/python3.8/site-packages/distributed/client.py:279�[0m, in �[0;36mFuture.result�[0;34m(self, timeout)�[0m
E �[1;32m 277�[0m �[38;5;28;01mif�[39;00m �[38;5;28mself�[39m�[38;5;241m.�[39mstatus �[38;5;241m==�[39m �[38;5;124m"�[39m�[38;5;124merror�[39m�[38;5;124m"�[39m:
E �[1;32m 278�[0m typ, exc, tb �[38;5;241m=�[39m result
E �[0;32m--> 279�[0m �[38;5;28;01mraise�[39;00m exc�[38;5;241m.�[39mwith_traceback(tb)
E �[1;32m 280�[0m �[38;5;28;01melif�[39;00m �[38;5;28mself�[39m�[38;5;241m.�[39mstatus �[38;5;241m==�[39m �[38;5;124m"�[39m�[38;5;124mcancelled�[39m�[38;5;124m"�[39m:
E �[1;32m 281�[0m �[38;5;28;01mraise�[39;00m result
E
E File �[0;32m/usr/local/lib/python3.8/dist-packages/nvtx/nvtx.py:101�[0m, in �[0;36minner�[0;34m()�[0m
E �[1;32m 98�[0m �[38;5;129m@wraps�[39m(func)
E �[1;32m 99�[0m �[38;5;28;01mdef�[39;00m �[38;5;21minner�[39m(�[38;5;241m�[39margs, �[38;5;241m�[39m�[38;5;241m�[39mkwargs):
E �[1;32m 100�[0m libnvtx_push_range(�[38;5;28mself�[39m�[38;5;241m.�[39mattributes, �[38;5;28mself�[39m�[38;5;241m.�[39mdomain�[38;5;241m.�[39mhandle)
E �[0;32m--> 101�[0m result �[38;5;241m=�[39m func(�[38;5;241m
�[39margs, �[38;5;241m�[39m�[38;5;241m�[39mkwargs)
E �[1;32m 102�[0m libnvtx_pop_range(�[38;5;28mself�[39m�[38;5;241m.�[39mdomain�[38;5;241m.�[39mhandle)
E �[1;32m 103�[0m �[38;5;28;01mreturn�[39;00m result
E
E File �[0;32m~/workspace/nvtabular_tests/nvtabular/nvtabular/ops/categorify.py:833�[0m, in �[0;36m_mid_level_groupby�[0;34m()�[0m
E �[1;32m 829�[0m �[38;5;28;01mif�[39;00m options�[38;5;241m.�[39mon_host �[38;5;129;01mand�[39;00m �[38;5;129;01mnot�[39;00m is_cpu_object(dfs[�[38;5;241m0�[39m]):
E �[1;32m 830�[0m �[38;5;66;03m# Construct gpu DataFrame from pyarrow data.�[39;00m
E �[1;32m 831�[0m �[38;5;66;03m# on_host=True implies gpu-backed data.�[39;00m
E �[1;32m 832�[0m df �[38;5;241m=�[39m pa�[38;5;241m.�[39mconcat_tables(dfs, promote�[38;5;241m=�[39m�[38;5;28;01mTrue�[39;00m)
E �[0;32m--> 833�[0m df �[38;5;241m=�[39m dispatch�[38;5;241m.�[39mfrom_host(df)
E �[1;32m 834�[0m �[38;5;28;01melse�[39;00m:
E �[1;32m 835�[0m df �[38;5;241m=�[39m _concat(dfs, ignore_index�[38;5;241m=�[39m�[38;5;28;01mTrue�[39;00m)
E
E File �[0;32m~/workspace/nvtabular_tests/nvtabular/.tox/test-gpu/lib/python3.8/site-packages/merlin/core/dispatch.py:605�[0m, in �[0;36mfrom_host�[0;34m()�[0m
E �[1;32m 603�[0m �[38;5;28;01mreturn�[39;00m x
E �[1;32m 604�[0m �[38;5;28;01melse�[39;00m:
E �[0;32m--> 605�[0m �[38;5;28;01mreturn�[39;00m cudf�[38;5;241m.�[39mDataFrame�[38;5;241m.�[39mfrom_arrow(x)
E
E File �[0;32m/usr/local/lib/python3.8/dist-packages/nvtx/nvtx.py:101�[0m, in �[0;36minner�[0;34m()�[0m
E �[1;32m 98�[0m �[38;5;129m@wraps�[39m(func)
E �[1;32m 99�[0m �[38;5;28;01mdef�[39;00m �[38;5;21minner�[39m(�[38;5;241m�[39margs, �[38;5;241m�[39m�[38;5;241m�[39mkwargs):
E �[1;32m 100�[0m libnvtx_push_range(�[38;5;28mself�[39m�[38;5;241m.�[39mattributes, �[38;5;28mself�[39m�[38;5;241m.�[39mdomain�[38;5;241m.�[39mhandle)
E �[0;32m--> 101�[0m result �[38;5;241m=�[39m func(�[38;5;241m
�[39margs, �[38;5;241m�[39m�[38;5;241m�[39mkwargs)
E �[1;32m 102�[0m libnvtx_pop_range(�[38;5;28mself�[39m�[38;5;241m.�[39mdomain�[38;5;241m.�[39mhandle)
E �[1;32m 103�[0m �[38;5;28;01mreturn�[39;00m result
E
E File �[0;32m/usr/local/lib/python3.8/dist-packages/cudf/core/dataframe.py:4615�[0m, in �[0;36mfrom_arrow�[0;34m()�[0m
E �[1;32m 4610�[0m �[38;5;28;01mif�[39;00m �[38;5;28misinstance�[39m(table, pa�[38;5;241m.�[39mTable) �[38;5;129;01mand�[39;00m �[38;5;28misinstance�[39m(
E �[1;32m 4611�[0m table�[38;5;241m.�[39mschema�[38;5;241m.�[39mpandas_metadata, �[38;5;28mdict�[39m
E �[1;32m 4612�[0m ):
E �[1;32m 4613�[0m index_col �[38;5;241m=�[39m table�[38;5;241m.�[39mschema�[38;5;241m.�[39mpandas_metadata[�[38;5;124m"�[39m�[38;5;124mindex_columns�[39m�[38;5;124m"�[39m]
E �[0;32m-> 4615�[0m out �[38;5;241m=�[39m �[38;5;28msuper�[39m()�[38;5;241m.�[39mfrom_arrow(table)
E �[1;32m 4617�[0m �[38;5;28;01mif�[39;00m index_col:
E �[1;32m 4618�[0m �[38;5;28;01mif�[39;00m �[38;5;28misinstance�[39m(index_col[�[38;5;241m0�[39m], �[38;5;28mdict�[39m):
E
E File �[0;32m/usr/local/lib/python3.8/dist-packages/nvtx/nvtx.py:101�[0m, in �[0;36minner�[0;34m()�[0m
E �[1;32m 98�[0m �[38;5;129m@wraps�[39m(func)
E �[1;32m 99�[0m �[38;5;28;01mdef�[39;00m �[38;5;21minner�[39m(�[38;5;241m�[39margs, �[38;5;241m�[39m�[38;5;241m�[39mkwargs):
E �[1;32m 100�[0m libnvtx_push_range(�[38;5;28mself�[39m�[38;5;241m.�[39mattributes, �[38;5;28mself�[39m�[38;5;241m.�[39mdomain�[38;5;241m.�[39mhandle)
E �[0;32m--> 101�[0m result �[38;5;241m=�[39m func(�[38;5;241m
�[39margs, �[38;5;241m�[39m�[38;5;241m�[39mkwargs)
E �[1;32m 102�[0m libnvtx_pop_range(�[38;5;28mself�[39m�[38;5;241m.�[39mdomain�[38;5;241m.�[39mhandle)
E �[1;32m 103�[0m �[38;5;28;01mreturn�[39;00m result
E
E File �[0;32m/usr/local/lib/python3.8/dist-packages/cudf/core/frame.py:1418�[0m, in �[0;36mfrom_arrow�[0;34m()�[0m
E �[1;32m 1401�[0m cudf_category_frame �[38;5;241m=�[39m {
E �[1;32m 1402�[0m name: build_categorical_column(
E �[1;32m 1403�[0m cudf_dictionaries_columns[name],
E �[0;32m (...)�[0m
E �[1;32m 1411�[0m )
E �[1;32m 1412�[0m }
E �[1;32m 1414�[0m �[38;5;66;03m# Handle non-dict arrays�[39;00m
E �[1;32m 1415�[0m cudf_non_category_frame �[38;5;241m=�[39m {
E �[1;32m 1416�[0m name: col
E �[1;32m 1417�[0m �[38;5;28;01mfor�[39;00m name, col �[38;5;129;01min�[39;00m �[38;5;28mzip�[39m(
E �[0;32m-> 1418�[0m data�[38;5;241m.�[39mcolumn_names, libcudf�[38;5;241m.�[39minterop�[38;5;241m.�[39mfrom_arrow(data)
E �[1;32m 1419�[0m )
E �[1;32m 1420�[0m }
E �[1;32m 1422�[0m result �[38;5;241m=�[39m {�[38;5;241m�[39m�[38;5;241m�[39mcudf_non_category_frame, �[38;5;241m�[39m�[38;5;241m�[39mcudf_category_frame}
E �[1;32m 1424�[0m �[38;5;66;03m# There are some special cases that need to be handled�[39;00m
E �[1;32m 1425�[0m �[38;5;66;03m# based on metadata.�[39;00m
E
E File �[0;32mcudf/_lib/interop.pyx:150�[0m, in �[0;36mcudf._lib.interop.from_arrow�[0;34m()�[0m
E
E �[0;31mRuntimeError�[0m: CUDA error encountered at: ../src/bitmask/null_mask.cu:93: 2 cudaErrorMemoryAllocation out of memory
E RuntimeError: CUDA error encountered at: ../src/bitmask/null_mask.cu:93: 2 cudaErrorMemoryAllocation out of memory

../../../.local/lib/python3.8/site-packages/nbclient/client.py:862: CellExecutionError
----------------------------- Captured stderr call -----------------------------
2022-11-29 17:54:38,122 - distributed.preloading - INFO - Import preload module: dask_cuda.initialize
2022-11-29 17:54:38,156 - distributed.preloading - INFO - Import preload module: dask_cuda.initialize
2022-11-29 17:54:38,157 - distributed.preloading - INFO - Import preload module: dask_cuda.initialize
2022-11-29 17:54:38,222 - distributed.preloading - INFO - Import preload module: dask_cuda.initialize
2022-11-29 17:54:42,035 - distributed.worker - WARNING - Compute Failed
Key: ('level_2-3fe3f94678ad7cf6cb6240303ad14b12', 2, 2)
Function: _mid_level_groupby
args: ([pyarrow.Table
zipcode: int32
zipcode_size: int32

zipcode: [[396,2069,71,2692,1149,1268,2560,1566,2264,2360,...,1836,1090,1435,1540,679,1872,1665,2794,465,1305]]
zipcode_size: [[2,1,1,1,1,1,1,1,1,1,...,1,1,1,1,1,1,1,2,1,2]]], <merlin.dag.selector.ColumnSelector object at 0x7f7ff02d7b20>, 10, FitOptions(col_groups=[<merlin.dag.selector.ColumnSelector object at 0x7f84547c5d90>, <merlin.dag.selector.ColumnSelector object at 0x7f7fef972580>, <merlin.dag.selector.ColumnSelector object at 0x7f7ff02d7b20>], agg_cols=[], agg_list=['size'], out_path='./', freq_limit=10, tree_width={'userId': 8, 'movieId': 8, 'zipcode': 8}, on_host=True, stat_name='categories', concat_groups=True, name_sep='_', max_size=0, num_buckets=None, start_index=0, cardinality_memory_limit=2133663744))
kwargs: {}
Exception: "RuntimeError('CUDA error encountered at: ../src/bitmask/null_mask.cu:93: 2 cudaErrorMemoryAllocation out of memory')"

2022-11-29 17:54:42,054 - distributed.worker - WARNING - Compute Failed
Key: ('level_2-3fe3f94678ad7cf6cb6240303ad14b12', 2, 3)
Function: _mid_level_groupby
args: ([pyarrow.Table
zipcode: int32
zipcode_size: int32

zipcode: [[274,1758,1249,2856,1097,1252,2053,1990,1598,3360,...,1869,1620,566,2436,489,115,1507,1744,475,3367]]
zipcode_size: [[2,1,2,1,1,1,1,1,1,1,...,1,1,1,2,1,1,1,2,1,1]]], <merlin.dag.selector.ColumnSelector object at 0x7f845644bf40>, 10, FitOptions(col_groups=[<merlin.dag.selector.ColumnSelector object at 0x7f84547c5b50>, <merlin.dag.selector.ColumnSelector object at 0x7f7ff01eba00>, <merlin.dag.selector.ColumnSelector object at 0x7f845644bf40>], agg_cols=[], agg_list=['size'], out_path='./', freq_limit=10, tree_width={'userId': 8, 'movieId': 8, 'zipcode': 8}, on_host=True, stat_name='categories', concat_groups=True, name_sep='_', max_size=0, num_buckets=None, start_index=0, cardinality_memory_limit=2133663744))
kwargs: {}
Exception: "RuntimeError('CUDA error encountered at: ../src/bitmask/null_mask.cu:93: 2 cudaErrorMemoryAllocation out of memory')"

/var/jenkins_home/workspace/nvtabular_tests/nvtabular/.tox/test-gpu/lib/python3.8/site-packages/merlin/schema/tags.py:148: UserWarning: Compound tags like Tags.USER_ID have been deprecated and will be removed in a future version. Please use the atomic versions of these tags, like [<Tags.USER: 'user'>, <Tags.ID: 'id'>].
warnings.warn(
/var/jenkins_home/workspace/nvtabular_tests/nvtabular/.tox/test-gpu/lib/python3.8/site-packages/merlin/schema/tags.py:148: UserWarning: Compound tags like Tags.ITEM_ID have been deprecated and will be removed in a future version. Please use the atomic versions of these tags, like [<Tags.ITEM: 'item'>, <Tags.ID: 'id'>].
warnings.warn(
__________________ test_gpu_dl_break[None-parquet-1000-0.001] __________________

tmpdir = local('/tmp/pytest-of-jenkins/pytest-8/test_gpu_dl_break_None_parquet0')
df = name-cat name-string id label x y
0 Zelda Michael 1005 1079 0.349774 -0.43511...n 951 1005 0.593635 -0.878707
4320 Ursula Sarah 994 1060 -0.579977 0.275699

[4321 rows x 6 columns]
dataset = <merlin.io.dataset.Dataset object at 0x7fbb587a6220>
batch_size = 1000, part_mem_fraction = 0.001, engine = 'parquet', device = None

@pytest.mark.parametrize("part_mem_fraction", [0.001, 0.06])
@pytest.mark.parametrize("batch_size", [1000])
@pytest.mark.parametrize("engine", ["parquet"])
@pytest.mark.parametrize("device", [None, 0])
def test_gpu_dl_break(tmpdir, df, dataset, batch_size, part_mem_fraction, engine, device):
    cat_names = ["name-cat", "name-string"]
    cont_names = ["x", "y", "id"]
    label_name = ["label"]

    conts = cont_names >> ops.FillMedian() >> ops.Normalize()
    cats = cat_names >> ops.Categorify()

    processor = nvt.Workflow(conts + cats + label_name)

    output_train = os.path.join(tmpdir, "train/")
    os.mkdir(output_train)

    processor.fit_transform(dataset).to_parquet(
        shuffle=nvt.io.Shuffle.PER_PARTITION,
        output_path=output_train,
        out_files_per_proc=2,
    )

    tar_paths = [
        os.path.join(output_train, x) for x in os.listdir(output_train) if x.endswith("parquet")
    ]

    nvt_data = nvt.Dataset(tar_paths[0], engine="parquet", part_mem_fraction=part_mem_fraction)
    data_itr = torch_dataloader.TorchAsyncItr(
        nvt_data,
        batch_size=batch_size,
        cats=cat_names,
        conts=cont_names,
        labels=["label"],
        device=device,
    )
    len_dl = len(data_itr) - 1

    first_chunk = 0
    idx = 0
    for idx, chunk in enumerate(data_itr):
        if idx == 0:
            first_chunk = len(chunk[0])
        last_chk = len(chunk[0])
        print(last_chk)
        if idx == 1:
            break
        del chunk

    assert idx < len_dl

    first_chunk_2 = 0
    for idx, chunk in enumerate(data_itr):
        if idx == 0:
            first_chunk_2 = len(chunk[0])
        del chunk
  assert idx == len_dl

E assert 0 == 2

tests/unit/loader/test_torch_dataloader.py:301: AssertionError
----------------------------- Captured stdout call -----------------------------
5
5
__________________ test_gpu_dl_break[None-parquet-1000-0.06] ___________________

tmpdir = local('/tmp/pytest-of-jenkins/pytest-8/test_gpu_dl_break_None_parquet1')
df = name-cat name-string id label x y
0 Zelda Michael 1005 1079 0.349774 -0.43511...n 951 1005 0.593635 -0.878707
4320 Ursula Sarah 994 1060 -0.579977 0.275699

[4321 rows x 6 columns]
dataset = <merlin.io.dataset.Dataset object at 0x7fbb9b15f7c0>
batch_size = 1000, part_mem_fraction = 0.06, engine = 'parquet', device = None

@pytest.mark.parametrize("part_mem_fraction", [0.001, 0.06])
@pytest.mark.parametrize("batch_size", [1000])
@pytest.mark.parametrize("engine", ["parquet"])
@pytest.mark.parametrize("device", [None, 0])
def test_gpu_dl_break(tmpdir, df, dataset, batch_size, part_mem_fraction, engine, device):
    cat_names = ["name-cat", "name-string"]
    cont_names = ["x", "y", "id"]
    label_name = ["label"]

    conts = cont_names >> ops.FillMedian() >> ops.Normalize()
    cats = cat_names >> ops.Categorify()

    processor = nvt.Workflow(conts + cats + label_name)

    output_train = os.path.join(tmpdir, "train/")
    os.mkdir(output_train)

    processor.fit_transform(dataset).to_parquet(
        shuffle=nvt.io.Shuffle.PER_PARTITION,
        output_path=output_train,
        out_files_per_proc=2,
    )

    tar_paths = [
        os.path.join(output_train, x) for x in os.listdir(output_train) if x.endswith("parquet")
    ]

    nvt_data = nvt.Dataset(tar_paths[0], engine="parquet", part_mem_fraction=part_mem_fraction)
    data_itr = torch_dataloader.TorchAsyncItr(
        nvt_data,
        batch_size=batch_size,
        cats=cat_names,
        conts=cont_names,
        labels=["label"],
        device=device,
    )
    len_dl = len(data_itr) - 1

    first_chunk = 0
    idx = 0
    for idx, chunk in enumerate(data_itr):
        if idx == 0:
            first_chunk = len(chunk[0])
        last_chk = len(chunk[0])
        print(last_chk)
        if idx == 1:
            break
        del chunk

    assert idx < len_dl

    first_chunk_2 = 0
    for idx, chunk in enumerate(data_itr):
        if idx == 0:
            first_chunk_2 = len(chunk[0])
        del chunk
  assert idx == len_dl

E assert 0 == 2

tests/unit/loader/test_torch_dataloader.py:301: AssertionError
----------------------------- Captured stdout call -----------------------------
5
5
___________________ test_gpu_dl_break[0-parquet-1000-0.001] ____________________

tmpdir = local('/tmp/pytest-of-jenkins/pytest-8/test_gpu_dl_break_0_parquet_100')
df = name-cat name-string id label x y
0 Zelda Michael 1005 1079 0.349774 -0.43511...n 951 1005 0.593635 -0.878707
4320 Ursula Sarah 994 1060 -0.579977 0.275699

[4321 rows x 6 columns]
dataset = <merlin.io.dataset.Dataset object at 0x7fbb587bcd90>
batch_size = 1000, part_mem_fraction = 0.001, engine = 'parquet', device = 0

@pytest.mark.parametrize("part_mem_fraction", [0.001, 0.06])
@pytest.mark.parametrize("batch_size", [1000])
@pytest.mark.parametrize("engine", ["parquet"])
@pytest.mark.parametrize("device", [None, 0])
def test_gpu_dl_break(tmpdir, df, dataset, batch_size, part_mem_fraction, engine, device):
    cat_names = ["name-cat", "name-string"]
    cont_names = ["x", "y", "id"]
    label_name = ["label"]

    conts = cont_names >> ops.FillMedian() >> ops.Normalize()
    cats = cat_names >> ops.Categorify()

    processor = nvt.Workflow(conts + cats + label_name)

    output_train = os.path.join(tmpdir, "train/")
    os.mkdir(output_train)

    processor.fit_transform(dataset).to_parquet(
        shuffle=nvt.io.Shuffle.PER_PARTITION,
        output_path=output_train,
        out_files_per_proc=2,
    )

    tar_paths = [
        os.path.join(output_train, x) for x in os.listdir(output_train) if x.endswith("parquet")
    ]

    nvt_data = nvt.Dataset(tar_paths[0], engine="parquet", part_mem_fraction=part_mem_fraction)
    data_itr = torch_dataloader.TorchAsyncItr(
        nvt_data,
        batch_size=batch_size,
        cats=cat_names,
        conts=cont_names,
        labels=["label"],
        device=device,
    )
    len_dl = len(data_itr) - 1

    first_chunk = 0
    idx = 0
    for idx, chunk in enumerate(data_itr):
        if idx == 0:
            first_chunk = len(chunk[0])
        last_chk = len(chunk[0])
        print(last_chk)
        if idx == 1:
            break
        del chunk

    assert idx < len_dl

    first_chunk_2 = 0
    for idx, chunk in enumerate(data_itr):
        if idx == 0:
            first_chunk_2 = len(chunk[0])
        del chunk
  assert idx == len_dl

E assert 0 == 2

tests/unit/loader/test_torch_dataloader.py:301: AssertionError
----------------------------- Captured stdout call -----------------------------
5
5
____________________ test_gpu_dl_break[0-parquet-1000-0.06] ____________________

tmpdir = local('/tmp/pytest-of-jenkins/pytest-8/test_gpu_dl_break_0_parquet_101')
df = name-cat name-string id label x y
0 Zelda Michael 1005 1079 0.349774 -0.43511...n 951 1005 0.593635 -0.878707
4320 Ursula Sarah 994 1060 -0.579977 0.275699

[4321 rows x 6 columns]
dataset = <merlin.io.dataset.Dataset object at 0x7fbb5863b4c0>
batch_size = 1000, part_mem_fraction = 0.06, engine = 'parquet', device = 0

@pytest.mark.parametrize("part_mem_fraction", [0.001, 0.06])
@pytest.mark.parametrize("batch_size", [1000])
@pytest.mark.parametrize("engine", ["parquet"])
@pytest.mark.parametrize("device", [None, 0])
def test_gpu_dl_break(tmpdir, df, dataset, batch_size, part_mem_fraction, engine, device):
    cat_names = ["name-cat", "name-string"]
    cont_names = ["x", "y", "id"]
    label_name = ["label"]

    conts = cont_names >> ops.FillMedian() >> ops.Normalize()
    cats = cat_names >> ops.Categorify()

    processor = nvt.Workflow(conts + cats + label_name)

    output_train = os.path.join(tmpdir, "train/")
    os.mkdir(output_train)

    processor.fit_transform(dataset).to_parquet(
        shuffle=nvt.io.Shuffle.PER_PARTITION,
        output_path=output_train,
        out_files_per_proc=2,
    )

    tar_paths = [
        os.path.join(output_train, x) for x in os.listdir(output_train) if x.endswith("parquet")
    ]

    nvt_data = nvt.Dataset(tar_paths[0], engine="parquet", part_mem_fraction=part_mem_fraction)
    data_itr = torch_dataloader.TorchAsyncItr(
        nvt_data,
        batch_size=batch_size,
        cats=cat_names,
        conts=cont_names,
        labels=["label"],
        device=device,
    )
    len_dl = len(data_itr) - 1

    first_chunk = 0
    idx = 0
    for idx, chunk in enumerate(data_itr):
        if idx == 0:
            first_chunk = len(chunk[0])
        last_chk = len(chunk[0])
        print(last_chk)
        if idx == 1:
            break
        del chunk

    assert idx < len_dl

    first_chunk_2 = 0
    for idx, chunk in enumerate(data_itr):
        if idx == 0:
            first_chunk_2 = len(chunk[0])
        del chunk
  assert idx == len_dl

E assert 0 == 2

tests/unit/loader/test_torch_dataloader.py:301: AssertionError
----------------------------- Captured stdout call -----------------------------
5
5
=============================== warnings summary ===============================
../../../../../usr/local/lib/python3.8/dist-packages/dask_cudf/core.py:33
/usr/local/lib/python3.8/dist-packages/dask_cudf/core.py:33: DeprecationWarning: distutils Version classes are deprecated. Use packaging.version instead.
DASK_VERSION = LooseVersion(dask.version)

.tox/test-gpu/lib/python3.8/site-packages/setuptools/_distutils/version.py:346: 34 warnings
/var/jenkins_home/workspace/nvtabular_tests/nvtabular/.tox/test-gpu/lib/python3.8/site-packages/setuptools/_distutils/version.py:346: DeprecationWarning: distutils Version classes are deprecated. Use packaging.version instead.
other = LooseVersion(other)

tests/unit/test_dask_nvt.py: 6 warnings
tests/unit/workflow/test_workflow.py: 78 warnings
/var/jenkins_home/.local/lib/python3.8/site-packages/dask/base.py:1282: UserWarning: Running on a single-machine scheduler when a distributed client is active might lead to unexpected results.
warnings.warn(

tests/unit/test_dask_nvt.py::test_merlin_core_execution_managers
/var/jenkins_home/workspace/nvtabular_tests/nvtabular/.tox/test-gpu/lib/python3.8/site-packages/merlin/core/utils.py:431: UserWarning: Existing Dask-client object detected in the current context. New cuda cluster will not be deployed. Set force_new to True to ignore running clusters.
warnings.warn(

tests/unit/ops/test_fill.py::test_fill_missing[True-True-parquet]
tests/unit/ops/test_fill.py::test_fill_missing[True-False-parquet]
tests/unit/ops/test_ops.py::test_filter[parquet-0.1-True]
/var/jenkins_home/.local/lib/python3.8/site-packages/pandas/core/indexing.py:1732: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
self._setitem_single_block(indexer, value, name)

tests/unit/ops/test_ops_schema.py: 12 warnings
/var/jenkins_home/workspace/nvtabular_tests/nvtabular/.tox/test-gpu/lib/python3.8/site-packages/merlin/schema/tags.py:148: UserWarning: Compound tags like Tags.USER_ID have been deprecated and will be removed in a future version. Please use the atomic versions of these tags, like [<Tags.USER: 'user'>, <Tags.ID: 'id'>].
warnings.warn(

tests/unit/ops/test_ops_schema.py: 12 warnings
/var/jenkins_home/workspace/nvtabular_tests/nvtabular/.tox/test-gpu/lib/python3.8/site-packages/merlin/schema/tags.py:148: UserWarning: Compound tags like Tags.ITEM_ID have been deprecated and will be removed in a future version. Please use the atomic versions of these tags, like [<Tags.ITEM: 'item'>, <Tags.ID: 'id'>].
warnings.warn(

-- Docs: https://docs.pytest.org/en/stable/how-to/capture-warnings.html

---------- coverage: platform linux, python 3.8.10-final-0 -----------
Name Stmts Miss Cover

merlin/transforms/init.py 1 1 0%
merlin/transforms/ops/init.py 1 1 0%

TOTAL 2 2 0%

=========================== short test summary info ============================
SKIPPED [1] ../../../../../usr/local/lib/python3.8/dist-packages/dask_cudf/io/tests/test_s3.py:14: could not import 'moto': No module named 'moto'
SKIPPED [1] tests/unit/loader/test_tf_dataloader.py:529: not working correctly in ci environment
===== 6 failed, 1432 passed, 2 skipped, 147 warnings in 1327.85s (0:22:07) =====
/usr/local/lib/python3.8/dist-packages/coverage/control.py:801: CoverageWarning: No data was collected. (no-data-collected)
self._warn("No data was collected.", slug="no-data-collected")
/usr/local/lib/python3.8/dist-packages/coverage/data.py:130: CoverageWarning: Data file '/var/jenkins_home/workspace/nvtabular_tests/nvtabular/.coverage.10.20.17.231.27700.385647' doesn't seem to be a coverage data file: cannot unpack non-iterable NoneType object
data._warn(str(exc))
ERROR: InvocationError for command /var/jenkins_home/workspace/nvtabular_tests/nvtabular/.tox/test-gpu/bin/python -m pytest --cov-report term --cov merlin -rxs tests/unit (exited with code 1)
___________________________________ summary ____________________________________
ERROR: test-gpu: commands failed
Build step 'Execute shell' marked build as failure
Performing Post build task...
Match found for : : True
Logical operation result is TRUE
Running script : #!/bin/bash
cd /var/jenkins_home/
CUDA_VISIBLE_DEVICES=1 python test_res_push.py "https://api.GitHub.com/repos/NVIDIA-Merlin/NVTabular/issues/$ghprbPullId/comments" "/var/jenkins_home/jobs/$JOB_NAME/builds/$BUILD_NUMBER/log"
[nvtabular_tests] $ /bin/bash /tmp/jenkins3268966066333387406.sh

@mikemckiernan
Copy link
Member Author

rerun tests

@nvidia-merlin-bot
Copy link
Contributor

Click to view CI Results
GitHub pull request #1719 of commit 0f3608c168e39aa4933c856d12dadc4d3f6016a8, no merge conflicts.
GitHub pull request #1719 of commit 0f3608c168e39aa4933c856d12dadc4d3f6016a8, no merge conflicts.
Running as SYSTEM
Setting status of 0f3608c168e39aa4933c856d12dadc4d3f6016a8 to PENDING with url http://merlin-infra1.nvidia.com:8080/job/nvtabular_tests/4909/ and message: 'Build started for merge commit.'
Using context: Jenkins Unit Test Run
Building on master in workspace /var/jenkins_home/workspace/nvtabular_tests
using credential nvidia-merlin-bot
Cloning the remote Git repository
Cloning repository https://github.com/NVIDIA-Merlin/NVTabular.git
 > git init /var/jenkins_home/workspace/nvtabular_tests/nvtabular # timeout=10
Fetching upstream changes from https://github.com/NVIDIA-Merlin/NVTabular.git
 > git --version # timeout=10
using GIT_ASKPASS to set credentials This is the bot credentials for our CI/CD
 > git fetch --tags --force --progress -- https://github.com/NVIDIA-Merlin/NVTabular.git +refs/heads/*:refs/remotes/origin/* # timeout=10
 > git config remote.origin.url https://github.com/NVIDIA-Merlin/NVTabular.git # timeout=10
 > git config --add remote.origin.fetch +refs/heads/*:refs/remotes/origin/* # timeout=10
 > git config remote.origin.url https://github.com/NVIDIA-Merlin/NVTabular.git # timeout=10
Fetching upstream changes from https://github.com/NVIDIA-Merlin/NVTabular.git
using GIT_ASKPASS to set credentials This is the bot credentials for our CI/CD
 > git fetch --tags --force --progress -- https://github.com/NVIDIA-Merlin/NVTabular.git +refs/pull/1719/*:refs/remotes/origin/pr/1719/* # timeout=10
 > git rev-parse 0f3608c168e39aa4933c856d12dadc4d3f6016a8^{commit} # timeout=10
Checking out Revision 0f3608c168e39aa4933c856d12dadc4d3f6016a8 (detached)
 > git config core.sparsecheckout # timeout=10
 > git checkout -f 0f3608c168e39aa4933c856d12dadc4d3f6016a8 # timeout=10
Commit message: "Describe how to check for broken links"
 > git rev-list --no-walk 0f3608c168e39aa4933c856d12dadc4d3f6016a8 # timeout=10
[nvtabular_tests] $ /bin/bash /tmp/jenkins11195154817249845853.sh
GLOB sdist-make: /var/jenkins_home/workspace/nvtabular_tests/nvtabular/setup.py
test-gpu create: /var/jenkins_home/workspace/nvtabular_tests/nvtabular/.tox/test-gpu
test-gpu installdeps: pytest, pytest-cov
WARNING: Discarding $PYTHONPATH from environment, to override specify PYTHONPATH in 'passenv' in your configuration.
test-gpu inst: /var/jenkins_home/workspace/nvtabular_tests/nvtabular/.tox/.tmp/package/1/nvtabular-1.6.0+12.g0f3608c1.zip
WARNING: Discarding $PYTHONPATH from environment, to override specify PYTHONPATH in 'passenv' in your configuration.
test-gpu installed: absl-py==1.2.0,aiohttp==3.8.1,aiosignal==1.2.0,alabaster==0.7.12,alembic==1.8.1,anyio==3.6.1,argon2-cffi==21.3.0,argon2-cffi-bindings==21.2.0,astroid==2.5.6,asttokens==2.0.8,astunparse==1.6.3,asv==0.5.1,asvdb==0.4.2,async-timeout==4.0.2,attrs==22.1.0,autopage==0.5.1,awscli==1.27.18,Babel==2.10.3,backcall==0.2.0,beautifulsoup4==4.11.1,betterproto==1.2.5,black==22.6.0,bleach==5.0.1,boto3==1.24.75,botocore==1.29.18,Brotli==1.0.9,cachetools==5.2.0,certifi==2019.11.28,cffi==1.15.1,chardet==3.0.4,charset-normalizer==2.1.1,clang==5.0,click==8.1.3,cliff==4.1.0,cloudpickle==2.2.0,cmaes==0.9.0,cmake==3.24.1.1,cmd2==2.4.2,colorama==0.4.4,colorlog==6.7.0,contourpy==1.0.5,coverage==6.5.0,cuda-python==11.7.1,cupy-cuda117==10.6.0,cycler==0.11.0,Cython==0.29.32,dask==2022.1.1,dbus-python==1.2.16,debugpy==1.6.3,decorator==5.1.1,defusedxml==0.7.1,dill==0.3.5.1,distlib==0.3.6,distributed==2022.5.1,distro==1.7.0,dm-tree==0.1.6,docker-pycreds==0.4.0,docutils==0.16,emoji==1.7.0,entrypoints==0.4,execnet==1.9.0,executing==1.0.0,faiss==1.7.2,faiss-gpu==1.7.2,fastai==2.7.9,fastapi==0.85.0,fastavro==1.6.1,fastcore==1.5.27,fastdownload==0.0.7,fastjsonschema==2.16.1,fastprogress==1.0.3,fastrlock==0.8,feast==0.19.4,fiddle==0.2.2,filelock==3.8.0,flatbuffers==1.12,fonttools==4.37.3,frozenlist==1.3.1,fsspec==2022.5.0,gast==0.4.0,gevent==21.12.0,geventhttpclient==2.0.2,gitdb==4.0.9,GitPython==3.1.27,google==3.0.0,google-api-core==2.10.1,google-auth==2.11.1,google-auth-oauthlib==0.4.6,google-pasta==0.2.0,googleapis-common-protos==1.52.0,graphviz==0.20.1,greenlet==1.1.3,grpcio==1.41.0,grpcio-channelz==1.49.0,grpcio-reflection==1.48.1,grpclib==0.4.3,h11==0.13.0,h2==4.1.0,h5py==3.7.0,HeapDict==1.0.1,horovod==0.26.1,hpack==4.0.0,httptools==0.5.0,hugectr2onnx==0.0.0,huggingface-hub==0.9.1,hyperframe==6.0.1,idna==2.8,imagesize==1.4.1,implicit==0.6.1,importlib-metadata==4.12.0,importlib-resources==5.9.0,iniconfig==1.1.1,ipykernel==6.15.3,ipython==8.5.0,ipython-genutils==0.2.0,ipywidgets==7.7.0,jedi==0.18.1,Jinja2==3.1.2,jmespath==1.0.1,joblib==1.2.0,json5==0.9.10,jsonschema==4.16.0,jupyter-cache==0.4.3,jupyter-core==4.11.1,jupyter-server==1.18.1,jupyter-server-mathjax==0.2.5,jupyter-sphinx==0.3.2,jupyter_client==7.3.5,jupyterlab==3.4.7,jupyterlab-pygments==0.2.2,jupyterlab-widgets==1.1.0,jupyterlab_server==2.15.1,keras==2.9.0,Keras-Preprocessing==1.1.2,kiwisolver==1.4.4,lazy-object-proxy==1.8.0,libclang==14.0.6,libcst==0.4.7,lightfm==1.16,lightgbm==3.3.2,linkify-it-py==1.0.3,llvmlite==0.39.1,locket==1.0.0,lxml==4.9.1,Mako==1.2.4,Markdown==3.4.1,markdown-it-py==1.1.0,MarkupSafe==2.1.1,matplotlib==3.6.0,matplotlib-inline==0.1.6,mdit-py-plugins==0.2.8,merlin-core==0.6.0+1.g5926fcf,merlin-dataloader==0.0.3,merlin-models==0.7.0+11.g280956aa4,merlin-systems==0.5.0+4.g15074ad,mistune==2.0.4,mmh3==3.0.0,mpi4py==3.1.3,msgpack==1.0.4,multidict==6.0.2,mypy-extensions==0.4.3,myst-nb==0.13.2,myst-parser==0.15.2,natsort==8.1.0,nbclassic==0.4.3,nbclient==0.6.8,nbconvert==7.0.0,nbdime==3.1.1,nbformat==5.5.0,nest-asyncio==1.5.5,ninja==1.10.2.3,notebook==6.4.12,notebook-shim==0.1.0,numba==0.56.2,numpy==1.22.4,nvidia-pyindex==1.0.9,-e git+https://github.com/NVIDIA-Merlin/NVTabular.git@0f3608c168e39aa4933c856d12dadc4d3f6016a8#egg=nvtabular,nvtx==0.2.5,oauthlib==3.2.1,oldest-supported-numpy==2022.8.16,onnx==1.12.0,onnxruntime==1.11.1,opt-einsum==3.3.0,optuna==3.0.3,packaging==21.3,pandas==1.3.5,pandavro==1.5.2,pandocfilters==1.5.0,parso==0.8.3,partd==1.3.0,pathtools==0.1.2,pbr==5.11.0,pexpect==4.8.0,pickleshare==0.7.5,Pillow==9.2.0,pkgutil_resolve_name==1.3.10,platformdirs==2.5.2,plotly==5.11.0,pluggy==1.0.0,prettytable==3.5.0,prometheus-client==0.14.1,promise==2.3,prompt-toolkit==3.0.31,proto-plus==1.19.6,protobuf==3.19.5,psutil==5.9.2,ptyprocess==0.7.0,pure-eval==0.2.2,py==1.11.0,pyarrow==7.0.0,pyasn1==0.4.8,pyasn1-modules==0.2.8,pybind11==2.10.0,pycparser==2.21,pydantic==1.10.2,pydot==1.4.2,Pygments==2.13.0,PyGObject==3.36.0,pynvml==11.4.1,pyparsing==3.0.9,pyperclip==1.8.2,pyrsistent==0.18.1,pytest==7.1.3,pytest-cov==4.0.0,pytest-xdist==3.0.2,python-apt==2.0.0+ubuntu0.20.4.8,python-dateutil==2.8.2,python-dotenv==0.21.0,python-rapidjson==1.8,pytz==2022.2.1,PyYAML==5.4.1,pyzmq==24.0.0,regex==2022.9.13,requests==2.22.0,requests-oauthlib==1.3.1,requests-unixsocket==0.2.0,rsa==4.7.2,s3fs==2022.2.0,s3transfer==0.6.0,sacremoses==0.0.53,scikit-build==0.15.0,scikit-learn==1.1.2,scipy==1.8.1,seedir==0.3.0,Send2Trash==1.8.0,sentry-sdk==1.9.8,setproctitle==1.3.2,setuptools-scm==7.0.5,shortuuid==1.0.9,six==1.15.0,sklearn==0.0,smmap==5.0.0,sniffio==1.3.0,snowballstemmer==2.2.0,sortedcontainers==2.4.0,soupsieve==2.3.2.post1,Sphinx==5.3.0,sphinx-multiversion==0.2.4,sphinx-togglebutton==0.3.1,sphinx_external_toc==0.3.0,sphinxcontrib-applehelp==1.0.2,sphinxcontrib-copydirs @ git+https://github.com/mikemckiernan/sphinxcontrib-copydirs.git@bd8c5d79b3f91cf5f1bb0d6995aeca3fe84b670e,sphinxcontrib-devhelp==1.0.2,sphinxcontrib-htmlhelp==2.0.0,sphinxcontrib-jsmath==1.0.1,sphinxcontrib-qthelp==1.0.3,sphinxcontrib-serializinghtml==1.1.5,SQLAlchemy==1.4.44,stack-data==0.5.0,starlette==0.20.4,stevedore==4.1.1,stringcase==1.2.0,supervisor==4.1.0,tabulate==0.8.10,tblib==1.7.0,tdqm==0.0.1,tenacity==8.0.1,tensorboard==2.9.1,tensorboard-data-server==0.6.1,tensorboard-plugin-wit==1.8.1,tensorflow==2.9.2,tensorflow-estimator==2.9.0,tensorflow-gpu==2.9.2,tensorflow-io-gcs-filesystem==0.27.0,tensorflow-metadata==1.10.0,termcolor==2.0.1,terminado==0.15.0,testbook==0.4.2,threadpoolctl==3.1.0,tinycss2==1.1.1,tokenizers==0.10.3,toml==0.10.2,tomli==2.0.1,toolz==0.12.0,torch==1.12.1+cu113,torchmetrics==0.3.2,tornado==6.2,tox==3.26.0,tqdm==4.64.1,traitlets==5.4.0,transformers==4.12.0,transformers4rec==0.1.12+2.gbcc939255,treelite==2.3.0,treelite-runtime==2.3.0,tritonclient==2.25.0,typing-inspect==0.8.0,typing_extensions==4.3.0,uc-micro-py==1.0.1,urllib3==1.26.12,uvicorn==0.18.3,uvloop==0.17.0,versioneer==0.20,virtualenv==20.16.5,wandb==0.13.3,watchfiles==0.17.0,wcwidth==0.2.5,webencodings==0.5.1,websocket-client==1.4.1,websockets==10.3,Werkzeug==2.2.2,widgetsnbextension==3.6.0,wrapt==1.12.1,xgboost==1.6.2,yarl==1.8.1,zict==2.2.0,zipp==3.8.1,zope.event==4.5.0,zope.interface==5.4.0
test-gpu run-test-pre: PYTHONHASHSEED='3532060263'
test-gpu run-test: commands[0] | python -m pip install --upgrade git+https://github.com/NVIDIA-Merlin/core.git
Looking in indexes: https://pypi.org/simple, https://pypi.ngc.nvidia.com
Collecting git+https://github.com/NVIDIA-Merlin/core.git
  Cloning https://github.com/NVIDIA-Merlin/core.git to /tmp/pip-req-build-49blyphb
  Running command git clone --filter=blob:none --quiet https://github.com/NVIDIA-Merlin/core.git /tmp/pip-req-build-49blyphb
  Resolved https://github.com/NVIDIA-Merlin/core.git to commit 78f1f0b0952fd14b76913b0dd258565c06694abe
  Installing build dependencies: started
  Installing build dependencies: finished with status 'done'
  Getting requirements to build wheel: started
  Getting requirements to build wheel: finished with status 'done'
  Preparing metadata (pyproject.toml): started
  Preparing metadata (pyproject.toml): finished with status 'done'
Requirement already satisfied: pandas<1.4.0dev0,>=1.2.0 in /var/jenkins_home/.local/lib/python3.8/site-packages (from merlin-core==0.9.0+13.g78f1f0b) (1.3.5)
Requirement already satisfied: tqdm>=4.0 in /usr/local/lib/python3.8/dist-packages (from merlin-core==0.9.0+13.g78f1f0b) (4.64.1)
Requirement already satisfied: packaging in /usr/local/lib/python3.8/dist-packages (from merlin-core==0.9.0+13.g78f1f0b) (21.3)
Requirement already satisfied: pyarrow>=5.0.0 in /usr/local/lib/python3.8/dist-packages (from merlin-core==0.9.0+13.g78f1f0b) (7.0.0)
Requirement already satisfied: dask>=2022.3.0 in /var/jenkins_home/.local/lib/python3.8/site-packages (from merlin-core==0.9.0+13.g78f1f0b) (2022.3.0)
Requirement already satisfied: fsspec==2022.5.0 in /var/jenkins_home/.local/lib/python3.8/site-packages (from merlin-core==0.9.0+13.g78f1f0b) (2022.5.0)
Requirement already satisfied: protobuf>=3.0.0 in /usr/local/lib/python3.8/dist-packages (from merlin-core==0.9.0+13.g78f1f0b) (3.19.5)
Requirement already satisfied: numba>=0.54 in /var/jenkins_home/.local/lib/python3.8/site-packages (from merlin-core==0.9.0+13.g78f1f0b) (0.55.1)
Requirement already satisfied: betterproto<2.0.0 in /usr/local/lib/python3.8/dist-packages (from merlin-core==0.9.0+13.g78f1f0b) (1.2.5)
Requirement already satisfied: distributed>=2022.3.0 in /var/jenkins_home/.local/lib/python3.8/site-packages (from merlin-core==0.9.0+13.g78f1f0b) (2022.3.0)
Requirement already satisfied: tensorflow-metadata>=1.2.0 in /usr/local/lib/python3.8/dist-packages (from merlin-core==0.9.0+13.g78f1f0b) (1.10.0)
Requirement already satisfied: grpclib in /usr/local/lib/python3.8/dist-packages (from betterproto<2.0.0->merlin-core==0.9.0+13.g78f1f0b) (0.4.3)
Requirement already satisfied: stringcase in /usr/local/lib/python3.8/dist-packages (from betterproto<2.0.0->merlin-core==0.9.0+13.g78f1f0b) (1.2.0)
Requirement already satisfied: partd>=0.3.10 in /var/jenkins_home/.local/lib/python3.8/site-packages/partd-1.2.0-py3.8.egg (from dask>=2022.3.0->merlin-core==0.9.0+13.g78f1f0b) (1.2.0)
Requirement already satisfied: cloudpickle>=1.1.1 in /usr/local/lib/python3.8/dist-packages (from dask>=2022.3.0->merlin-core==0.9.0+13.g78f1f0b) (2.2.0)
Requirement already satisfied: toolz>=0.8.2 in /usr/local/lib/python3.8/dist-packages (from dask>=2022.3.0->merlin-core==0.9.0+13.g78f1f0b) (0.12.0)
Requirement already satisfied: pyyaml>=5.3.1 in /var/jenkins_home/.local/lib/python3.8/site-packages/PyYAML-5.4.1-py3.8-linux-x86_64.egg (from dask>=2022.3.0->merlin-core==0.9.0+13.g78f1f0b) (5.4.1)
Requirement already satisfied: zict>=0.1.3 in /var/jenkins_home/.local/lib/python3.8/site-packages/zict-2.0.0-py3.8.egg (from distributed>=2022.3.0->merlin-core==0.9.0+13.g78f1f0b) (2.0.0)
Requirement already satisfied: click>=6.6 in /usr/local/lib/python3.8/dist-packages (from distributed>=2022.3.0->merlin-core==0.9.0+13.g78f1f0b) (8.1.3)
Requirement already satisfied: psutil>=5.0 in /var/jenkins_home/.local/lib/python3.8/site-packages/psutil-5.8.0-py3.8-linux-x86_64.egg (from distributed>=2022.3.0->merlin-core==0.9.0+13.g78f1f0b) (5.8.0)
Requirement already satisfied: msgpack>=0.6.0 in /usr/local/lib/python3.8/dist-packages (from distributed>=2022.3.0->merlin-core==0.9.0+13.g78f1f0b) (1.0.4)
Requirement already satisfied: sortedcontainers!=2.0.0,!=2.0.1 in /var/jenkins_home/.local/lib/python3.8/site-packages/sortedcontainers-2.4.0-py3.8.egg (from distributed>=2022.3.0->merlin-core==0.9.0+13.g78f1f0b) (2.4.0)
Requirement already satisfied: tornado>=6.0.3 in /var/jenkins_home/.local/lib/python3.8/site-packages/tornado-6.1-py3.8-linux-x86_64.egg (from distributed>=2022.3.0->merlin-core==0.9.0+13.g78f1f0b) (6.1)
Requirement already satisfied: jinja2 in /usr/local/lib/python3.8/dist-packages (from distributed>=2022.3.0->merlin-core==0.9.0+13.g78f1f0b) (3.1.2)
Requirement already satisfied: tblib>=1.6.0 in /var/jenkins_home/.local/lib/python3.8/site-packages/tblib-1.7.0-py3.8.egg (from distributed>=2022.3.0->merlin-core==0.9.0+13.g78f1f0b) (1.7.0)
Requirement already satisfied: numpy<1.22,>=1.18 in /var/jenkins_home/.local/lib/python3.8/site-packages (from numba>=0.54->merlin-core==0.9.0+13.g78f1f0b) (1.20.3)
Requirement already satisfied: setuptools in ./.tox/test-gpu/lib/python3.8/site-packages (from numba>=0.54->merlin-core==0.9.0+13.g78f1f0b) (65.5.1)
Requirement already satisfied: llvmlite<0.39,>=0.38.0rc1 in ./.tox/test-gpu/lib/python3.8/site-packages (from numba>=0.54->merlin-core==0.9.0+13.g78f1f0b) (0.38.1)
Requirement already satisfied: pyparsing!=3.0.5,>=2.0.2 in /usr/local/lib/python3.8/dist-packages (from packaging->merlin-core==0.9.0+13.g78f1f0b) (3.0.9)
Requirement already satisfied: python-dateutil>=2.7.3 in /usr/local/lib/python3.8/dist-packages (from pandas<1.4.0dev0,>=1.2.0->merlin-core==0.9.0+13.g78f1f0b) (2.8.2)
Requirement already satisfied: pytz>=2017.3 in /usr/local/lib/python3.8/dist-packages (from pandas<1.4.0dev0,>=1.2.0->merlin-core==0.9.0+13.g78f1f0b) (2022.2.1)
Requirement already satisfied: absl-py<2.0.0,>=0.9 in /usr/local/lib/python3.8/dist-packages (from tensorflow-metadata>=1.2.0->merlin-core==0.9.0+13.g78f1f0b) (1.2.0)
Requirement already satisfied: googleapis-common-protos<2,>=1.52.0 in /usr/local/lib/python3.8/dist-packages (from tensorflow-metadata>=1.2.0->merlin-core==0.9.0+13.g78f1f0b) (1.52.0)
Requirement already satisfied: locket in /var/jenkins_home/.local/lib/python3.8/site-packages/locket-0.2.1-py3.8.egg (from partd>=0.3.10->dask>=2022.3.0->merlin-core==0.9.0+13.g78f1f0b) (0.2.1)
Requirement already satisfied: six>=1.5 in /var/jenkins_home/.local/lib/python3.8/site-packages (from python-dateutil>=2.7.3->pandas<1.4.0dev0,>=1.2.0->merlin-core==0.9.0+13.g78f1f0b) (1.15.0)
Requirement already satisfied: heapdict in /var/jenkins_home/.local/lib/python3.8/site-packages/HeapDict-1.0.1-py3.8.egg (from zict>=0.1.3->distributed>=2022.3.0->merlin-core==0.9.0+13.g78f1f0b) (1.0.1)
Requirement already satisfied: multidict in /usr/local/lib/python3.8/dist-packages (from grpclib->betterproto<2.0.0->merlin-core==0.9.0+13.g78f1f0b) (6.0.2)
Requirement already satisfied: h2<5,>=3.1.0 in /usr/local/lib/python3.8/dist-packages (from grpclib->betterproto<2.0.0->merlin-core==0.9.0+13.g78f1f0b) (4.1.0)
Requirement already satisfied: MarkupSafe>=2.0 in /usr/local/lib/python3.8/dist-packages (from jinja2->distributed>=2022.3.0->merlin-core==0.9.0+13.g78f1f0b) (2.1.1)
Requirement already satisfied: hpack<5,>=4.0 in /usr/local/lib/python3.8/dist-packages (from h2<5,>=3.1.0->grpclib->betterproto<2.0.0->merlin-core==0.9.0+13.g78f1f0b) (4.0.0)
Requirement already satisfied: hyperframe<7,>=6.0 in /usr/local/lib/python3.8/dist-packages (from h2<5,>=3.1.0->grpclib->betterproto<2.0.0->merlin-core==0.9.0+13.g78f1f0b) (6.0.1)
Building wheels for collected packages: merlin-core
  Building wheel for merlin-core (pyproject.toml): started
  Building wheel for merlin-core (pyproject.toml): finished with status 'done'
  Created wheel for merlin-core: filename=merlin_core-0.9.0+13.g78f1f0b-py3-none-any.whl size=118889 sha256=0974f4a1ab517fd71ba97697cc79c0cc3b87e1ace20a62ddccae036ae0643c03
  Stored in directory: /tmp/pip-ephem-wheel-cache-w_6mwmbk/wheels/c8/38/16/a6968787eafcec5fa772148af8408b089562f71af0752e8e84
Successfully built merlin-core
Installing collected packages: merlin-core
  Attempting uninstall: merlin-core
    Found existing installation: merlin-core 0.3.0+12.g78ecddd
    Not uninstalling merlin-core at /var/jenkins_home/.local/lib/python3.8/site-packages, outside environment /var/jenkins_home/workspace/nvtabular_tests/nvtabular/.tox/test-gpu
    Can't uninstall 'merlin-core'. No files were found to uninstall.
Successfully installed merlin-core-0.9.0+13.g78f1f0b
test-gpu run-test: commands[1] | python -m pip install --upgrade git+https://github.com/NVIDIA-Merlin/dataloader.git
Looking in indexes: https://pypi.org/simple, https://pypi.ngc.nvidia.com
Collecting git+https://github.com/NVIDIA-Merlin/dataloader.git
  Cloning https://github.com/NVIDIA-Merlin/dataloader.git to /tmp/pip-req-build-bx83axdb
  Running command git clone --filter=blob:none --quiet https://github.com/NVIDIA-Merlin/dataloader.git /tmp/pip-req-build-bx83axdb
  Resolved https://github.com/NVIDIA-Merlin/dataloader.git to commit f1f380cda85c9f4c557971683672397abd0ac040
  Installing build dependencies: started
  Installing build dependencies: finished with status 'done'
  Getting requirements to build wheel: started
  Getting requirements to build wheel: finished with status 'done'
  Preparing metadata (pyproject.toml): started
  Preparing metadata (pyproject.toml): finished with status 'done'
Requirement already satisfied: merlin-core>=0.8.0 in ./.tox/test-gpu/lib/python3.8/site-packages (from merlin-dataloader==0.0.2+20.gf1f380c) (0.9.0+13.g78f1f0b)
Requirement already satisfied: pandas<1.4.0dev0,>=1.2.0 in /var/jenkins_home/.local/lib/python3.8/site-packages (from merlin-core>=0.8.0->merlin-dataloader==0.0.2+20.gf1f380c) (1.3.5)
Requirement already satisfied: tqdm>=4.0 in /usr/local/lib/python3.8/dist-packages (from merlin-core>=0.8.0->merlin-dataloader==0.0.2+20.gf1f380c) (4.64.1)
Requirement already satisfied: packaging in /usr/local/lib/python3.8/dist-packages (from merlin-core>=0.8.0->merlin-dataloader==0.0.2+20.gf1f380c) (21.3)
Requirement already satisfied: pyarrow>=5.0.0 in /usr/local/lib/python3.8/dist-packages (from merlin-core>=0.8.0->merlin-dataloader==0.0.2+20.gf1f380c) (7.0.0)
Requirement already satisfied: dask>=2022.3.0 in /var/jenkins_home/.local/lib/python3.8/site-packages (from merlin-core>=0.8.0->merlin-dataloader==0.0.2+20.gf1f380c) (2022.3.0)
Requirement already satisfied: fsspec==2022.5.0 in /var/jenkins_home/.local/lib/python3.8/site-packages (from merlin-core>=0.8.0->merlin-dataloader==0.0.2+20.gf1f380c) (2022.5.0)
Requirement already satisfied: protobuf>=3.0.0 in /usr/local/lib/python3.8/dist-packages (from merlin-core>=0.8.0->merlin-dataloader==0.0.2+20.gf1f380c) (3.19.5)
Requirement already satisfied: numba>=0.54 in /var/jenkins_home/.local/lib/python3.8/site-packages (from merlin-core>=0.8.0->merlin-dataloader==0.0.2+20.gf1f380c) (0.55.1)
Requirement already satisfied: betterproto<2.0.0 in /usr/local/lib/python3.8/dist-packages (from merlin-core>=0.8.0->merlin-dataloader==0.0.2+20.gf1f380c) (1.2.5)
Requirement already satisfied: distributed>=2022.3.0 in /var/jenkins_home/.local/lib/python3.8/site-packages (from merlin-core>=0.8.0->merlin-dataloader==0.0.2+20.gf1f380c) (2022.3.0)
Requirement already satisfied: tensorflow-metadata>=1.2.0 in /usr/local/lib/python3.8/dist-packages (from merlin-core>=0.8.0->merlin-dataloader==0.0.2+20.gf1f380c) (1.10.0)
Requirement already satisfied: grpclib in /usr/local/lib/python3.8/dist-packages (from betterproto<2.0.0->merlin-core>=0.8.0->merlin-dataloader==0.0.2+20.gf1f380c) (0.4.3)
Requirement already satisfied: stringcase in /usr/local/lib/python3.8/dist-packages (from betterproto<2.0.0->merlin-core>=0.8.0->merlin-dataloader==0.0.2+20.gf1f380c) (1.2.0)
Requirement already satisfied: partd>=0.3.10 in /var/jenkins_home/.local/lib/python3.8/site-packages/partd-1.2.0-py3.8.egg (from dask>=2022.3.0->merlin-core>=0.8.0->merlin-dataloader==0.0.2+20.gf1f380c) (1.2.0)
Requirement already satisfied: cloudpickle>=1.1.1 in /usr/local/lib/python3.8/dist-packages (from dask>=2022.3.0->merlin-core>=0.8.0->merlin-dataloader==0.0.2+20.gf1f380c) (2.2.0)
Requirement already satisfied: toolz>=0.8.2 in /usr/local/lib/python3.8/dist-packages (from dask>=2022.3.0->merlin-core>=0.8.0->merlin-dataloader==0.0.2+20.gf1f380c) (0.12.0)
Requirement already satisfied: pyyaml>=5.3.1 in /var/jenkins_home/.local/lib/python3.8/site-packages/PyYAML-5.4.1-py3.8-linux-x86_64.egg (from dask>=2022.3.0->merlin-core>=0.8.0->merlin-dataloader==0.0.2+20.gf1f380c) (5.4.1)
Requirement already satisfied: zict>=0.1.3 in /var/jenkins_home/.local/lib/python3.8/site-packages/zict-2.0.0-py3.8.egg (from distributed>=2022.3.0->merlin-core>=0.8.0->merlin-dataloader==0.0.2+20.gf1f380c) (2.0.0)
Requirement already satisfied: click>=6.6 in /usr/local/lib/python3.8/dist-packages (from distributed>=2022.3.0->merlin-core>=0.8.0->merlin-dataloader==0.0.2+20.gf1f380c) (8.1.3)
Requirement already satisfied: psutil>=5.0 in /var/jenkins_home/.local/lib/python3.8/site-packages/psutil-5.8.0-py3.8-linux-x86_64.egg (from distributed>=2022.3.0->merlin-core>=0.8.0->merlin-dataloader==0.0.2+20.gf1f380c) (5.8.0)
Requirement already satisfied: msgpack>=0.6.0 in /usr/local/lib/python3.8/dist-packages (from distributed>=2022.3.0->merlin-core>=0.8.0->merlin-dataloader==0.0.2+20.gf1f380c) (1.0.4)
Requirement already satisfied: sortedcontainers!=2.0.0,!=2.0.1 in /var/jenkins_home/.local/lib/python3.8/site-packages/sortedcontainers-2.4.0-py3.8.egg (from distributed>=2022.3.0->merlin-core>=0.8.0->merlin-dataloader==0.0.2+20.gf1f380c) (2.4.0)
Requirement already satisfied: tornado>=6.0.3 in /var/jenkins_home/.local/lib/python3.8/site-packages/tornado-6.1-py3.8-linux-x86_64.egg (from distributed>=2022.3.0->merlin-core>=0.8.0->merlin-dataloader==0.0.2+20.gf1f380c) (6.1)
Requirement already satisfied: jinja2 in /usr/local/lib/python3.8/dist-packages (from distributed>=2022.3.0->merlin-core>=0.8.0->merlin-dataloader==0.0.2+20.gf1f380c) (3.1.2)
Requirement already satisfied: tblib>=1.6.0 in /var/jenkins_home/.local/lib/python3.8/site-packages/tblib-1.7.0-py3.8.egg (from distributed>=2022.3.0->merlin-core>=0.8.0->merlin-dataloader==0.0.2+20.gf1f380c) (1.7.0)
Requirement already satisfied: numpy<1.22,>=1.18 in /var/jenkins_home/.local/lib/python3.8/site-packages (from numba>=0.54->merlin-core>=0.8.0->merlin-dataloader==0.0.2+20.gf1f380c) (1.20.3)
Requirement already satisfied: setuptools in ./.tox/test-gpu/lib/python3.8/site-packages (from numba>=0.54->merlin-core>=0.8.0->merlin-dataloader==0.0.2+20.gf1f380c) (65.5.1)
Requirement already satisfied: llvmlite<0.39,>=0.38.0rc1 in ./.tox/test-gpu/lib/python3.8/site-packages (from numba>=0.54->merlin-core>=0.8.0->merlin-dataloader==0.0.2+20.gf1f380c) (0.38.1)
Requirement already satisfied: pyparsing!=3.0.5,>=2.0.2 in /usr/local/lib/python3.8/dist-packages (from packaging->merlin-core>=0.8.0->merlin-dataloader==0.0.2+20.gf1f380c) (3.0.9)
Requirement already satisfied: python-dateutil>=2.7.3 in /usr/local/lib/python3.8/dist-packages (from pandas<1.4.0dev0,>=1.2.0->merlin-core>=0.8.0->merlin-dataloader==0.0.2+20.gf1f380c) (2.8.2)
Requirement already satisfied: pytz>=2017.3 in /usr/local/lib/python3.8/dist-packages (from pandas<1.4.0dev0,>=1.2.0->merlin-core>=0.8.0->merlin-dataloader==0.0.2+20.gf1f380c) (2022.2.1)
Requirement already satisfied: absl-py<2.0.0,>=0.9 in /usr/local/lib/python3.8/dist-packages (from tensorflow-metadata>=1.2.0->merlin-core>=0.8.0->merlin-dataloader==0.0.2+20.gf1f380c) (1.2.0)
Requirement already satisfied: googleapis-common-protos<2,>=1.52.0 in /usr/local/lib/python3.8/dist-packages (from tensorflow-metadata>=1.2.0->merlin-core>=0.8.0->merlin-dataloader==0.0.2+20.gf1f380c) (1.52.0)
Requirement already satisfied: locket in /var/jenkins_home/.local/lib/python3.8/site-packages/locket-0.2.1-py3.8.egg (from partd>=0.3.10->dask>=2022.3.0->merlin-core>=0.8.0->merlin-dataloader==0.0.2+20.gf1f380c) (0.2.1)
Requirement already satisfied: six>=1.5 in /var/jenkins_home/.local/lib/python3.8/site-packages (from python-dateutil>=2.7.3->pandas<1.4.0dev0,>=1.2.0->merlin-core>=0.8.0->merlin-dataloader==0.0.2+20.gf1f380c) (1.15.0)
Requirement already satisfied: heapdict in /var/jenkins_home/.local/lib/python3.8/site-packages/HeapDict-1.0.1-py3.8.egg (from zict>=0.1.3->distributed>=2022.3.0->merlin-core>=0.8.0->merlin-dataloader==0.0.2+20.gf1f380c) (1.0.1)
Requirement already satisfied: multidict in /usr/local/lib/python3.8/dist-packages (from grpclib->betterproto<2.0.0->merlin-core>=0.8.0->merlin-dataloader==0.0.2+20.gf1f380c) (6.0.2)
Requirement already satisfied: h2<5,>=3.1.0 in /usr/local/lib/python3.8/dist-packages (from grpclib->betterproto<2.0.0->merlin-core>=0.8.0->merlin-dataloader==0.0.2+20.gf1f380c) (4.1.0)
Requirement already satisfied: MarkupSafe>=2.0 in /usr/local/lib/python3.8/dist-packages (from jinja2->distributed>=2022.3.0->merlin-core>=0.8.0->merlin-dataloader==0.0.2+20.gf1f380c) (2.1.1)
Requirement already satisfied: hpack<5,>=4.0 in /usr/local/lib/python3.8/dist-packages (from h2<5,>=3.1.0->grpclib->betterproto<2.0.0->merlin-core>=0.8.0->merlin-dataloader==0.0.2+20.gf1f380c) (4.0.0)
Requirement already satisfied: hyperframe<7,>=6.0 in /usr/local/lib/python3.8/dist-packages (from h2<5,>=3.1.0->grpclib->betterproto<2.0.0->merlin-core>=0.8.0->merlin-dataloader==0.0.2+20.gf1f380c) (6.0.1)
Building wheels for collected packages: merlin-dataloader
  Building wheel for merlin-dataloader (pyproject.toml): started
  Building wheel for merlin-dataloader (pyproject.toml): finished with status 'done'
  Created wheel for merlin-dataloader: filename=merlin_dataloader-0.0.2+20.gf1f380c-py3-none-any.whl size=40215 sha256=1da68a8c404ca9f994a4081336eb492a3b4f80acff55e72e4b687af778794be3
  Stored in directory: /tmp/pip-ephem-wheel-cache-un8iee3f/wheels/de/f5/d9/251909f4627d2920fb15548f5ffd6daf1bf24c3c56bb4977b1
Successfully built merlin-dataloader
Installing collected packages: merlin-dataloader
  Attempting uninstall: merlin-dataloader
    Found existing installation: merlin-dataloader 0.0.3
    Uninstalling merlin-dataloader-0.0.3:
      Successfully uninstalled merlin-dataloader-0.0.3
Successfully installed merlin-dataloader-0.0.2+20.gf1f380c
test-gpu run-test: commands[2] | python -m pip install --upgrade git+https://github.com/NVIDIA-Merlin/models.git
Looking in indexes: https://pypi.org/simple, https://pypi.ngc.nvidia.com
Collecting git+https://github.com/NVIDIA-Merlin/models.git
  Cloning https://github.com/NVIDIA-Merlin/models.git to /tmp/pip-req-build-c92bvfmh
  Running command git clone --filter=blob:none --quiet https://github.com/NVIDIA-Merlin/models.git /tmp/pip-req-build-c92bvfmh
  Resolved https://github.com/NVIDIA-Merlin/models.git to commit 3124b03033723de762d90d47085bac3191f37ff5
  Installing build dependencies: started
  Installing build dependencies: finished with status 'done'
  Getting requirements to build wheel: started
  Getting requirements to build wheel: finished with status 'done'
  Preparing metadata (pyproject.toml): started
  Preparing metadata (pyproject.toml): finished with status 'done'
Requirement already satisfied: merlin-core>=0.2.0 in ./.tox/test-gpu/lib/python3.8/site-packages (from merlin-models==0.9.0+59.g3124b030) (0.9.0+13.g78f1f0b)
Requirement already satisfied: pandas<1.4.0dev0,>=1.2.0 in /var/jenkins_home/.local/lib/python3.8/site-packages (from merlin-core>=0.2.0->merlin-models==0.9.0+59.g3124b030) (1.3.5)
Requirement already satisfied: tqdm>=4.0 in /usr/local/lib/python3.8/dist-packages (from merlin-core>=0.2.0->merlin-models==0.9.0+59.g3124b030) (4.64.1)
Requirement already satisfied: packaging in /usr/local/lib/python3.8/dist-packages (from merlin-core>=0.2.0->merlin-models==0.9.0+59.g3124b030) (21.3)
Requirement already satisfied: pyarrow>=5.0.0 in /usr/local/lib/python3.8/dist-packages (from merlin-core>=0.2.0->merlin-models==0.9.0+59.g3124b030) (7.0.0)
Requirement already satisfied: dask>=2022.3.0 in /var/jenkins_home/.local/lib/python3.8/site-packages (from merlin-core>=0.2.0->merlin-models==0.9.0+59.g3124b030) (2022.3.0)
Requirement already satisfied: fsspec==2022.5.0 in /var/jenkins_home/.local/lib/python3.8/site-packages (from merlin-core>=0.2.0->merlin-models==0.9.0+59.g3124b030) (2022.5.0)
Requirement already satisfied: protobuf>=3.0.0 in /usr/local/lib/python3.8/dist-packages (from merlin-core>=0.2.0->merlin-models==0.9.0+59.g3124b030) (3.19.5)
Requirement already satisfied: numba>=0.54 in /var/jenkins_home/.local/lib/python3.8/site-packages (from merlin-core>=0.2.0->merlin-models==0.9.0+59.g3124b030) (0.55.1)
Requirement already satisfied: betterproto<2.0.0 in /usr/local/lib/python3.8/dist-packages (from merlin-core>=0.2.0->merlin-models==0.9.0+59.g3124b030) (1.2.5)
Requirement already satisfied: distributed>=2022.3.0 in /var/jenkins_home/.local/lib/python3.8/site-packages (from merlin-core>=0.2.0->merlin-models==0.9.0+59.g3124b030) (2022.3.0)
Requirement already satisfied: tensorflow-metadata>=1.2.0 in /usr/local/lib/python3.8/dist-packages (from merlin-core>=0.2.0->merlin-models==0.9.0+59.g3124b030) (1.10.0)
Requirement already satisfied: grpclib in /usr/local/lib/python3.8/dist-packages (from betterproto<2.0.0->merlin-core>=0.2.0->merlin-models==0.9.0+59.g3124b030) (0.4.3)
Requirement already satisfied: stringcase in /usr/local/lib/python3.8/dist-packages (from betterproto<2.0.0->merlin-core>=0.2.0->merlin-models==0.9.0+59.g3124b030) (1.2.0)
Requirement already satisfied: partd>=0.3.10 in /var/jenkins_home/.local/lib/python3.8/site-packages/partd-1.2.0-py3.8.egg (from dask>=2022.3.0->merlin-core>=0.2.0->merlin-models==0.9.0+59.g3124b030) (1.2.0)
Requirement already satisfied: cloudpickle>=1.1.1 in /usr/local/lib/python3.8/dist-packages (from dask>=2022.3.0->merlin-core>=0.2.0->merlin-models==0.9.0+59.g3124b030) (2.2.0)
Requirement already satisfied: toolz>=0.8.2 in /usr/local/lib/python3.8/dist-packages (from dask>=2022.3.0->merlin-core>=0.2.0->merlin-models==0.9.0+59.g3124b030) (0.12.0)
Requirement already satisfied: pyyaml>=5.3.1 in /var/jenkins_home/.local/lib/python3.8/site-packages/PyYAML-5.4.1-py3.8-linux-x86_64.egg (from dask>=2022.3.0->merlin-core>=0.2.0->merlin-models==0.9.0+59.g3124b030) (5.4.1)
Requirement already satisfied: zict>=0.1.3 in /var/jenkins_home/.local/lib/python3.8/site-packages/zict-2.0.0-py3.8.egg (from distributed>=2022.3.0->merlin-core>=0.2.0->merlin-models==0.9.0+59.g3124b030) (2.0.0)
Requirement already satisfied: click>=6.6 in /usr/local/lib/python3.8/dist-packages (from distributed>=2022.3.0->merlin-core>=0.2.0->merlin-models==0.9.0+59.g3124b030) (8.1.3)
Requirement already satisfied: psutil>=5.0 in /var/jenkins_home/.local/lib/python3.8/site-packages/psutil-5.8.0-py3.8-linux-x86_64.egg (from distributed>=2022.3.0->merlin-core>=0.2.0->merlin-models==0.9.0+59.g3124b030) (5.8.0)
Requirement already satisfied: msgpack>=0.6.0 in /usr/local/lib/python3.8/dist-packages (from distributed>=2022.3.0->merlin-core>=0.2.0->merlin-models==0.9.0+59.g3124b030) (1.0.4)
Requirement already satisfied: sortedcontainers!=2.0.0,!=2.0.1 in /var/jenkins_home/.local/lib/python3.8/site-packages/sortedcontainers-2.4.0-py3.8.egg (from distributed>=2022.3.0->merlin-core>=0.2.0->merlin-models==0.9.0+59.g3124b030) (2.4.0)
Requirement already satisfied: tornado>=6.0.3 in /var/jenkins_home/.local/lib/python3.8/site-packages/tornado-6.1-py3.8-linux-x86_64.egg (from distributed>=2022.3.0->merlin-core>=0.2.0->merlin-models==0.9.0+59.g3124b030) (6.1)
Requirement already satisfied: jinja2 in /usr/local/lib/python3.8/dist-packages (from distributed>=2022.3.0->merlin-core>=0.2.0->merlin-models==0.9.0+59.g3124b030) (3.1.2)
Requirement already satisfied: tblib>=1.6.0 in /var/jenkins_home/.local/lib/python3.8/site-packages/tblib-1.7.0-py3.8.egg (from distributed>=2022.3.0->merlin-core>=0.2.0->merlin-models==0.9.0+59.g3124b030) (1.7.0)
Requirement already satisfied: numpy<1.22,>=1.18 in /var/jenkins_home/.local/lib/python3.8/site-packages (from numba>=0.54->merlin-core>=0.2.0->merlin-models==0.9.0+59.g3124b030) (1.20.3)
Requirement already satisfied: setuptools in ./.tox/test-gpu/lib/python3.8/site-packages (from numba>=0.54->merlin-core>=0.2.0->merlin-models==0.9.0+59.g3124b030) (65.5.1)
Requirement already satisfied: llvmlite<0.39,>=0.38.0rc1 in ./.tox/test-gpu/lib/python3.8/site-packages (from numba>=0.54->merlin-core>=0.2.0->merlin-models==0.9.0+59.g3124b030) (0.38.1)
Requirement already satisfied: pyparsing!=3.0.5,>=2.0.2 in /usr/local/lib/python3.8/dist-packages (from packaging->merlin-core>=0.2.0->merlin-models==0.9.0+59.g3124b030) (3.0.9)
Requirement already satisfied: python-dateutil>=2.7.3 in /usr/local/lib/python3.8/dist-packages (from pandas<1.4.0dev0,>=1.2.0->merlin-core>=0.2.0->merlin-models==0.9.0+59.g3124b030) (2.8.2)
Requirement already satisfied: pytz>=2017.3 in /usr/local/lib/python3.8/dist-packages (from pandas<1.4.0dev0,>=1.2.0->merlin-core>=0.2.0->merlin-models==0.9.0+59.g3124b030) (2022.2.1)
Requirement already satisfied: absl-py<2.0.0,>=0.9 in /usr/local/lib/python3.8/dist-packages (from tensorflow-metadata>=1.2.0->merlin-core>=0.2.0->merlin-models==0.9.0+59.g3124b030) (1.2.0)
Requirement already satisfied: googleapis-common-protos<2,>=1.52.0 in /usr/local/lib/python3.8/dist-packages (from tensorflow-metadata>=1.2.0->merlin-core>=0.2.0->merlin-models==0.9.0+59.g3124b030) (1.52.0)
Requirement already satisfied: locket in /var/jenkins_home/.local/lib/python3.8/site-packages/locket-0.2.1-py3.8.egg (from partd>=0.3.10->dask>=2022.3.0->merlin-core>=0.2.0->merlin-models==0.9.0+59.g3124b030) (0.2.1)
Requirement already satisfied: six>=1.5 in /var/jenkins_home/.local/lib/python3.8/site-packages (from python-dateutil>=2.7.3->pandas<1.4.0dev0,>=1.2.0->merlin-core>=0.2.0->merlin-models==0.9.0+59.g3124b030) (1.15.0)
Requirement already satisfied: heapdict in /var/jenkins_home/.local/lib/python3.8/site-packages/HeapDict-1.0.1-py3.8.egg (from zict>=0.1.3->distributed>=2022.3.0->merlin-core>=0.2.0->merlin-models==0.9.0+59.g3124b030) (1.0.1)
Requirement already satisfied: multidict in /usr/local/lib/python3.8/dist-packages (from grpclib->betterproto<2.0.0->merlin-core>=0.2.0->merlin-models==0.9.0+59.g3124b030) (6.0.2)
Requirement already satisfied: h2<5,>=3.1.0 in /usr/local/lib/python3.8/dist-packages (from grpclib->betterproto<2.0.0->merlin-core>=0.2.0->merlin-models==0.9.0+59.g3124b030) (4.1.0)
Requirement already satisfied: MarkupSafe>=2.0 in /usr/local/lib/python3.8/dist-packages (from jinja2->distributed>=2022.3.0->merlin-core>=0.2.0->merlin-models==0.9.0+59.g3124b030) (2.1.1)
Requirement already satisfied: hpack<5,>=4.0 in /usr/local/lib/python3.8/dist-packages (from h2<5,>=3.1.0->grpclib->betterproto<2.0.0->merlin-core>=0.2.0->merlin-models==0.9.0+59.g3124b030) (4.0.0)
Requirement already satisfied: hyperframe<7,>=6.0 in /usr/local/lib/python3.8/dist-packages (from h2<5,>=3.1.0->grpclib->betterproto<2.0.0->merlin-core>=0.2.0->merlin-models==0.9.0+59.g3124b030) (6.0.1)
Building wheels for collected packages: merlin-models
  Building wheel for merlin-models (pyproject.toml): started
  Building wheel for merlin-models (pyproject.toml): finished with status 'done'
  Created wheel for merlin-models: filename=merlin_models-0.9.0+59.g3124b030-py3-none-any.whl size=366427 sha256=6d3aa363995458d91eb34e7e750c8aee8cf3468cf65f76390f74713931e7c260
  Stored in directory: /tmp/pip-ephem-wheel-cache-o4mn6uf4/wheels/5a/43/99/d50fe2c33b4f4686db73207ce3865e0d6be6609ffb03abade5
Successfully built merlin-models
Installing collected packages: merlin-models
  Attempting uninstall: merlin-models
    Found existing installation: merlin-models 0.7.0+11.g280956aa4
    Not uninstalling merlin-models at /usr/local/lib/python3.8/dist-packages, outside environment /var/jenkins_home/workspace/nvtabular_tests/nvtabular/.tox/test-gpu
    Can't uninstall 'merlin-models'. No files were found to uninstall.
Successfully installed merlin-models-0.9.0+59.g3124b030
test-gpu run-test: commands[3] | python -m pytest --cov-report term --cov merlin -rxs tests/unit
============================= test session starts ==============================
platform linux -- Python 3.8.10, pytest-7.1.3, pluggy-1.0.0
cachedir: .tox/test-gpu/.pytest_cache
rootdir: /var/jenkins_home/workspace/nvtabular_tests/nvtabular, configfile: pyproject.toml
plugins: anyio-3.5.0, xdist-3.0.2, cov-4.0.0
collected 1439 items / 1 skipped

tests/unit/test_dask_nvt.py ............................................ [ 3%]
........................................................................ [ 8%]
.... [ 8%]
tests/unit/test_notebooks.py ..F. [ 8%]
tests/unit/test_tf4rec.py . [ 8%]
tests/unit/test_tools.py ...................... [ 10%]
tests/unit/test_triton_inference.py ..............................FF [ 12%]
tests/unit/examples/test_01-Getting-started.py . [ 12%]
tests/unit/examples/test_02-Advanced-NVTabular-workflow.py . [ 12%]
tests/unit/examples/test_03-Running-on-multiple-GPUs-or-on-CPU.py . [ 12%]
tests/unit/framework_utils/test_tf_feature_columns.py . [ 12%]
tests/unit/framework_utils/test_tf_layers.py ........................... [ 14%]
................................................... [ 18%]
tests/unit/framework_utils/test_torch_layers.py . [ 18%]
tests/unit/loader/test_tf_dataloader.py ................................ [ 20%]
........................................s.. [ 23%]
tests/unit/loader/test_torch_dataloader.py ............................. [ 25%]
......................................FFFF........... [ 29%]
tests/unit/ops/test_categorify.py ...................................... [ 31%]
........................................................................ [ 36%]
..................................................... [ 40%]
tests/unit/ops/test_column_similarity.py ........................ [ 42%]
tests/unit/ops/test_drop_low_cardinality.py .. [ 42%]
tests/unit/ops/test_fill.py ............................................ [ 45%]
........ [ 45%]
tests/unit/ops/test_groupyby.py ....................... [ 47%]
tests/unit/ops/test_hash_bucket.py ......................... [ 49%]
tests/unit/ops/test_join.py ............................................ [ 52%]
........................................................................ [ 57%]
.................................. [ 59%]
tests/unit/ops/test_lambda.py .......... [ 60%]
tests/unit/ops/test_normalize.py ....................................... [ 63%]
.. [ 63%]
tests/unit/ops/test_ops.py ............................................. [ 66%]
.................... [ 67%]
tests/unit/ops/test_ops_schema.py ...................................... [ 70%]
........................................................................ [ 75%]
........................................................................ [ 80%]
........................................................................ [ 85%]
....................................... [ 88%]
tests/unit/ops/test_reduce_dtype_size.py .. [ 88%]
tests/unit/ops/test_target_encode.py ..................... [ 89%]
tests/unit/ops/test_value_count.py ... [ 89%]
tests/unit/workflow/test_cpu_workflow.py ...... [ 90%]
tests/unit/workflow/test_workflow.py ................................... [ 92%]
.......................................................... [ 96%]
tests/unit/workflow/test_workflow_chaining.py ... [ 96%]
tests/unit/workflow/test_workflow_node.py ........... [ 97%]
tests/unit/workflow/test_workflow_ops.py ... [ 97%]
tests/unit/workflow/test_workflow_schemas.py ........................... [ 99%]
... [100%]

=================================== FAILURES ===================================
____________________________ test_movielens_example ____________________________

tmpdir = local('/tmp/pytest-of-jenkins/pytest-17/test_movielens_example0')

def test_movielens_example(tmpdir):
    _get_random_movielens_data(tmpdir, 10000, dataset="movie")
    _get_random_movielens_data(tmpdir, 10000, dataset="ratings")
    _get_random_movielens_data(tmpdir, 5000, dataset="ratings", valid=True)

    triton_model_path = os.path.join(tmpdir, "models")
    os.environ["INPUT_DATA_DIR"] = str(tmpdir)
    os.environ["MODEL_PATH"] = triton_model_path

    notebook_path = os.path.join(
        dirname(TEST_PATH),
        "examples/getting-started-movielens/",
        "02-ETL-with-NVTabular.ipynb",
    )
    _run_notebook(tmpdir, notebook_path)

    def _modify_tf_nb(line):
        return line.replace(
            # don't require graphviz/pydot
            "tf.keras.utils.plot_model(model)",
            "# tf.keras.utils.plot_model(model)",
        )

    def _modify_tf_triton(line):
        # models are already preloaded
        line = line.replace("triton_client.load_model", "# triton_client.load_model")
        line = line.replace("triton_client.unload_model", "# triton_client.unload_model")
        return line

    notebooks = []
    try:
        import torch  # noqa

        notebooks.append("03-Training-with-PyTorch.ipynb")
    except Exception:
        pass
    try:
        import nvtabular.inference.triton  # noqa
        import nvtabular.loader.tensorflow  # noqa

        notebooks.append("03-Training-with-TF.ipynb")
        has_tf = True

    except Exception:
        has_tf = False

    for notebook in notebooks:
        notebook_path = os.path.join(
            dirname(TEST_PATH),
            "examples/getting-started-movielens/",
            notebook,
        )
        if notebook == "03-Training-with-TF.ipynb":
            _run_notebook(tmpdir, notebook_path, transform=_modify_tf_nb)
        else:
          _run_notebook(tmpdir, notebook_path)

tests/unit/test_notebooks.py:169:


tests/unit/test_notebooks.py:223: in _run_notebook
subprocess.check_output([sys.executable, script_path])
/usr/lib/python3.8/subprocess.py:415: in check_output
return run(*popenargs, stdout=PIPE, timeout=timeout, check=True,


input = None, capture_output = False, timeout = None, check = True
popenargs = (['/var/jenkins_home/workspace/nvtabular_tests/nvtabular/.tox/test-gpu/bin/python', '/tmp/pytest-of-jenkins/pytest-17/test_movielens_example0/notebook.py'],)
kwargs = {'stdout': -1}, process = <subprocess.Popen object at 0x7fcdbc31bac0>
stdout = b'Total batches: 0\n', stderr = None, retcode = 1

def run(*popenargs,
        input=None, capture_output=False, timeout=None, check=False, **kwargs):
    """Run command with arguments and return a CompletedProcess instance.

    The returned instance will have attributes args, returncode, stdout and
    stderr. By default, stdout and stderr are not captured, and those attributes
    will be None. Pass stdout=PIPE and/or stderr=PIPE in order to capture them.

    If check is True and the exit code was non-zero, it raises a
    CalledProcessError. The CalledProcessError object will have the return code
    in the returncode attribute, and output & stderr attributes if those streams
    were captured.

    If timeout is given, and the process takes too long, a TimeoutExpired
    exception will be raised.

    There is an optional argument "input", allowing you to
    pass bytes or a string to the subprocess's stdin.  If you use this argument
    you may not also use the Popen constructor's "stdin" argument, as
    it will be used internally.

    By default, all communication is in bytes, and therefore any "input" should
    be bytes, and the stdout and stderr will be bytes. If in text mode, any
    "input" should be a string, and stdout and stderr will be strings decoded
    according to locale encoding, or by "encoding" if set. Text mode is
    triggered by setting any of text, encoding, errors or universal_newlines.

    The other arguments are the same as for the Popen constructor.
    """
    if input is not None:
        if kwargs.get('stdin') is not None:
            raise ValueError('stdin and input arguments may not both be used.')
        kwargs['stdin'] = PIPE

    if capture_output:
        if kwargs.get('stdout') is not None or kwargs.get('stderr') is not None:
            raise ValueError('stdout and stderr arguments may not be used '
                             'with capture_output.')
        kwargs['stdout'] = PIPE
        kwargs['stderr'] = PIPE

    with Popen(*popenargs, **kwargs) as process:
        try:
            stdout, stderr = process.communicate(input, timeout=timeout)
        except TimeoutExpired as exc:
            process.kill()
            if _mswindows:
                # Windows accumulates the output in a single blocking
                # read() call run on child threads, with the timeout
                # being done in a join() on those threads.  communicate()
                # _after_ kill() is required to collect that and add it
                # to the exception.
                exc.stdout, exc.stderr = process.communicate()
            else:
                # POSIX _communicate already populated the output so
                # far into the TimeoutExpired exception.
                process.wait()
            raise
        except:  # Including KeyboardInterrupt, communicate handled that.
            process.kill()
            # We don't call process.wait() as .__exit__ does that for us.
            raise
        retcode = process.poll()
        if check and retcode:
          raise CalledProcessError(retcode, process.args,
                                     output=stdout, stderr=stderr)

E subprocess.CalledProcessError: Command '['/var/jenkins_home/workspace/nvtabular_tests/nvtabular/.tox/test-gpu/bin/python', '/tmp/pytest-of-jenkins/pytest-17/test_movielens_example0/notebook.py']' returned non-zero exit status 1.

/usr/lib/python3.8/subprocess.py:516: CalledProcessError
----------------------------- Captured stderr call -----------------------------
Traceback (most recent call last):
File "/tmp/pytest-of-jenkins/pytest-17/test_movielens_example0/notebook.py", line 166, in
train_loss, y_pred, y = process_epoch(train_loader,
File "/var/jenkins_home/workspace/nvtabular_tests/nvtabular/.tox/test-gpu/lib/python3.8/site-packages/nvtabular/framework_utils/torch/utils.py", line 117, in process_epoch
y = torch.cat(y_list)
RuntimeError: torch.cat(): expected a non-empty list of Tensors
_________________________ test_groupby_model[pytorch] __________________________

tmpdir = local('/tmp/pytest-of-jenkins/pytest-17/test_groupby_model_pytorch_0')
output_model = 'pytorch'

@pytest.mark.skipif(TRITON_SERVER_PATH is None, reason="Requires tritonserver on the path")
@pytest.mark.parametrize("output_model", ["tensorflow", "pytorch"])
def test_groupby_model(tmpdir, output_model):
    size = 20
    df = make_df(
        {
            "id": np.random.choice([0, 1], size=size),
            "ts": np.linspace(0.0, 10.0, num=size),
            "x": np.arange(size),
            "y": np.linspace(0.0, 10.0, num=size),
        }
    )

    groupby_features = ColumnSelector(["id", "ts", "x", "y"]) >> ops.Groupby(
        groupby_cols=["id"],
        sort_cols=["ts"],
        aggs={
            "x": ["sum"],
            "y": ["first"],
        },
        name_sep="-",
    )
    workflow = nvt.Workflow(groupby_features)
  _verify_workflow_on_tritonserver(
        tmpdir, workflow, df, "groupby", output_model, cats=["id", "y-first"], conts=["x-sum"]
    )

tests/unit/test_triton_inference.py:379:


tests/unit/test_triton_inference.py:111: in _verify_workflow_on_tritonserver
with run_triton_server(tmpdir) as client:
/usr/lib/python3.8/contextlib.py:113: in enter
return next(self.gen)


modelpath = local('/tmp/pytest-of-jenkins/pytest-17/test_groupby_model_pytorch_0')

@contextlib.contextmanager
def run_triton_server(modelpath):
    cmdline = [
        TRITON_SERVER_PATH,
        "--model-repository",
        modelpath,
        "--backend-config=tensorflow,version=2",
    ]
    env = os.environ.copy()
    env["CUDA_VISIBLE_DEVICES"] = "0"
    with subprocess.Popen(cmdline, env=env) as process:
        try:
            with grpcclient.InferenceServerClient("localhost:8001") as client:
                # wait until server is ready
                for _ in range(60):
                    if process.poll() is not None:
                        retcode = process.returncode
                        raise RuntimeError(f"Tritonserver failed to start (ret={retcode})")

                    try:
                        ready = client.is_server_ready()
                    except tritonclient.utils.InferenceServerException:
                        ready = False

                    if ready:
                        yield client
                        return

                    time.sleep(1)
              raise RuntimeError("Timed out waiting for tritonserver to become ready")

E RuntimeError: Timed out waiting for tritonserver to become ready

tests/unit/test_triton_inference.py:62: RuntimeError
----------------------------- Captured stderr call -----------------------------
I1130 02:41:51.047647 18703 pinned_memory_manager.cc:240] Pinned memory pool is created at '0x7faa24000000' with size 268435456
I1130 02:41:51.048436 18703 cuda_memory_manager.cc:105] CUDA memory pool is created on device 0 with size 67108864
I1130 02:41:51.051664 18703 model_lifecycle.cc:459] loading: groupby:1
______________________ test_seq_etl_tf_model[tensorflow] _______________________

tmpdir = local('/tmp/pytest-of-jenkins/pytest-17/test_seq_etl_tf_model_tensorfl0')
output_model = 'tensorflow'

@pytest.mark.skipif(TRITON_SERVER_PATH is None, reason="Requires tritonserver on the path")
@pytest.mark.parametrize("output_model", ["tensorflow"])
def test_seq_etl_tf_model(tmpdir, output_model):
    size = 100
    max_length = 10
    df = make_df(
        {
            "id": np.random.choice([0, 1], size=size),
            "item_id": np.random.randint(1, 10, size),
            "ts": np.linspace(0.0, 10.0, num=size).astype(np.float32),
            "y": np.linspace(0.0, 10.0, num=size).astype(np.float32),
        }
    )

    groupby_features = ColumnSelector(["id", "item_id", "ts", "y"]) >> ops.Groupby(
        groupby_cols=["id"],
        sort_cols=["ts"],
        aggs={
            "item_id": ["list"],
            "y": ["list"],
        },
        name_sep="-",
    )
    feats_list = groupby_features["item_id-list", "y-list"]
    feats_trim = feats_list >> ops.ListSlice(0, max_length, pad=True)
    selected_features = groupby_features["id"] + feats_trim

    workflow = nvt.Workflow(selected_features)

    sparse_max = {"item_id-list": max_length, "y-list": max_length}
  _verify_workflow_on_tritonserver(
        tmpdir,
        workflow,
        df,
        "groupby",
        output_model,
        sparse_max,
        cats=["id", "item_id-list"],
        conts=["y-list"],
    )

tests/unit/test_triton_inference.py:415:


tests/unit/test_triton_inference.py:111: in _verify_workflow_on_tritonserver
with run_triton_server(tmpdir) as client:
/usr/lib/python3.8/contextlib.py:113: in enter
return next(self.gen)


modelpath = local('/tmp/pytest-of-jenkins/pytest-17/test_seq_etl_tf_model_tensorfl0')

@contextlib.contextmanager
def run_triton_server(modelpath):
    cmdline = [
        TRITON_SERVER_PATH,
        "--model-repository",
        modelpath,
        "--backend-config=tensorflow,version=2",
    ]
    env = os.environ.copy()
    env["CUDA_VISIBLE_DEVICES"] = "0"
    with subprocess.Popen(cmdline, env=env) as process:
        try:
            with grpcclient.InferenceServerClient("localhost:8001") as client:
                # wait until server is ready
                for _ in range(60):
                    if process.poll() is not None:
                        retcode = process.returncode
                        raise RuntimeError(f"Tritonserver failed to start (ret={retcode})")

                    try:
                        ready = client.is_server_ready()
                    except tritonclient.utils.InferenceServerException:
                        ready = False

                    if ready:
                        yield client
                        return

                    time.sleep(1)
              raise RuntimeError("Timed out waiting for tritonserver to become ready")

E RuntimeError: Timed out waiting for tritonserver to become ready

tests/unit/test_triton_inference.py:62: RuntimeError
----------------------------- Captured stderr call -----------------------------
I1130 02:42:51.473010 18784 pinned_memory_manager.cc:240] Pinned memory pool is created at '0x7f9f56000000' with size 268435456
I1130 02:42:51.473757 18784 cuda_memory_manager.cc:105] CUDA memory pool is created on device 0 with size 67108864
I1130 02:42:51.476857 18784 model_lifecycle.cc:459] loading: groupby:1
__________________ test_gpu_dl_break[None-parquet-1000-0.001] __________________

tmpdir = local('/tmp/pytest-of-jenkins/pytest-17/test_gpu_dl_break_None_parquet0')
df = name-cat name-string id label x y
0 Hannah Ray 1026 1080 -0.261469 0.99823...k 1056 1034 -0.088151 -0.297846
4320 Patricia Ursula 1003 976 -0.329359 -0.266414

[4321 rows x 6 columns]
dataset = <merlin.io.dataset.Dataset object at 0x7fcd7015bf40>
batch_size = 1000, part_mem_fraction = 0.001, engine = 'parquet', device = None

@pytest.mark.parametrize("part_mem_fraction", [0.001, 0.06])
@pytest.mark.parametrize("batch_size", [1000])
@pytest.mark.parametrize("engine", ["parquet"])
@pytest.mark.parametrize("device", [None, 0])
def test_gpu_dl_break(tmpdir, df, dataset, batch_size, part_mem_fraction, engine, device):
    cat_names = ["name-cat", "name-string"]
    cont_names = ["x", "y", "id"]
    label_name = ["label"]

    conts = cont_names >> ops.FillMedian() >> ops.Normalize()
    cats = cat_names >> ops.Categorify()

    processor = nvt.Workflow(conts + cats + label_name)

    output_train = os.path.join(tmpdir, "train/")
    os.mkdir(output_train)

    processor.fit_transform(dataset).to_parquet(
        shuffle=nvt.io.Shuffle.PER_PARTITION,
        output_path=output_train,
        out_files_per_proc=2,
    )

    tar_paths = [
        os.path.join(output_train, x) for x in os.listdir(output_train) if x.endswith("parquet")
    ]

    nvt_data = nvt.Dataset(tar_paths[0], engine="parquet", part_mem_fraction=part_mem_fraction)
    data_itr = torch_dataloader.TorchAsyncItr(
        nvt_data,
        batch_size=batch_size,
        cats=cat_names,
        conts=cont_names,
        labels=["label"],
        device=device,
    )
    len_dl = len(data_itr) - 1

    first_chunk = 0
    idx = 0
    for idx, chunk in enumerate(data_itr):
        if idx == 0:
            first_chunk = len(chunk[0])
        last_chk = len(chunk[0])
        print(last_chk)
        if idx == 1:
            break
        del chunk

    assert idx < len_dl

    first_chunk_2 = 0
    for idx, chunk in enumerate(data_itr):
        if idx == 0:
            first_chunk_2 = len(chunk[0])
        del chunk
  assert idx == len_dl

E assert 0 == 2

tests/unit/loader/test_torch_dataloader.py:301: AssertionError
----------------------------- Captured stdout call -----------------------------
5
5
__________________ test_gpu_dl_break[None-parquet-1000-0.06] ___________________

tmpdir = local('/tmp/pytest-of-jenkins/pytest-17/test_gpu_dl_break_None_parquet1')
df = name-cat name-string id label x y
0 Hannah Ray 1026 1080 -0.261469 0.99823...k 1056 1034 -0.088151 -0.297846
4320 Patricia Ursula 1003 976 -0.329359 -0.266414

[4321 rows x 6 columns]
dataset = <merlin.io.dataset.Dataset object at 0x7fcd8c6ec370>
batch_size = 1000, part_mem_fraction = 0.06, engine = 'parquet', device = None

@pytest.mark.parametrize("part_mem_fraction", [0.001, 0.06])
@pytest.mark.parametrize("batch_size", [1000])
@pytest.mark.parametrize("engine", ["parquet"])
@pytest.mark.parametrize("device", [None, 0])
def test_gpu_dl_break(tmpdir, df, dataset, batch_size, part_mem_fraction, engine, device):
    cat_names = ["name-cat", "name-string"]
    cont_names = ["x", "y", "id"]
    label_name = ["label"]

    conts = cont_names >> ops.FillMedian() >> ops.Normalize()
    cats = cat_names >> ops.Categorify()

    processor = nvt.Workflow(conts + cats + label_name)

    output_train = os.path.join(tmpdir, "train/")
    os.mkdir(output_train)

    processor.fit_transform(dataset).to_parquet(
        shuffle=nvt.io.Shuffle.PER_PARTITION,
        output_path=output_train,
        out_files_per_proc=2,
    )

    tar_paths = [
        os.path.join(output_train, x) for x in os.listdir(output_train) if x.endswith("parquet")
    ]

    nvt_data = nvt.Dataset(tar_paths[0], engine="parquet", part_mem_fraction=part_mem_fraction)
    data_itr = torch_dataloader.TorchAsyncItr(
        nvt_data,
        batch_size=batch_size,
        cats=cat_names,
        conts=cont_names,
        labels=["label"],
        device=device,
    )
    len_dl = len(data_itr) - 1

    first_chunk = 0
    idx = 0
    for idx, chunk in enumerate(data_itr):
        if idx == 0:
            first_chunk = len(chunk[0])
        last_chk = len(chunk[0])
        print(last_chk)
        if idx == 1:
            break
        del chunk

    assert idx < len_dl

    first_chunk_2 = 0
    for idx, chunk in enumerate(data_itr):
        if idx == 0:
            first_chunk_2 = len(chunk[0])
        del chunk
  assert idx == len_dl

E assert 0 == 2

tests/unit/loader/test_torch_dataloader.py:301: AssertionError
----------------------------- Captured stdout call -----------------------------
5
5
___________________ test_gpu_dl_break[0-parquet-1000-0.001] ____________________

tmpdir = local('/tmp/pytest-of-jenkins/pytest-17/test_gpu_dl_break_0_parquet_100')
df = name-cat name-string id label x y
0 Hannah Ray 1026 1080 -0.261469 0.99823...k 1056 1034 -0.088151 -0.297846
4320 Patricia Ursula 1003 976 -0.329359 -0.266414

[4321 rows x 6 columns]
dataset = <merlin.io.dataset.Dataset object at 0x7fcd70193ac0>
batch_size = 1000, part_mem_fraction = 0.001, engine = 'parquet', device = 0

@pytest.mark.parametrize("part_mem_fraction", [0.001, 0.06])
@pytest.mark.parametrize("batch_size", [1000])
@pytest.mark.parametrize("engine", ["parquet"])
@pytest.mark.parametrize("device", [None, 0])
def test_gpu_dl_break(tmpdir, df, dataset, batch_size, part_mem_fraction, engine, device):
    cat_names = ["name-cat", "name-string"]
    cont_names = ["x", "y", "id"]
    label_name = ["label"]

    conts = cont_names >> ops.FillMedian() >> ops.Normalize()
    cats = cat_names >> ops.Categorify()

    processor = nvt.Workflow(conts + cats + label_name)

    output_train = os.path.join(tmpdir, "train/")
    os.mkdir(output_train)

    processor.fit_transform(dataset).to_parquet(
        shuffle=nvt.io.Shuffle.PER_PARTITION,
        output_path=output_train,
        out_files_per_proc=2,
    )

    tar_paths = [
        os.path.join(output_train, x) for x in os.listdir(output_train) if x.endswith("parquet")
    ]

    nvt_data = nvt.Dataset(tar_paths[0], engine="parquet", part_mem_fraction=part_mem_fraction)
    data_itr = torch_dataloader.TorchAsyncItr(
        nvt_data,
        batch_size=batch_size,
        cats=cat_names,
        conts=cont_names,
        labels=["label"],
        device=device,
    )
    len_dl = len(data_itr) - 1

    first_chunk = 0
    idx = 0
    for idx, chunk in enumerate(data_itr):
        if idx == 0:
            first_chunk = len(chunk[0])
        last_chk = len(chunk[0])
        print(last_chk)
        if idx == 1:
            break
        del chunk

    assert idx < len_dl

    first_chunk_2 = 0
    for idx, chunk in enumerate(data_itr):
        if idx == 0:
            first_chunk_2 = len(chunk[0])
        del chunk
  assert idx == len_dl

E assert 0 == 2

tests/unit/loader/test_torch_dataloader.py:301: AssertionError
----------------------------- Captured stdout call -----------------------------
5
5
____________________ test_gpu_dl_break[0-parquet-1000-0.06] ____________________

tmpdir = local('/tmp/pytest-of-jenkins/pytest-17/test_gpu_dl_break_0_parquet_101')
df = name-cat name-string id label x y
0 Hannah Ray 1026 1080 -0.261469 0.99823...k 1056 1034 -0.088151 -0.297846
4320 Patricia Ursula 1003 976 -0.329359 -0.266414

[4321 rows x 6 columns]
dataset = <merlin.io.dataset.Dataset object at 0x7fcd8c71a910>
batch_size = 1000, part_mem_fraction = 0.06, engine = 'parquet', device = 0

@pytest.mark.parametrize("part_mem_fraction", [0.001, 0.06])
@pytest.mark.parametrize("batch_size", [1000])
@pytest.mark.parametrize("engine", ["parquet"])
@pytest.mark.parametrize("device", [None, 0])
def test_gpu_dl_break(tmpdir, df, dataset, batch_size, part_mem_fraction, engine, device):
    cat_names = ["name-cat", "name-string"]
    cont_names = ["x", "y", "id"]
    label_name = ["label"]

    conts = cont_names >> ops.FillMedian() >> ops.Normalize()
    cats = cat_names >> ops.Categorify()

    processor = nvt.Workflow(conts + cats + label_name)

    output_train = os.path.join(tmpdir, "train/")
    os.mkdir(output_train)

    processor.fit_transform(dataset).to_parquet(
        shuffle=nvt.io.Shuffle.PER_PARTITION,
        output_path=output_train,
        out_files_per_proc=2,
    )

    tar_paths = [
        os.path.join(output_train, x) for x in os.listdir(output_train) if x.endswith("parquet")
    ]

    nvt_data = nvt.Dataset(tar_paths[0], engine="parquet", part_mem_fraction=part_mem_fraction)
    data_itr = torch_dataloader.TorchAsyncItr(
        nvt_data,
        batch_size=batch_size,
        cats=cat_names,
        conts=cont_names,
        labels=["label"],
        device=device,
    )
    len_dl = len(data_itr) - 1

    first_chunk = 0
    idx = 0
    for idx, chunk in enumerate(data_itr):
        if idx == 0:
            first_chunk = len(chunk[0])
        last_chk = len(chunk[0])
        print(last_chk)
        if idx == 1:
            break
        del chunk

    assert idx < len_dl

    first_chunk_2 = 0
    for idx, chunk in enumerate(data_itr):
        if idx == 0:
            first_chunk_2 = len(chunk[0])
        del chunk
  assert idx == len_dl

E assert 0 == 2

tests/unit/loader/test_torch_dataloader.py:301: AssertionError
----------------------------- Captured stdout call -----------------------------
5
5
=============================== warnings summary ===============================
../../../../../usr/local/lib/python3.8/dist-packages/dask_cudf/core.py:33
/usr/local/lib/python3.8/dist-packages/dask_cudf/core.py:33: DeprecationWarning: distutils Version classes are deprecated. Use packaging.version instead.
DASK_VERSION = LooseVersion(dask.version)

.tox/test-gpu/lib/python3.8/site-packages/setuptools/_distutils/version.py:346: 34 warnings
/var/jenkins_home/workspace/nvtabular_tests/nvtabular/.tox/test-gpu/lib/python3.8/site-packages/setuptools/_distutils/version.py:346: DeprecationWarning: distutils Version classes are deprecated. Use packaging.version instead.
other = LooseVersion(other)

tests/unit/test_dask_nvt.py: 6 warnings
tests/unit/workflow/test_workflow.py: 78 warnings
/var/jenkins_home/.local/lib/python3.8/site-packages/dask/base.py:1282: UserWarning: Running on a single-machine scheduler when a distributed client is active might lead to unexpected results.
warnings.warn(

tests/unit/test_dask_nvt.py::test_merlin_core_execution_managers
/var/jenkins_home/workspace/nvtabular_tests/nvtabular/.tox/test-gpu/lib/python3.8/site-packages/merlin/core/utils.py:431: UserWarning: Existing Dask-client object detected in the current context. New cuda cluster will not be deployed. Set force_new to True to ignore running clusters.
warnings.warn(

tests/unit/test_notebooks.py::test_optimize_criteo
/var/jenkins_home/.local/lib/python3.8/site-packages/distributed/node.py:180: UserWarning: Port 8787 is already in use.
Perhaps you already have a cluster running?
Hosting the HTTP server on port 33931 instead
warnings.warn(

tests/unit/ops/test_fill.py::test_fill_missing[True-True-parquet]
tests/unit/ops/test_fill.py::test_fill_missing[True-False-parquet]
tests/unit/ops/test_ops.py::test_filter[parquet-0.1-True]
/var/jenkins_home/.local/lib/python3.8/site-packages/pandas/core/indexing.py:1732: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
self._setitem_single_block(indexer, value, name)

tests/unit/ops/test_ops_schema.py: 12 warnings
/var/jenkins_home/workspace/nvtabular_tests/nvtabular/.tox/test-gpu/lib/python3.8/site-packages/merlin/schema/tags.py:148: UserWarning: Compound tags like Tags.USER_ID have been deprecated and will be removed in a future version. Please use the atomic versions of these tags, like [<Tags.USER: 'user'>, <Tags.ID: 'id'>].
warnings.warn(

tests/unit/ops/test_ops_schema.py: 12 warnings
/var/jenkins_home/workspace/nvtabular_tests/nvtabular/.tox/test-gpu/lib/python3.8/site-packages/merlin/schema/tags.py:148: UserWarning: Compound tags like Tags.ITEM_ID have been deprecated and will be removed in a future version. Please use the atomic versions of these tags, like [<Tags.ITEM: 'item'>, <Tags.ID: 'id'>].
warnings.warn(

-- Docs: https://docs.pytest.org/en/stable/how-to/capture-warnings.html

---------- coverage: platform linux, python 3.8.10-final-0 -----------
Name Stmts Miss Cover

merlin/transforms/init.py 1 1 0%
merlin/transforms/ops/init.py 1 1 0%

TOTAL 2 2 0%

=========================== short test summary info ============================
SKIPPED [1] ../../../../../usr/local/lib/python3.8/dist-packages/dask_cudf/io/tests/test_s3.py:14: could not import 'moto': No module named 'moto'
SKIPPED [1] tests/unit/loader/test_tf_dataloader.py:529: not working correctly in ci environment
===== 7 failed, 1431 passed, 2 skipped, 148 warnings in 1216.46s (0:20:16) =====
/usr/local/lib/python3.8/dist-packages/coverage/control.py:801: CoverageWarning: No data was collected. (no-data-collected)
self._warn("No data was collected.", slug="no-data-collected")
ERROR: InvocationError for command /var/jenkins_home/workspace/nvtabular_tests/nvtabular/.tox/test-gpu/bin/python -m pytest --cov-report term --cov merlin -rxs tests/unit (exited with code 1)
___________________________________ summary ____________________________________
ERROR: test-gpu: commands failed
Build step 'Execute shell' marked build as failure
Performing Post build task...
Match found for : : True
Logical operation result is TRUE
Running script : #!/bin/bash
cd /var/jenkins_home/
CUDA_VISIBLE_DEVICES=1 python test_res_push.py "https://api.GitHub.com/repos/NVIDIA-Merlin/NVTabular/issues/$ghprbPullId/comments" "/var/jenkins_home/jobs/$JOB_NAME/builds/$BUILD_NUMBER/log"
[nvtabular_tests] $ /bin/bash /tmp/jenkins4680762567516898709.sh

@github-actions
Copy link

github-actions bot commented Dec 1, 2022

Documentation preview

https://nvidia-merlin.github.io/NVTabular/review/pr-1719

@nvidia-merlin-bot
Copy link
Contributor

Click to view CI Results
GitHub pull request #1719 of commit 05c2b8c3737512cff6262a6a952ebfb2ec99f860, no merge conflicts.
Running as SYSTEM
Setting status of 05c2b8c3737512cff6262a6a952ebfb2ec99f860 to PENDING with url http://merlin-infra1.nvidia.com:8080/job/nvtabular_tests/4941/ and message: 'Build started for merge commit.'
Using context: Jenkins Unit Test Run
Building on the built-in node in workspace /var/jenkins_home/jobs/nvtabular_tests/workspace
using credential nvidia-merlin-bot
Cloning the remote Git repository
Cloning repository https://github.com/NVIDIA-Merlin/NVTabular.git
 > git init /var/jenkins_home/workspace/nvtabular_tests/nvtabular # timeout=10
Fetching upstream changes from https://github.com/NVIDIA-Merlin/NVTabular.git
 > git --version # timeout=10
using GIT_ASKPASS to set credentials This is the bot credentials for our CI/CD
 > git fetch --tags --force --progress -- https://github.com/NVIDIA-Merlin/NVTabular.git +refs/heads/*:refs/remotes/origin/* # timeout=10
 > git config remote.origin.url https://github.com/NVIDIA-Merlin/NVTabular.git # timeout=10
 > git config --add remote.origin.fetch +refs/heads/*:refs/remotes/origin/* # timeout=10
 > git config remote.origin.url https://github.com/NVIDIA-Merlin/NVTabular.git # timeout=10
Fetching upstream changes from https://github.com/NVIDIA-Merlin/NVTabular.git
using GIT_ASKPASS to set credentials This is the bot credentials for our CI/CD
 > git fetch --tags --force --progress -- https://github.com/NVIDIA-Merlin/NVTabular.git +refs/pull/1719/*:refs/remotes/origin/pr/1719/* # timeout=10
 > git rev-parse 05c2b8c3737512cff6262a6a952ebfb2ec99f860^{commit} # timeout=10
Checking out Revision 05c2b8c3737512cff6262a6a952ebfb2ec99f860 (detached)
 > git config core.sparsecheckout # timeout=10
 > git checkout -f 05c2b8c3737512cff6262a6a952ebfb2ec99f860 # timeout=10
Commit message: "Merge branch 'main' into dev-doc-link-testing"
 > git rev-list --no-walk 5133753e943a91286fa0480a610d839b298e0aee # timeout=10
First time build. Skipping changelog.
[workspace] $ /bin/bash /tmp/jenkins9977885169448087682.sh
GLOB sdist-make: /var/jenkins_home/workspace/nvtabular_tests/nvtabular/setup.py
test-gpu create: /var/jenkins_home/workspace/nvtabular_tests/nvtabular/.tox/test-gpu
test-gpu installdeps: pytest, pytest-cov
WARNING: Discarding $PYTHONPATH from environment, to override specify PYTHONPATH in 'passenv' in your configuration.
test-gpu inst: /var/jenkins_home/workspace/nvtabular_tests/nvtabular/.tox/.tmp/package/1/nvtabular-1.6.0+14.g05c2b8c3.zip
WARNING: Discarding $PYTHONPATH from environment, to override specify PYTHONPATH in 'passenv' in your configuration.
test-gpu installed: absl-py==1.2.0,aiohttp==3.8.1,aiosignal==1.2.0,alabaster==0.7.12,alembic==1.8.1,anyio==3.6.1,argon2-cffi==21.3.0,argon2-cffi-bindings==21.2.0,astroid==2.5.6,asttokens==2.0.8,astunparse==1.6.3,asv==0.5.1,asvdb==0.4.2,async-timeout==4.0.2,attrs==22.1.0,autopage==0.5.1,awscli==1.27.20,Babel==2.10.3,backcall==0.2.0,beautifulsoup4==4.11.1,betterproto==1.2.5,black==22.6.0,bleach==5.0.1,boto3==1.24.75,botocore==1.29.20,Brotli==1.0.9,cachetools==5.2.0,certifi==2019.11.28,cffi==1.15.1,chardet==3.0.4,charset-normalizer==2.1.1,clang==5.0,click==8.1.3,cliff==4.1.0,cloudpickle==2.2.0,cmaes==0.9.0,cmake==3.24.1.1,cmd2==2.4.2,colorama==0.4.4,colorlog==6.7.0,contourpy==1.0.5,coverage==6.5.0,cuda-python==11.7.1,cupy-cuda117==10.6.0,cycler==0.11.0,Cython==0.29.32,dask==2022.1.1,dbus-python==1.2.16,debugpy==1.6.3,decorator==5.1.1,defusedxml==0.7.1,dill==0.3.5.1,distlib==0.3.6,distributed==2022.5.1,distro==1.7.0,dm-tree==0.1.6,docker-pycreds==0.4.0,docutils==0.16,emoji==1.7.0,entrypoints==0.4,execnet==1.9.0,executing==1.0.0,faiss==1.7.2,faiss-gpu==1.7.2,fastai==2.7.9,fastapi==0.85.0,fastavro==1.6.1,fastcore==1.5.27,fastdownload==0.0.7,fastjsonschema==2.16.1,fastprogress==1.0.3,fastrlock==0.8,feast==0.19.4,fiddle==0.2.2,filelock==3.8.0,flatbuffers==1.12,fonttools==4.37.3,frozenlist==1.3.1,fsspec==2022.5.0,gast==0.4.0,gevent==21.12.0,geventhttpclient==2.0.2,gitdb==4.0.9,GitPython==3.1.27,google==3.0.0,google-api-core==2.10.1,google-auth==2.11.1,google-auth-oauthlib==0.4.6,google-pasta==0.2.0,googleapis-common-protos==1.52.0,graphviz==0.20.1,greenlet==1.1.3,grpcio==1.41.0,grpcio-channelz==1.49.0,grpcio-reflection==1.48.1,grpclib==0.4.3,h11==0.13.0,h2==4.1.0,h5py==3.7.0,HeapDict==1.0.1,horovod==0.26.1,hpack==4.0.0,httptools==0.5.0,hugectr2onnx==0.0.0,huggingface-hub==0.9.1,hyperframe==6.0.1,idna==2.8,imagesize==1.4.1,implicit==0.6.1,importlib-metadata==4.12.0,importlib-resources==5.9.0,iniconfig==1.1.1,ipykernel==6.15.3,ipython==8.5.0,ipython-genutils==0.2.0,ipywidgets==7.7.0,jedi==0.18.1,Jinja2==3.1.2,jmespath==1.0.1,joblib==1.2.0,json5==0.9.10,jsonschema==4.16.0,jupyter-cache==0.4.3,jupyter-core==4.11.1,jupyter-server==1.18.1,jupyter-server-mathjax==0.2.5,jupyter-sphinx==0.3.2,jupyter_client==7.3.5,jupyterlab==3.4.7,jupyterlab-pygments==0.2.2,jupyterlab-widgets==1.1.0,jupyterlab_server==2.15.1,keras==2.9.0,Keras-Preprocessing==1.1.2,kiwisolver==1.4.4,lazy-object-proxy==1.8.0,libclang==14.0.6,libcst==0.4.7,lightfm==1.16,lightgbm==3.3.2,linkify-it-py==1.0.3,llvmlite==0.39.1,locket==1.0.0,lxml==4.9.1,Mako==1.2.4,Markdown==3.4.1,markdown-it-py==1.1.0,MarkupSafe==2.1.1,matplotlib==3.6.0,matplotlib-inline==0.1.6,mdit-py-plugins==0.2.8,merlin-core==0.6.0+1.g5926fcf,merlin-dataloader==0.0.3,merlin-models==0.7.0+11.g280956aa4,merlin-systems==0.5.0+4.g15074ad,mistune==2.0.4,mmh3==3.0.0,mpi4py==3.1.3,msgpack==1.0.4,multidict==6.0.2,mypy-extensions==0.4.3,myst-nb==0.13.2,myst-parser==0.15.2,natsort==8.1.0,nbclassic==0.4.3,nbclient==0.6.8,nbconvert==7.0.0,nbdime==3.1.1,nbformat==5.5.0,nest-asyncio==1.5.5,ninja==1.10.2.3,notebook==6.4.12,notebook-shim==0.1.0,numba==0.56.2,numpy==1.22.4,nvidia-pyindex==1.0.9,-e git+https://github.com/NVIDIA-Merlin/NVTabular.git@05c2b8c3737512cff6262a6a952ebfb2ec99f860#egg=nvtabular,nvtx==0.2.5,oauthlib==3.2.1,oldest-supported-numpy==2022.8.16,onnx==1.12.0,onnxruntime==1.11.1,opt-einsum==3.3.0,optuna==3.0.4,packaging==21.3,pandas==1.3.5,pandavro==1.5.2,pandocfilters==1.5.0,parso==0.8.3,partd==1.3.0,pathtools==0.1.2,pbr==5.11.0,pexpect==4.8.0,pickleshare==0.7.5,Pillow==9.2.0,pkgutil_resolve_name==1.3.10,platformdirs==2.5.2,plotly==5.11.0,pluggy==1.0.0,prettytable==3.5.0,prometheus-client==0.14.1,promise==2.3,prompt-toolkit==3.0.31,proto-plus==1.19.6,protobuf==3.19.5,psutil==5.9.2,ptyprocess==0.7.0,pure-eval==0.2.2,py==1.11.0,pyarrow==7.0.0,pyasn1==0.4.8,pyasn1-modules==0.2.8,pybind11==2.10.0,pycparser==2.21,pydantic==1.10.2,pydot==1.4.2,Pygments==2.13.0,PyGObject==3.36.0,pynvml==11.4.1,pyparsing==3.0.9,pyperclip==1.8.2,pyrsistent==0.18.1,pytest==7.1.3,pytest-cov==4.0.0,pytest-xdist==3.0.2,python-apt==2.0.0+ubuntu0.20.4.8,python-dateutil==2.8.2,python-dotenv==0.21.0,python-rapidjson==1.8,pytz==2022.2.1,PyYAML==5.4.1,pyzmq==24.0.0,regex==2022.9.13,requests==2.22.0,requests-oauthlib==1.3.1,requests-unixsocket==0.2.0,rsa==4.7.2,s3fs==2022.2.0,s3transfer==0.6.0,sacremoses==0.0.53,scikit-build==0.15.0,scikit-learn==1.1.2,scipy==1.8.1,seedir==0.3.0,Send2Trash==1.8.0,sentry-sdk==1.9.8,setproctitle==1.3.2,setuptools-scm==7.0.5,shortuuid==1.0.9,six==1.15.0,sklearn==0.0,smmap==5.0.0,sniffio==1.3.0,snowballstemmer==2.2.0,sortedcontainers==2.4.0,soupsieve==2.3.2.post1,Sphinx==5.3.0,sphinx-multiversion==0.2.4,sphinx-togglebutton==0.3.1,sphinx_external_toc==0.3.0,sphinxcontrib-applehelp==1.0.2,sphinxcontrib-copydirs @ git+https://github.com/mikemckiernan/sphinxcontrib-copydirs.git@bd8c5d79b3f91cf5f1bb0d6995aeca3fe84b670e,sphinxcontrib-devhelp==1.0.2,sphinxcontrib-htmlhelp==2.0.0,sphinxcontrib-jsmath==1.0.1,sphinxcontrib-qthelp==1.0.3,sphinxcontrib-serializinghtml==1.1.5,SQLAlchemy==1.4.44,stack-data==0.5.0,starlette==0.20.4,stevedore==4.1.1,stringcase==1.2.0,supervisor==4.1.0,tabulate==0.8.10,tblib==1.7.0,tdqm==0.0.1,tenacity==8.0.1,tensorboard==2.9.1,tensorboard-data-server==0.6.1,tensorboard-plugin-wit==1.8.1,tensorflow==2.9.2,tensorflow-estimator==2.9.0,tensorflow-gpu==2.9.2,tensorflow-io-gcs-filesystem==0.27.0,tensorflow-metadata==1.10.0,termcolor==2.0.1,terminado==0.15.0,testbook==0.4.2,threadpoolctl==3.1.0,tinycss2==1.1.1,tokenizers==0.10.3,toml==0.10.2,tomli==2.0.1,toolz==0.12.0,torch==1.12.1+cu113,torchmetrics==0.3.2,tornado==6.2,tox==3.26.0,tqdm==4.64.1,traitlets==5.4.0,transformers==4.12.0,transformers4rec==0.1.12+2.gbcc939255,treelite==2.3.0,treelite-runtime==2.3.0,tritonclient==2.25.0,typing-inspect==0.8.0,typing_extensions==4.3.0,uc-micro-py==1.0.1,urllib3==1.26.12,uvicorn==0.18.3,uvloop==0.17.0,versioneer==0.20,virtualenv==20.16.5,wandb==0.13.3,watchfiles==0.17.0,wcwidth==0.2.5,webencodings==0.5.1,websocket-client==1.4.1,websockets==10.3,Werkzeug==2.2.2,widgetsnbextension==3.6.0,wrapt==1.12.1,xgboost==1.6.2,yarl==1.8.1,zict==2.2.0,zipp==3.8.1,zope.event==4.5.0,zope.interface==5.4.0
test-gpu run-test-pre: PYTHONHASHSEED='3134169996'
test-gpu run-test: commands[0] | python -m pip install --upgrade git+https://github.com/NVIDIA-Merlin/core.git
Looking in indexes: https://pypi.org/simple, https://pypi.ngc.nvidia.com
Collecting git+https://github.com/NVIDIA-Merlin/core.git
  Cloning https://github.com/NVIDIA-Merlin/core.git to /tmp/pip-req-build-x99p92z7
  Running command git clone --filter=blob:none --quiet https://github.com/NVIDIA-Merlin/core.git /tmp/pip-req-build-x99p92z7
  Resolved https://github.com/NVIDIA-Merlin/core.git to commit 4f73ff5bd4121c1acaabdc01a123af4f986ffc78
  Installing build dependencies: started
  Installing build dependencies: finished with status 'done'
  Getting requirements to build wheel: started
  Getting requirements to build wheel: finished with status 'done'
  Preparing metadata (pyproject.toml): started
  Preparing metadata (pyproject.toml): finished with status 'done'
Requirement already satisfied: betterproto<2.0.0 in /usr/local/lib/python3.8/dist-packages (from merlin-core==0.9.0+14.g4f73ff5) (1.2.5)
Requirement already satisfied: protobuf>=3.0.0 in /usr/local/lib/python3.8/dist-packages (from merlin-core==0.9.0+14.g4f73ff5) (3.19.5)
Requirement already satisfied: tensorflow-metadata>=1.2.0 in /usr/local/lib/python3.8/dist-packages (from merlin-core==0.9.0+14.g4f73ff5) (1.10.0)
Requirement already satisfied: distributed>=2022.3.0 in /var/jenkins_home/.local/lib/python3.8/site-packages (from merlin-core==0.9.0+14.g4f73ff5) (2022.3.0)
Requirement already satisfied: packaging in /usr/local/lib/python3.8/dist-packages (from merlin-core==0.9.0+14.g4f73ff5) (21.3)
Requirement already satisfied: numba>=0.54 in /var/jenkins_home/.local/lib/python3.8/site-packages (from merlin-core==0.9.0+14.g4f73ff5) (0.55.1)
Requirement already satisfied: dask>=2022.3.0 in /var/jenkins_home/.local/lib/python3.8/site-packages (from merlin-core==0.9.0+14.g4f73ff5) (2022.3.0)
Requirement already satisfied: pyarrow>=5.0.0 in /usr/local/lib/python3.8/dist-packages (from merlin-core==0.9.0+14.g4f73ff5) (7.0.0)
Requirement already satisfied: pandas<1.4.0dev0,>=1.2.0 in /var/jenkins_home/.local/lib/python3.8/site-packages (from merlin-core==0.9.0+14.g4f73ff5) (1.3.5)
Requirement already satisfied: tqdm>=4.0 in /usr/local/lib/python3.8/dist-packages (from merlin-core==0.9.0+14.g4f73ff5) (4.64.1)
Requirement already satisfied: fsspec==2022.5.0 in /var/jenkins_home/.local/lib/python3.8/site-packages (from merlin-core==0.9.0+14.g4f73ff5) (2022.5.0)
Requirement already satisfied: grpclib in /usr/local/lib/python3.8/dist-packages (from betterproto<2.0.0->merlin-core==0.9.0+14.g4f73ff5) (0.4.3)
Requirement already satisfied: stringcase in /usr/local/lib/python3.8/dist-packages (from betterproto<2.0.0->merlin-core==0.9.0+14.g4f73ff5) (1.2.0)
Requirement already satisfied: partd>=0.3.10 in /var/jenkins_home/.local/lib/python3.8/site-packages/partd-1.2.0-py3.8.egg (from dask>=2022.3.0->merlin-core==0.9.0+14.g4f73ff5) (1.2.0)
Requirement already satisfied: cloudpickle>=1.1.1 in /usr/local/lib/python3.8/dist-packages (from dask>=2022.3.0->merlin-core==0.9.0+14.g4f73ff5) (2.2.0)
Requirement already satisfied: toolz>=0.8.2 in /usr/local/lib/python3.8/dist-packages (from dask>=2022.3.0->merlin-core==0.9.0+14.g4f73ff5) (0.12.0)
Requirement already satisfied: pyyaml>=5.3.1 in /var/jenkins_home/.local/lib/python3.8/site-packages/PyYAML-5.4.1-py3.8-linux-x86_64.egg (from dask>=2022.3.0->merlin-core==0.9.0+14.g4f73ff5) (5.4.1)
Requirement already satisfied: tblib>=1.6.0 in /var/jenkins_home/.local/lib/python3.8/site-packages/tblib-1.7.0-py3.8.egg (from distributed>=2022.3.0->merlin-core==0.9.0+14.g4f73ff5) (1.7.0)
Requirement already satisfied: zict>=0.1.3 in /var/jenkins_home/.local/lib/python3.8/site-packages/zict-2.0.0-py3.8.egg (from distributed>=2022.3.0->merlin-core==0.9.0+14.g4f73ff5) (2.0.0)
Requirement already satisfied: sortedcontainers!=2.0.0,!=2.0.1 in /var/jenkins_home/.local/lib/python3.8/site-packages/sortedcontainers-2.4.0-py3.8.egg (from distributed>=2022.3.0->merlin-core==0.9.0+14.g4f73ff5) (2.4.0)
Requirement already satisfied: click>=6.6 in /usr/local/lib/python3.8/dist-packages (from distributed>=2022.3.0->merlin-core==0.9.0+14.g4f73ff5) (8.1.3)
Requirement already satisfied: tornado>=6.0.3 in /var/jenkins_home/.local/lib/python3.8/site-packages/tornado-6.1-py3.8-linux-x86_64.egg (from distributed>=2022.3.0->merlin-core==0.9.0+14.g4f73ff5) (6.1)
Requirement already satisfied: psutil>=5.0 in /var/jenkins_home/.local/lib/python3.8/site-packages/psutil-5.8.0-py3.8-linux-x86_64.egg (from distributed>=2022.3.0->merlin-core==0.9.0+14.g4f73ff5) (5.8.0)
Requirement already satisfied: jinja2 in /usr/local/lib/python3.8/dist-packages (from distributed>=2022.3.0->merlin-core==0.9.0+14.g4f73ff5) (3.1.2)
Requirement already satisfied: msgpack>=0.6.0 in /usr/local/lib/python3.8/dist-packages (from distributed>=2022.3.0->merlin-core==0.9.0+14.g4f73ff5) (1.0.4)
Requirement already satisfied: llvmlite<0.39,>=0.38.0rc1 in ./.tox/test-gpu/lib/python3.8/site-packages (from numba>=0.54->merlin-core==0.9.0+14.g4f73ff5) (0.38.1)
Requirement already satisfied: setuptools in ./.tox/test-gpu/lib/python3.8/site-packages (from numba>=0.54->merlin-core==0.9.0+14.g4f73ff5) (65.5.1)
Requirement already satisfied: numpy<1.22,>=1.18 in /var/jenkins_home/.local/lib/python3.8/site-packages (from numba>=0.54->merlin-core==0.9.0+14.g4f73ff5) (1.20.3)
Requirement already satisfied: pyparsing!=3.0.5,>=2.0.2 in /usr/local/lib/python3.8/dist-packages (from packaging->merlin-core==0.9.0+14.g4f73ff5) (3.0.9)
Requirement already satisfied: pytz>=2017.3 in /usr/local/lib/python3.8/dist-packages (from pandas<1.4.0dev0,>=1.2.0->merlin-core==0.9.0+14.g4f73ff5) (2022.2.1)
Requirement already satisfied: python-dateutil>=2.7.3 in /usr/local/lib/python3.8/dist-packages (from pandas<1.4.0dev0,>=1.2.0->merlin-core==0.9.0+14.g4f73ff5) (2.8.2)
Requirement already satisfied: absl-py<2.0.0,>=0.9 in /usr/local/lib/python3.8/dist-packages (from tensorflow-metadata>=1.2.0->merlin-core==0.9.0+14.g4f73ff5) (1.2.0)
Requirement already satisfied: googleapis-common-protos<2,>=1.52.0 in /usr/local/lib/python3.8/dist-packages (from tensorflow-metadata>=1.2.0->merlin-core==0.9.0+14.g4f73ff5) (1.52.0)
Requirement already satisfied: locket in /var/jenkins_home/.local/lib/python3.8/site-packages/locket-0.2.1-py3.8.egg (from partd>=0.3.10->dask>=2022.3.0->merlin-core==0.9.0+14.g4f73ff5) (0.2.1)
Requirement already satisfied: six>=1.5 in /var/jenkins_home/.local/lib/python3.8/site-packages (from python-dateutil>=2.7.3->pandas<1.4.0dev0,>=1.2.0->merlin-core==0.9.0+14.g4f73ff5) (1.15.0)
Requirement already satisfied: heapdict in /var/jenkins_home/.local/lib/python3.8/site-packages/HeapDict-1.0.1-py3.8.egg (from zict>=0.1.3->distributed>=2022.3.0->merlin-core==0.9.0+14.g4f73ff5) (1.0.1)
Requirement already satisfied: multidict in /usr/local/lib/python3.8/dist-packages (from grpclib->betterproto<2.0.0->merlin-core==0.9.0+14.g4f73ff5) (6.0.2)
Requirement already satisfied: h2<5,>=3.1.0 in /usr/local/lib/python3.8/dist-packages (from grpclib->betterproto<2.0.0->merlin-core==0.9.0+14.g4f73ff5) (4.1.0)
Requirement already satisfied: MarkupSafe>=2.0 in /usr/local/lib/python3.8/dist-packages (from jinja2->distributed>=2022.3.0->merlin-core==0.9.0+14.g4f73ff5) (2.1.1)
Requirement already satisfied: hyperframe<7,>=6.0 in /usr/local/lib/python3.8/dist-packages (from h2<5,>=3.1.0->grpclib->betterproto<2.0.0->merlin-core==0.9.0+14.g4f73ff5) (6.0.1)
Requirement already satisfied: hpack<5,>=4.0 in /usr/local/lib/python3.8/dist-packages (from h2<5,>=3.1.0->grpclib->betterproto<2.0.0->merlin-core==0.9.0+14.g4f73ff5) (4.0.0)
Building wheels for collected packages: merlin-core
  Building wheel for merlin-core (pyproject.toml): started
  Building wheel for merlin-core (pyproject.toml): finished with status 'done'
  Created wheel for merlin-core: filename=merlin_core-0.9.0+14.g4f73ff5-py3-none-any.whl size=119010 sha256=7729475bb74837a587e4465994d3c11ab3eacc0de0ead548ddc80d975ad632a6
  Stored in directory: /tmp/pip-ephem-wheel-cache-2lfucmmh/wheels/c8/38/16/a6968787eafcec5fa772148af8408b089562f71af0752e8e84
Successfully built merlin-core
Installing collected packages: merlin-core
  Attempting uninstall: merlin-core
    Found existing installation: merlin-core 0.3.0+12.g78ecddd
    Not uninstalling merlin-core at /var/jenkins_home/.local/lib/python3.8/site-packages, outside environment /var/jenkins_home/workspace/nvtabular_tests/nvtabular/.tox/test-gpu
    Can't uninstall 'merlin-core'. No files were found to uninstall.
Successfully installed merlin-core-0.9.0+14.g4f73ff5
test-gpu run-test: commands[1] | python -m pip install --upgrade git+https://github.com/NVIDIA-Merlin/dataloader.git
Looking in indexes: https://pypi.org/simple, https://pypi.ngc.nvidia.com
Collecting git+https://github.com/NVIDIA-Merlin/dataloader.git
  Cloning https://github.com/NVIDIA-Merlin/dataloader.git to /tmp/pip-req-build-q1og7wr5
  Running command git clone --filter=blob:none --quiet https://github.com/NVIDIA-Merlin/dataloader.git /tmp/pip-req-build-q1og7wr5
  Resolved https://github.com/NVIDIA-Merlin/dataloader.git to commit 2783231f3aa39dd6acb0e5f6431cc73faacde7fe
  Installing build dependencies: started
  Installing build dependencies: finished with status 'done'
  Getting requirements to build wheel: started
  Getting requirements to build wheel: finished with status 'done'
  Preparing metadata (pyproject.toml): started
  Preparing metadata (pyproject.toml): finished with status 'done'
Requirement already satisfied: merlin-core>=0.8.0 in ./.tox/test-gpu/lib/python3.8/site-packages (from merlin-dataloader==0.0.2+21.g2783231) (0.9.0+14.g4f73ff5)
Requirement already satisfied: betterproto<2.0.0 in /usr/local/lib/python3.8/dist-packages (from merlin-core>=0.8.0->merlin-dataloader==0.0.2+21.g2783231) (1.2.5)
Requirement already satisfied: protobuf>=3.0.0 in /usr/local/lib/python3.8/dist-packages (from merlin-core>=0.8.0->merlin-dataloader==0.0.2+21.g2783231) (3.19.5)
Requirement already satisfied: tensorflow-metadata>=1.2.0 in /usr/local/lib/python3.8/dist-packages (from merlin-core>=0.8.0->merlin-dataloader==0.0.2+21.g2783231) (1.10.0)
Requirement already satisfied: distributed>=2022.3.0 in /var/jenkins_home/.local/lib/python3.8/site-packages (from merlin-core>=0.8.0->merlin-dataloader==0.0.2+21.g2783231) (2022.3.0)
Requirement already satisfied: packaging in /usr/local/lib/python3.8/dist-packages (from merlin-core>=0.8.0->merlin-dataloader==0.0.2+21.g2783231) (21.3)
Requirement already satisfied: numba>=0.54 in /var/jenkins_home/.local/lib/python3.8/site-packages (from merlin-core>=0.8.0->merlin-dataloader==0.0.2+21.g2783231) (0.55.1)
Requirement already satisfied: dask>=2022.3.0 in /var/jenkins_home/.local/lib/python3.8/site-packages (from merlin-core>=0.8.0->merlin-dataloader==0.0.2+21.g2783231) (2022.3.0)
Requirement already satisfied: pyarrow>=5.0.0 in /usr/local/lib/python3.8/dist-packages (from merlin-core>=0.8.0->merlin-dataloader==0.0.2+21.g2783231) (7.0.0)
Requirement already satisfied: pandas<1.4.0dev0,>=1.2.0 in /var/jenkins_home/.local/lib/python3.8/site-packages (from merlin-core>=0.8.0->merlin-dataloader==0.0.2+21.g2783231) (1.3.5)
Requirement already satisfied: tqdm>=4.0 in /usr/local/lib/python3.8/dist-packages (from merlin-core>=0.8.0->merlin-dataloader==0.0.2+21.g2783231) (4.64.1)
Requirement already satisfied: fsspec==2022.5.0 in /var/jenkins_home/.local/lib/python3.8/site-packages (from merlin-core>=0.8.0->merlin-dataloader==0.0.2+21.g2783231) (2022.5.0)
Requirement already satisfied: grpclib in /usr/local/lib/python3.8/dist-packages (from betterproto<2.0.0->merlin-core>=0.8.0->merlin-dataloader==0.0.2+21.g2783231) (0.4.3)
Requirement already satisfied: stringcase in /usr/local/lib/python3.8/dist-packages (from betterproto<2.0.0->merlin-core>=0.8.0->merlin-dataloader==0.0.2+21.g2783231) (1.2.0)
Requirement already satisfied: partd>=0.3.10 in /var/jenkins_home/.local/lib/python3.8/site-packages/partd-1.2.0-py3.8.egg (from dask>=2022.3.0->merlin-core>=0.8.0->merlin-dataloader==0.0.2+21.g2783231) (1.2.0)
Requirement already satisfied: cloudpickle>=1.1.1 in /usr/local/lib/python3.8/dist-packages (from dask>=2022.3.0->merlin-core>=0.8.0->merlin-dataloader==0.0.2+21.g2783231) (2.2.0)
Requirement already satisfied: toolz>=0.8.2 in /usr/local/lib/python3.8/dist-packages (from dask>=2022.3.0->merlin-core>=0.8.0->merlin-dataloader==0.0.2+21.g2783231) (0.12.0)
Requirement already satisfied: pyyaml>=5.3.1 in /var/jenkins_home/.local/lib/python3.8/site-packages/PyYAML-5.4.1-py3.8-linux-x86_64.egg (from dask>=2022.3.0->merlin-core>=0.8.0->merlin-dataloader==0.0.2+21.g2783231) (5.4.1)
Requirement already satisfied: tblib>=1.6.0 in /var/jenkins_home/.local/lib/python3.8/site-packages/tblib-1.7.0-py3.8.egg (from distributed>=2022.3.0->merlin-core>=0.8.0->merlin-dataloader==0.0.2+21.g2783231) (1.7.0)
Requirement already satisfied: zict>=0.1.3 in /var/jenkins_home/.local/lib/python3.8/site-packages/zict-2.0.0-py3.8.egg (from distributed>=2022.3.0->merlin-core>=0.8.0->merlin-dataloader==0.0.2+21.g2783231) (2.0.0)
Requirement already satisfied: sortedcontainers!=2.0.0,!=2.0.1 in /var/jenkins_home/.local/lib/python3.8/site-packages/sortedcontainers-2.4.0-py3.8.egg (from distributed>=2022.3.0->merlin-core>=0.8.0->merlin-dataloader==0.0.2+21.g2783231) (2.4.0)
Requirement already satisfied: click>=6.6 in /usr/local/lib/python3.8/dist-packages (from distributed>=2022.3.0->merlin-core>=0.8.0->merlin-dataloader==0.0.2+21.g2783231) (8.1.3)
Requirement already satisfied: tornado>=6.0.3 in /var/jenkins_home/.local/lib/python3.8/site-packages/tornado-6.1-py3.8-linux-x86_64.egg (from distributed>=2022.3.0->merlin-core>=0.8.0->merlin-dataloader==0.0.2+21.g2783231) (6.1)
Requirement already satisfied: psutil>=5.0 in /var/jenkins_home/.local/lib/python3.8/site-packages/psutil-5.8.0-py3.8-linux-x86_64.egg (from distributed>=2022.3.0->merlin-core>=0.8.0->merlin-dataloader==0.0.2+21.g2783231) (5.8.0)
Requirement already satisfied: jinja2 in /usr/local/lib/python3.8/dist-packages (from distributed>=2022.3.0->merlin-core>=0.8.0->merlin-dataloader==0.0.2+21.g2783231) (3.1.2)
Requirement already satisfied: msgpack>=0.6.0 in /usr/local/lib/python3.8/dist-packages (from distributed>=2022.3.0->merlin-core>=0.8.0->merlin-dataloader==0.0.2+21.g2783231) (1.0.4)
Requirement already satisfied: llvmlite<0.39,>=0.38.0rc1 in ./.tox/test-gpu/lib/python3.8/site-packages (from numba>=0.54->merlin-core>=0.8.0->merlin-dataloader==0.0.2+21.g2783231) (0.38.1)
Requirement already satisfied: setuptools in ./.tox/test-gpu/lib/python3.8/site-packages (from numba>=0.54->merlin-core>=0.8.0->merlin-dataloader==0.0.2+21.g2783231) (65.5.1)
Requirement already satisfied: numpy<1.22,>=1.18 in /var/jenkins_home/.local/lib/python3.8/site-packages (from numba>=0.54->merlin-core>=0.8.0->merlin-dataloader==0.0.2+21.g2783231) (1.20.3)
Requirement already satisfied: pyparsing!=3.0.5,>=2.0.2 in /usr/local/lib/python3.8/dist-packages (from packaging->merlin-core>=0.8.0->merlin-dataloader==0.0.2+21.g2783231) (3.0.9)
Requirement already satisfied: pytz>=2017.3 in /usr/local/lib/python3.8/dist-packages (from pandas<1.4.0dev0,>=1.2.0->merlin-core>=0.8.0->merlin-dataloader==0.0.2+21.g2783231) (2022.2.1)
Requirement already satisfied: python-dateutil>=2.7.3 in /usr/local/lib/python3.8/dist-packages (from pandas<1.4.0dev0,>=1.2.0->merlin-core>=0.8.0->merlin-dataloader==0.0.2+21.g2783231) (2.8.2)
Requirement already satisfied: absl-py<2.0.0,>=0.9 in /usr/local/lib/python3.8/dist-packages (from tensorflow-metadata>=1.2.0->merlin-core>=0.8.0->merlin-dataloader==0.0.2+21.g2783231) (1.2.0)
Requirement already satisfied: googleapis-common-protos<2,>=1.52.0 in /usr/local/lib/python3.8/dist-packages (from tensorflow-metadata>=1.2.0->merlin-core>=0.8.0->merlin-dataloader==0.0.2+21.g2783231) (1.52.0)
Requirement already satisfied: locket in /var/jenkins_home/.local/lib/python3.8/site-packages/locket-0.2.1-py3.8.egg (from partd>=0.3.10->dask>=2022.3.0->merlin-core>=0.8.0->merlin-dataloader==0.0.2+21.g2783231) (0.2.1)
Requirement already satisfied: six>=1.5 in /var/jenkins_home/.local/lib/python3.8/site-packages (from python-dateutil>=2.7.3->pandas<1.4.0dev0,>=1.2.0->merlin-core>=0.8.0->merlin-dataloader==0.0.2+21.g2783231) (1.15.0)
Requirement already satisfied: heapdict in /var/jenkins_home/.local/lib/python3.8/site-packages/HeapDict-1.0.1-py3.8.egg (from zict>=0.1.3->distributed>=2022.3.0->merlin-core>=0.8.0->merlin-dataloader==0.0.2+21.g2783231) (1.0.1)
Requirement already satisfied: multidict in /usr/local/lib/python3.8/dist-packages (from grpclib->betterproto<2.0.0->merlin-core>=0.8.0->merlin-dataloader==0.0.2+21.g2783231) (6.0.2)
Requirement already satisfied: h2<5,>=3.1.0 in /usr/local/lib/python3.8/dist-packages (from grpclib->betterproto<2.0.0->merlin-core>=0.8.0->merlin-dataloader==0.0.2+21.g2783231) (4.1.0)
Requirement already satisfied: MarkupSafe>=2.0 in /usr/local/lib/python3.8/dist-packages (from jinja2->distributed>=2022.3.0->merlin-core>=0.8.0->merlin-dataloader==0.0.2+21.g2783231) (2.1.1)
Requirement already satisfied: hyperframe<7,>=6.0 in /usr/local/lib/python3.8/dist-packages (from h2<5,>=3.1.0->grpclib->betterproto<2.0.0->merlin-core>=0.8.0->merlin-dataloader==0.0.2+21.g2783231) (6.0.1)
Requirement already satisfied: hpack<5,>=4.0 in /usr/local/lib/python3.8/dist-packages (from h2<5,>=3.1.0->grpclib->betterproto<2.0.0->merlin-core>=0.8.0->merlin-dataloader==0.0.2+21.g2783231) (4.0.0)
Building wheels for collected packages: merlin-dataloader
  Building wheel for merlin-dataloader (pyproject.toml): started
  Building wheel for merlin-dataloader (pyproject.toml): finished with status 'done'
  Created wheel for merlin-dataloader: filename=merlin_dataloader-0.0.2+21.g2783231-py3-none-any.whl size=40305 sha256=a74e557441ae8bcdc78d66e9e2b036025a424ddc62d4dee9618f45d0a066f1e7
  Stored in directory: /tmp/pip-ephem-wheel-cache-rvi65inh/wheels/de/f5/d9/251909f4627d2920fb15548f5ffd6daf1bf24c3c56bb4977b1
Successfully built merlin-dataloader
Installing collected packages: merlin-dataloader
  Attempting uninstall: merlin-dataloader
    Found existing installation: merlin-dataloader 0.0.3
    Uninstalling merlin-dataloader-0.0.3:
      Successfully uninstalled merlin-dataloader-0.0.3
Successfully installed merlin-dataloader-0.0.2+21.g2783231
test-gpu run-test: commands[2] | python -m pip install --upgrade git+https://github.com/NVIDIA-Merlin/models.git
Looking in indexes: https://pypi.org/simple, https://pypi.ngc.nvidia.com
Collecting git+https://github.com/NVIDIA-Merlin/models.git
  Cloning https://github.com/NVIDIA-Merlin/models.git to /tmp/pip-req-build-lavey3ca
  Running command git clone --filter=blob:none --quiet https://github.com/NVIDIA-Merlin/models.git /tmp/pip-req-build-lavey3ca
  Resolved https://github.com/NVIDIA-Merlin/models.git to commit 5e4d8a106498847b5755f94a8e467c46cbf12c60
  Installing build dependencies: started
  Installing build dependencies: finished with status 'done'
  Getting requirements to build wheel: started
  Getting requirements to build wheel: finished with status 'done'
  Preparing metadata (pyproject.toml): started
  Preparing metadata (pyproject.toml): finished with status 'done'
Requirement already satisfied: merlin-core>=0.2.0 in ./.tox/test-gpu/lib/python3.8/site-packages (from merlin-models==0.9.0+60.g5e4d8a10) (0.9.0+14.g4f73ff5)
Requirement already satisfied: betterproto<2.0.0 in /usr/local/lib/python3.8/dist-packages (from merlin-core>=0.2.0->merlin-models==0.9.0+60.g5e4d8a10) (1.2.5)
Requirement already satisfied: protobuf>=3.0.0 in /usr/local/lib/python3.8/dist-packages (from merlin-core>=0.2.0->merlin-models==0.9.0+60.g5e4d8a10) (3.19.5)
Requirement already satisfied: tensorflow-metadata>=1.2.0 in /usr/local/lib/python3.8/dist-packages (from merlin-core>=0.2.0->merlin-models==0.9.0+60.g5e4d8a10) (1.10.0)
Requirement already satisfied: distributed>=2022.3.0 in /var/jenkins_home/.local/lib/python3.8/site-packages (from merlin-core>=0.2.0->merlin-models==0.9.0+60.g5e4d8a10) (2022.3.0)
Requirement already satisfied: packaging in /usr/local/lib/python3.8/dist-packages (from merlin-core>=0.2.0->merlin-models==0.9.0+60.g5e4d8a10) (21.3)
Requirement already satisfied: numba>=0.54 in /var/jenkins_home/.local/lib/python3.8/site-packages (from merlin-core>=0.2.0->merlin-models==0.9.0+60.g5e4d8a10) (0.55.1)
Requirement already satisfied: dask>=2022.3.0 in /var/jenkins_home/.local/lib/python3.8/site-packages (from merlin-core>=0.2.0->merlin-models==0.9.0+60.g5e4d8a10) (2022.3.0)
Requirement already satisfied: pyarrow>=5.0.0 in /usr/local/lib/python3.8/dist-packages (from merlin-core>=0.2.0->merlin-models==0.9.0+60.g5e4d8a10) (7.0.0)
Requirement already satisfied: pandas<1.4.0dev0,>=1.2.0 in /var/jenkins_home/.local/lib/python3.8/site-packages (from merlin-core>=0.2.0->merlin-models==0.9.0+60.g5e4d8a10) (1.3.5)
Requirement already satisfied: tqdm>=4.0 in /usr/local/lib/python3.8/dist-packages (from merlin-core>=0.2.0->merlin-models==0.9.0+60.g5e4d8a10) (4.64.1)
Requirement already satisfied: fsspec==2022.5.0 in /var/jenkins_home/.local/lib/python3.8/site-packages (from merlin-core>=0.2.0->merlin-models==0.9.0+60.g5e4d8a10) (2022.5.0)
Requirement already satisfied: grpclib in /usr/local/lib/python3.8/dist-packages (from betterproto<2.0.0->merlin-core>=0.2.0->merlin-models==0.9.0+60.g5e4d8a10) (0.4.3)
Requirement already satisfied: stringcase in /usr/local/lib/python3.8/dist-packages (from betterproto<2.0.0->merlin-core>=0.2.0->merlin-models==0.9.0+60.g5e4d8a10) (1.2.0)
Requirement already satisfied: partd>=0.3.10 in /var/jenkins_home/.local/lib/python3.8/site-packages/partd-1.2.0-py3.8.egg (from dask>=2022.3.0->merlin-core>=0.2.0->merlin-models==0.9.0+60.g5e4d8a10) (1.2.0)
Requirement already satisfied: cloudpickle>=1.1.1 in /usr/local/lib/python3.8/dist-packages (from dask>=2022.3.0->merlin-core>=0.2.0->merlin-models==0.9.0+60.g5e4d8a10) (2.2.0)
Requirement already satisfied: toolz>=0.8.2 in /usr/local/lib/python3.8/dist-packages (from dask>=2022.3.0->merlin-core>=0.2.0->merlin-models==0.9.0+60.g5e4d8a10) (0.12.0)
Requirement already satisfied: pyyaml>=5.3.1 in /var/jenkins_home/.local/lib/python3.8/site-packages/PyYAML-5.4.1-py3.8-linux-x86_64.egg (from dask>=2022.3.0->merlin-core>=0.2.0->merlin-models==0.9.0+60.g5e4d8a10) (5.4.1)
Requirement already satisfied: tblib>=1.6.0 in /var/jenkins_home/.local/lib/python3.8/site-packages/tblib-1.7.0-py3.8.egg (from distributed>=2022.3.0->merlin-core>=0.2.0->merlin-models==0.9.0+60.g5e4d8a10) (1.7.0)
Requirement already satisfied: zict>=0.1.3 in /var/jenkins_home/.local/lib/python3.8/site-packages/zict-2.0.0-py3.8.egg (from distributed>=2022.3.0->merlin-core>=0.2.0->merlin-models==0.9.0+60.g5e4d8a10) (2.0.0)
Requirement already satisfied: sortedcontainers!=2.0.0,!=2.0.1 in /var/jenkins_home/.local/lib/python3.8/site-packages/sortedcontainers-2.4.0-py3.8.egg (from distributed>=2022.3.0->merlin-core>=0.2.0->merlin-models==0.9.0+60.g5e4d8a10) (2.4.0)
Requirement already satisfied: click>=6.6 in /usr/local/lib/python3.8/dist-packages (from distributed>=2022.3.0->merlin-core>=0.2.0->merlin-models==0.9.0+60.g5e4d8a10) (8.1.3)
Requirement already satisfied: tornado>=6.0.3 in /var/jenkins_home/.local/lib/python3.8/site-packages/tornado-6.1-py3.8-linux-x86_64.egg (from distributed>=2022.3.0->merlin-core>=0.2.0->merlin-models==0.9.0+60.g5e4d8a10) (6.1)
Requirement already satisfied: psutil>=5.0 in /var/jenkins_home/.local/lib/python3.8/site-packages/psutil-5.8.0-py3.8-linux-x86_64.egg (from distributed>=2022.3.0->merlin-core>=0.2.0->merlin-models==0.9.0+60.g5e4d8a10) (5.8.0)
Requirement already satisfied: jinja2 in /usr/local/lib/python3.8/dist-packages (from distributed>=2022.3.0->merlin-core>=0.2.0->merlin-models==0.9.0+60.g5e4d8a10) (3.1.2)
Requirement already satisfied: msgpack>=0.6.0 in /usr/local/lib/python3.8/dist-packages (from distributed>=2022.3.0->merlin-core>=0.2.0->merlin-models==0.9.0+60.g5e4d8a10) (1.0.4)
Requirement already satisfied: llvmlite<0.39,>=0.38.0rc1 in ./.tox/test-gpu/lib/python3.8/site-packages (from numba>=0.54->merlin-core>=0.2.0->merlin-models==0.9.0+60.g5e4d8a10) (0.38.1)
Requirement already satisfied: setuptools in ./.tox/test-gpu/lib/python3.8/site-packages (from numba>=0.54->merlin-core>=0.2.0->merlin-models==0.9.0+60.g5e4d8a10) (65.5.1)
Requirement already satisfied: numpy<1.22,>=1.18 in /var/jenkins_home/.local/lib/python3.8/site-packages (from numba>=0.54->merlin-core>=0.2.0->merlin-models==0.9.0+60.g5e4d8a10) (1.20.3)
Requirement already satisfied: pyparsing!=3.0.5,>=2.0.2 in /usr/local/lib/python3.8/dist-packages (from packaging->merlin-core>=0.2.0->merlin-models==0.9.0+60.g5e4d8a10) (3.0.9)
Requirement already satisfied: pytz>=2017.3 in /usr/local/lib/python3.8/dist-packages (from pandas<1.4.0dev0,>=1.2.0->merlin-core>=0.2.0->merlin-models==0.9.0+60.g5e4d8a10) (2022.2.1)
Requirement already satisfied: python-dateutil>=2.7.3 in /usr/local/lib/python3.8/dist-packages (from pandas<1.4.0dev0,>=1.2.0->merlin-core>=0.2.0->merlin-models==0.9.0+60.g5e4d8a10) (2.8.2)
Requirement already satisfied: absl-py<2.0.0,>=0.9 in /usr/local/lib/python3.8/dist-packages (from tensorflow-metadata>=1.2.0->merlin-core>=0.2.0->merlin-models==0.9.0+60.g5e4d8a10) (1.2.0)
Requirement already satisfied: googleapis-common-protos<2,>=1.52.0 in /usr/local/lib/python3.8/dist-packages (from tensorflow-metadata>=1.2.0->merlin-core>=0.2.0->merlin-models==0.9.0+60.g5e4d8a10) (1.52.0)
Requirement already satisfied: locket in /var/jenkins_home/.local/lib/python3.8/site-packages/locket-0.2.1-py3.8.egg (from partd>=0.3.10->dask>=2022.3.0->merlin-core>=0.2.0->merlin-models==0.9.0+60.g5e4d8a10) (0.2.1)
Requirement already satisfied: six>=1.5 in /var/jenkins_home/.local/lib/python3.8/site-packages (from python-dateutil>=2.7.3->pandas<1.4.0dev0,>=1.2.0->merlin-core>=0.2.0->merlin-models==0.9.0+60.g5e4d8a10) (1.15.0)
Requirement already satisfied: heapdict in /var/jenkins_home/.local/lib/python3.8/site-packages/HeapDict-1.0.1-py3.8.egg (from zict>=0.1.3->distributed>=2022.3.0->merlin-core>=0.2.0->merlin-models==0.9.0+60.g5e4d8a10) (1.0.1)
Requirement already satisfied: multidict in /usr/local/lib/python3.8/dist-packages (from grpclib->betterproto<2.0.0->merlin-core>=0.2.0->merlin-models==0.9.0+60.g5e4d8a10) (6.0.2)
Requirement already satisfied: h2<5,>=3.1.0 in /usr/local/lib/python3.8/dist-packages (from grpclib->betterproto<2.0.0->merlin-core>=0.2.0->merlin-models==0.9.0+60.g5e4d8a10) (4.1.0)
Requirement already satisfied: MarkupSafe>=2.0 in /usr/local/lib/python3.8/dist-packages (from jinja2->distributed>=2022.3.0->merlin-core>=0.2.0->merlin-models==0.9.0+60.g5e4d8a10) (2.1.1)
Requirement already satisfied: hyperframe<7,>=6.0 in /usr/local/lib/python3.8/dist-packages (from h2<5,>=3.1.0->grpclib->betterproto<2.0.0->merlin-core>=0.2.0->merlin-models==0.9.0+60.g5e4d8a10) (6.0.1)
Requirement already satisfied: hpack<5,>=4.0 in /usr/local/lib/python3.8/dist-packages (from h2<5,>=3.1.0->grpclib->betterproto<2.0.0->merlin-core>=0.2.0->merlin-models==0.9.0+60.g5e4d8a10) (4.0.0)
Building wheels for collected packages: merlin-models
  Building wheel for merlin-models (pyproject.toml): started
  Building wheel for merlin-models (pyproject.toml): finished with status 'done'
  Created wheel for merlin-models: filename=merlin_models-0.9.0+60.g5e4d8a10-py3-none-any.whl size=366424 sha256=67a5ad25f6ced3e6907535a36312391a84542f854c2af59900a4dd8bff8f6676
  Stored in directory: /tmp/pip-ephem-wheel-cache-ollumdq0/wheels/5a/43/99/d50fe2c33b4f4686db73207ce3865e0d6be6609ffb03abade5
Successfully built merlin-models
Installing collected packages: merlin-models
  Attempting uninstall: merlin-models
    Found existing installation: merlin-models 0.7.0+11.g280956aa4
    Not uninstalling merlin-models at /usr/local/lib/python3.8/dist-packages, outside environment /var/jenkins_home/workspace/nvtabular_tests/nvtabular/.tox/test-gpu
    Can't uninstall 'merlin-models'. No files were found to uninstall.
Successfully installed merlin-models-0.9.0+60.g5e4d8a10
test-gpu run-test: commands[3] | python -m pytest --cov-report term --cov merlin -rxs tests/unit
============================= test session starts ==============================
platform linux -- Python 3.8.10, pytest-7.1.3, pluggy-1.0.0
cachedir: .tox/test-gpu/.pytest_cache
rootdir: /var/jenkins_home/workspace/nvtabular_tests/nvtabular, configfile: pyproject.toml
plugins: anyio-3.5.0, xdist-3.0.2, cov-4.0.0
collected 1439 items / 1 skipped

tests/unit/test_dask_nvt.py ............................................ [ 3%]
........................................................................ [ 8%]
.... [ 8%]
tests/unit/test_notebooks.py ..Build timed out (after 60 minutes). Marking the build as failed.
FERROR: Got SIGTERM, handling it as a KeyboardInterrupt
ERROR: got KeyboardInterrupt signal
Build was aborted
Performing Post build task...
Match found for : : True
Logical operation result is TRUE
Running script : #!/bin/bash
cd /var/jenkins_home/
CUDA_VISIBLE_DEVICES=1 python test_res_push.py "https://api.GitHub.com/repos/NVIDIA-Merlin/NVTabular/issues/$ghprbPullId/comments" "/var/jenkins_home/jobs/$JOB_NAME/builds/$BUILD_NUMBER/log"
[workspace] $ /bin/bash /tmp/jenkins1122160770830057800.sh

@mikemckiernan
Copy link
Member Author

rerun tests

@nvidia-merlin-bot
Copy link
Contributor

Click to view CI Results
GitHub pull request #1719 of commit 05c2b8c3737512cff6262a6a952ebfb2ec99f860, no merge conflicts.
GitHub pull request #1719 of commit 05c2b8c3737512cff6262a6a952ebfb2ec99f860, no merge conflicts.
Running as SYSTEM
Setting status of 05c2b8c3737512cff6262a6a952ebfb2ec99f860 to PENDING with url http://merlin-infra1.nvidia.com:8080/job/nvtabular_tests/4942/ and message: 'Build started for merge commit.'
Using context: Jenkins Unit Test Run
Building on the built-in node in workspace /var/jenkins_home/jobs/nvtabular_tests/workspace
using credential nvidia-merlin-bot
 > git rev-parse --is-inside-work-tree # timeout=10
Fetching changes from the remote Git repository
 > git config remote.origin.url https://github.com/NVIDIA-Merlin/NVTabular.git # timeout=10
Fetching upstream changes from https://github.com/NVIDIA-Merlin/NVTabular.git
 > git --version # timeout=10
using GIT_ASKPASS to set credentials This is the bot credentials for our CI/CD
 > git fetch --tags --force --progress -- https://github.com/NVIDIA-Merlin/NVTabular.git +refs/pull/1719/*:refs/remotes/origin/pr/1719/* # timeout=10
 > git rev-parse 05c2b8c3737512cff6262a6a952ebfb2ec99f860^{commit} # timeout=10
Checking out Revision 05c2b8c3737512cff6262a6a952ebfb2ec99f860 (detached)
 > git config core.sparsecheckout # timeout=10
 > git checkout -f 05c2b8c3737512cff6262a6a952ebfb2ec99f860 # timeout=10
Commit message: "Merge branch 'main' into dev-doc-link-testing"
 > git rev-list --no-walk 05c2b8c3737512cff6262a6a952ebfb2ec99f860 # timeout=10
[workspace] $ /bin/bash /tmp/jenkins3907002479392737768.sh
GLOB sdist-make: /var/jenkins_home/workspace/nvtabular_tests/nvtabular/setup.py
test-gpu recreate: /var/jenkins_home/workspace/nvtabular_tests/nvtabular/.tox/test-gpu
test-gpu installdeps: pytest, pytest-cov
WARNING: Discarding $PYTHONPATH from environment, to override specify PYTHONPATH in 'passenv' in your configuration.
test-gpu inst: /var/jenkins_home/workspace/nvtabular_tests/nvtabular/.tox/.tmp/package/1/nvtabular-1.6.0+14.g05c2b8c3.zip
WARNING: Discarding $PYTHONPATH from environment, to override specify PYTHONPATH in 'passenv' in your configuration.
test-gpu installed: absl-py==1.2.0,aiohttp==3.8.1,aiosignal==1.2.0,alabaster==0.7.12,alembic==1.8.1,anyio==3.6.1,argon2-cffi==21.3.0,argon2-cffi-bindings==21.2.0,astroid==2.5.6,asttokens==2.0.8,astunparse==1.6.3,asv==0.5.1,asvdb==0.4.2,async-timeout==4.0.2,attrs==22.1.0,autopage==0.5.1,awscli==1.27.20,Babel==2.10.3,backcall==0.2.0,beautifulsoup4==4.11.1,betterproto==1.2.5,black==22.6.0,bleach==5.0.1,boto3==1.24.75,botocore==1.29.20,Brotli==1.0.9,cachetools==5.2.0,certifi==2019.11.28,cffi==1.15.1,chardet==3.0.4,charset-normalizer==2.1.1,clang==5.0,click==8.1.3,cliff==4.1.0,cloudpickle==2.2.0,cmaes==0.9.0,cmake==3.24.1.1,cmd2==2.4.2,colorama==0.4.4,colorlog==6.7.0,contourpy==1.0.5,coverage==6.5.0,cuda-python==11.7.1,cupy-cuda117==10.6.0,cycler==0.11.0,Cython==0.29.32,dask==2022.1.1,dbus-python==1.2.16,debugpy==1.6.3,decorator==5.1.1,defusedxml==0.7.1,dill==0.3.5.1,distlib==0.3.6,distributed==2022.5.1,distro==1.7.0,dm-tree==0.1.6,docker-pycreds==0.4.0,docutils==0.16,emoji==1.7.0,entrypoints==0.4,execnet==1.9.0,executing==1.0.0,faiss==1.7.2,faiss-gpu==1.7.2,fastai==2.7.9,fastapi==0.85.0,fastavro==1.6.1,fastcore==1.5.27,fastdownload==0.0.7,fastjsonschema==2.16.1,fastprogress==1.0.3,fastrlock==0.8,feast==0.19.4,fiddle==0.2.2,filelock==3.8.0,flatbuffers==1.12,fonttools==4.37.3,frozenlist==1.3.1,fsspec==2022.5.0,gast==0.4.0,gevent==21.12.0,geventhttpclient==2.0.2,gitdb==4.0.9,GitPython==3.1.27,google==3.0.0,google-api-core==2.10.1,google-auth==2.11.1,google-auth-oauthlib==0.4.6,google-pasta==0.2.0,googleapis-common-protos==1.52.0,graphviz==0.20.1,greenlet==1.1.3,grpcio==1.41.0,grpcio-channelz==1.49.0,grpcio-reflection==1.48.1,grpclib==0.4.3,h11==0.13.0,h2==4.1.0,h5py==3.7.0,HeapDict==1.0.1,horovod==0.26.1,hpack==4.0.0,httptools==0.5.0,hugectr2onnx==0.0.0,huggingface-hub==0.9.1,hyperframe==6.0.1,idna==2.8,imagesize==1.4.1,implicit==0.6.1,importlib-metadata==4.12.0,importlib-resources==5.9.0,iniconfig==1.1.1,ipykernel==6.15.3,ipython==8.5.0,ipython-genutils==0.2.0,ipywidgets==7.7.0,jedi==0.18.1,Jinja2==3.1.2,jmespath==1.0.1,joblib==1.2.0,json5==0.9.10,jsonschema==4.16.0,jupyter-cache==0.4.3,jupyter-core==4.11.1,jupyter-server==1.18.1,jupyter-server-mathjax==0.2.5,jupyter-sphinx==0.3.2,jupyter_client==7.3.5,jupyterlab==3.4.7,jupyterlab-pygments==0.2.2,jupyterlab-widgets==1.1.0,jupyterlab_server==2.15.1,keras==2.9.0,Keras-Preprocessing==1.1.2,kiwisolver==1.4.4,lazy-object-proxy==1.8.0,libclang==14.0.6,libcst==0.4.7,lightfm==1.16,lightgbm==3.3.2,linkify-it-py==1.0.3,llvmlite==0.39.1,locket==1.0.0,lxml==4.9.1,Mako==1.2.4,Markdown==3.4.1,markdown-it-py==1.1.0,MarkupSafe==2.1.1,matplotlib==3.6.0,matplotlib-inline==0.1.6,mdit-py-plugins==0.2.8,merlin-core==0.6.0+1.g5926fcf,merlin-dataloader==0.0.3,merlin-models==0.7.0+11.g280956aa4,merlin-systems==0.5.0+4.g15074ad,mistune==2.0.4,mmh3==3.0.0,mpi4py==3.1.3,msgpack==1.0.4,multidict==6.0.2,mypy-extensions==0.4.3,myst-nb==0.13.2,myst-parser==0.15.2,natsort==8.1.0,nbclassic==0.4.3,nbclient==0.6.8,nbconvert==7.0.0,nbdime==3.1.1,nbformat==5.5.0,nest-asyncio==1.5.5,ninja==1.10.2.3,notebook==6.4.12,notebook-shim==0.1.0,numba==0.56.2,numpy==1.22.4,nvidia-pyindex==1.0.9,-e git+https://github.com/NVIDIA-Merlin/NVTabular.git@05c2b8c3737512cff6262a6a952ebfb2ec99f860#egg=nvtabular,nvtx==0.2.5,oauthlib==3.2.1,oldest-supported-numpy==2022.8.16,onnx==1.12.0,onnxruntime==1.11.1,opt-einsum==3.3.0,optuna==3.0.4,packaging==21.3,pandas==1.3.5,pandavro==1.5.2,pandocfilters==1.5.0,parso==0.8.3,partd==1.3.0,pathtools==0.1.2,pbr==5.11.0,pexpect==4.8.0,pickleshare==0.7.5,Pillow==9.2.0,pkgutil_resolve_name==1.3.10,platformdirs==2.5.2,plotly==5.11.0,pluggy==1.0.0,prettytable==3.5.0,prometheus-client==0.14.1,promise==2.3,prompt-toolkit==3.0.31,proto-plus==1.19.6,protobuf==3.19.5,psutil==5.9.2,ptyprocess==0.7.0,pure-eval==0.2.2,py==1.11.0,pyarrow==7.0.0,pyasn1==0.4.8,pyasn1-modules==0.2.8,pybind11==2.10.0,pycparser==2.21,pydantic==1.10.2,pydot==1.4.2,Pygments==2.13.0,PyGObject==3.36.0,pynvml==11.4.1,pyparsing==3.0.9,pyperclip==1.8.2,pyrsistent==0.18.1,pytest==7.1.3,pytest-cov==4.0.0,pytest-xdist==3.0.2,python-apt==2.0.0+ubuntu0.20.4.8,python-dateutil==2.8.2,python-dotenv==0.21.0,python-rapidjson==1.8,pytz==2022.2.1,PyYAML==5.4.1,pyzmq==24.0.0,regex==2022.9.13,requests==2.22.0,requests-oauthlib==1.3.1,requests-unixsocket==0.2.0,rsa==4.7.2,s3fs==2022.2.0,s3transfer==0.6.0,sacremoses==0.0.53,scikit-build==0.15.0,scikit-learn==1.1.2,scipy==1.8.1,seedir==0.3.0,Send2Trash==1.8.0,sentry-sdk==1.9.8,setproctitle==1.3.2,setuptools-scm==7.0.5,shortuuid==1.0.9,six==1.15.0,sklearn==0.0,smmap==5.0.0,sniffio==1.3.0,snowballstemmer==2.2.0,sortedcontainers==2.4.0,soupsieve==2.3.2.post1,Sphinx==5.3.0,sphinx-multiversion==0.2.4,sphinx-togglebutton==0.3.1,sphinx_external_toc==0.3.0,sphinxcontrib-applehelp==1.0.2,sphinxcontrib-copydirs @ git+https://github.com/mikemckiernan/sphinxcontrib-copydirs.git@bd8c5d79b3f91cf5f1bb0d6995aeca3fe84b670e,sphinxcontrib-devhelp==1.0.2,sphinxcontrib-htmlhelp==2.0.0,sphinxcontrib-jsmath==1.0.1,sphinxcontrib-qthelp==1.0.3,sphinxcontrib-serializinghtml==1.1.5,SQLAlchemy==1.4.44,stack-data==0.5.0,starlette==0.20.4,stevedore==4.1.1,stringcase==1.2.0,supervisor==4.1.0,tabulate==0.8.10,tblib==1.7.0,tdqm==0.0.1,tenacity==8.0.1,tensorboard==2.9.1,tensorboard-data-server==0.6.1,tensorboard-plugin-wit==1.8.1,tensorflow==2.9.2,tensorflow-estimator==2.9.0,tensorflow-gpu==2.9.2,tensorflow-io-gcs-filesystem==0.27.0,tensorflow-metadata==1.10.0,termcolor==2.0.1,terminado==0.15.0,testbook==0.4.2,threadpoolctl==3.1.0,tinycss2==1.1.1,tokenizers==0.10.3,toml==0.10.2,tomli==2.0.1,toolz==0.12.0,torch==1.12.1+cu113,torchmetrics==0.3.2,tornado==6.2,tox==3.26.0,tqdm==4.64.1,traitlets==5.4.0,transformers==4.12.0,transformers4rec==0.1.12+2.gbcc939255,treelite==2.3.0,treelite-runtime==2.3.0,tritonclient==2.25.0,typing-inspect==0.8.0,typing_extensions==4.3.0,uc-micro-py==1.0.1,urllib3==1.26.12,uvicorn==0.18.3,uvloop==0.17.0,versioneer==0.20,virtualenv==20.16.5,wandb==0.13.3,watchfiles==0.17.0,wcwidth==0.2.5,webencodings==0.5.1,websocket-client==1.4.1,websockets==10.3,Werkzeug==2.2.2,widgetsnbextension==3.6.0,wrapt==1.12.1,xgboost==1.6.2,yarl==1.8.1,zict==2.2.0,zipp==3.8.1,zope.event==4.5.0,zope.interface==5.4.0
test-gpu run-test-pre: PYTHONHASHSEED='1758288963'
test-gpu run-test: commands[0] | python -m pip install --upgrade git+https://github.com/NVIDIA-Merlin/core.git
Looking in indexes: https://pypi.org/simple, https://pypi.ngc.nvidia.com
Collecting git+https://github.com/NVIDIA-Merlin/core.git
  Cloning https://github.com/NVIDIA-Merlin/core.git to /tmp/pip-req-build-92nytdb8
  Running command git clone --filter=blob:none --quiet https://github.com/NVIDIA-Merlin/core.git /tmp/pip-req-build-92nytdb8
  Resolved https://github.com/NVIDIA-Merlin/core.git to commit 4f73ff5bd4121c1acaabdc01a123af4f986ffc78
  Installing build dependencies: started
  Installing build dependencies: finished with status 'done'
  Getting requirements to build wheel: started
  Getting requirements to build wheel: finished with status 'done'
  Preparing metadata (pyproject.toml): started
  Preparing metadata (pyproject.toml): finished with status 'done'
Requirement already satisfied: packaging in /usr/local/lib/python3.8/dist-packages (from merlin-core==0.9.0+14.g4f73ff5) (21.3)
Requirement already satisfied: distributed>=2022.3.0 in /var/jenkins_home/.local/lib/python3.8/site-packages (from merlin-core==0.9.0+14.g4f73ff5) (2022.3.0)
Requirement already satisfied: tqdm>=4.0 in /usr/local/lib/python3.8/dist-packages (from merlin-core==0.9.0+14.g4f73ff5) (4.64.1)
Requirement already satisfied: fsspec==2022.5.0 in /var/jenkins_home/.local/lib/python3.8/site-packages (from merlin-core==0.9.0+14.g4f73ff5) (2022.5.0)
Requirement already satisfied: numba>=0.54 in /var/jenkins_home/.local/lib/python3.8/site-packages (from merlin-core==0.9.0+14.g4f73ff5) (0.55.1)
Requirement already satisfied: tensorflow-metadata>=1.2.0 in /usr/local/lib/python3.8/dist-packages (from merlin-core==0.9.0+14.g4f73ff5) (1.10.0)
Requirement already satisfied: betterproto<2.0.0 in /usr/local/lib/python3.8/dist-packages (from merlin-core==0.9.0+14.g4f73ff5) (1.2.5)
Requirement already satisfied: pandas<1.4.0dev0,>=1.2.0 in /var/jenkins_home/.local/lib/python3.8/site-packages (from merlin-core==0.9.0+14.g4f73ff5) (1.3.5)
Requirement already satisfied: protobuf>=3.0.0 in /usr/local/lib/python3.8/dist-packages (from merlin-core==0.9.0+14.g4f73ff5) (3.19.5)
Requirement already satisfied: pyarrow>=5.0.0 in /usr/local/lib/python3.8/dist-packages (from merlin-core==0.9.0+14.g4f73ff5) (7.0.0)
Requirement already satisfied: dask>=2022.3.0 in /var/jenkins_home/.local/lib/python3.8/site-packages (from merlin-core==0.9.0+14.g4f73ff5) (2022.3.0)
Requirement already satisfied: stringcase in /usr/local/lib/python3.8/dist-packages (from betterproto<2.0.0->merlin-core==0.9.0+14.g4f73ff5) (1.2.0)
Requirement already satisfied: grpclib in /usr/local/lib/python3.8/dist-packages (from betterproto<2.0.0->merlin-core==0.9.0+14.g4f73ff5) (0.4.3)
Requirement already satisfied: pyyaml>=5.3.1 in /var/jenkins_home/.local/lib/python3.8/site-packages/PyYAML-5.4.1-py3.8-linux-x86_64.egg (from dask>=2022.3.0->merlin-core==0.9.0+14.g4f73ff5) (5.4.1)
Requirement already satisfied: partd>=0.3.10 in /var/jenkins_home/.local/lib/python3.8/site-packages/partd-1.2.0-py3.8.egg (from dask>=2022.3.0->merlin-core==0.9.0+14.g4f73ff5) (1.2.0)
Requirement already satisfied: cloudpickle>=1.1.1 in /usr/local/lib/python3.8/dist-packages (from dask>=2022.3.0->merlin-core==0.9.0+14.g4f73ff5) (2.2.0)
Requirement already satisfied: toolz>=0.8.2 in /usr/local/lib/python3.8/dist-packages (from dask>=2022.3.0->merlin-core==0.9.0+14.g4f73ff5) (0.12.0)
Requirement already satisfied: tornado>=6.0.3 in /var/jenkins_home/.local/lib/python3.8/site-packages/tornado-6.1-py3.8-linux-x86_64.egg (from distributed>=2022.3.0->merlin-core==0.9.0+14.g4f73ff5) (6.1)
Requirement already satisfied: click>=6.6 in /usr/local/lib/python3.8/dist-packages (from distributed>=2022.3.0->merlin-core==0.9.0+14.g4f73ff5) (8.1.3)
Requirement already satisfied: tblib>=1.6.0 in /var/jenkins_home/.local/lib/python3.8/site-packages/tblib-1.7.0-py3.8.egg (from distributed>=2022.3.0->merlin-core==0.9.0+14.g4f73ff5) (1.7.0)
Requirement already satisfied: jinja2 in /usr/local/lib/python3.8/dist-packages (from distributed>=2022.3.0->merlin-core==0.9.0+14.g4f73ff5) (3.1.2)
Requirement already satisfied: psutil>=5.0 in /var/jenkins_home/.local/lib/python3.8/site-packages/psutil-5.8.0-py3.8-linux-x86_64.egg (from distributed>=2022.3.0->merlin-core==0.9.0+14.g4f73ff5) (5.8.0)
Requirement already satisfied: zict>=0.1.3 in /var/jenkins_home/.local/lib/python3.8/site-packages/zict-2.0.0-py3.8.egg (from distributed>=2022.3.0->merlin-core==0.9.0+14.g4f73ff5) (2.0.0)
Requirement already satisfied: sortedcontainers!=2.0.0,!=2.0.1 in /var/jenkins_home/.local/lib/python3.8/site-packages/sortedcontainers-2.4.0-py3.8.egg (from distributed>=2022.3.0->merlin-core==0.9.0+14.g4f73ff5) (2.4.0)
Requirement already satisfied: msgpack>=0.6.0 in /usr/local/lib/python3.8/dist-packages (from distributed>=2022.3.0->merlin-core==0.9.0+14.g4f73ff5) (1.0.4)
Requirement already satisfied: setuptools in ./.tox/test-gpu/lib/python3.8/site-packages (from numba>=0.54->merlin-core==0.9.0+14.g4f73ff5) (65.5.1)
Requirement already satisfied: numpy<1.22,>=1.18 in /var/jenkins_home/.local/lib/python3.8/site-packages (from numba>=0.54->merlin-core==0.9.0+14.g4f73ff5) (1.20.3)
Requirement already satisfied: llvmlite<0.39,>=0.38.0rc1 in ./.tox/test-gpu/lib/python3.8/site-packages (from numba>=0.54->merlin-core==0.9.0+14.g4f73ff5) (0.38.1)
Requirement already satisfied: pyparsing!=3.0.5,>=2.0.2 in /usr/local/lib/python3.8/dist-packages (from packaging->merlin-core==0.9.0+14.g4f73ff5) (3.0.9)
Requirement already satisfied: python-dateutil>=2.7.3 in /usr/local/lib/python3.8/dist-packages (from pandas<1.4.0dev0,>=1.2.0->merlin-core==0.9.0+14.g4f73ff5) (2.8.2)
Requirement already satisfied: pytz>=2017.3 in /usr/local/lib/python3.8/dist-packages (from pandas<1.4.0dev0,>=1.2.0->merlin-core==0.9.0+14.g4f73ff5) (2022.2.1)
Requirement already satisfied: googleapis-common-protos<2,>=1.52.0 in /usr/local/lib/python3.8/dist-packages (from tensorflow-metadata>=1.2.0->merlin-core==0.9.0+14.g4f73ff5) (1.52.0)
Requirement already satisfied: absl-py<2.0.0,>=0.9 in /usr/local/lib/python3.8/dist-packages (from tensorflow-metadata>=1.2.0->merlin-core==0.9.0+14.g4f73ff5) (1.2.0)
Requirement already satisfied: locket in /var/jenkins_home/.local/lib/python3.8/site-packages/locket-0.2.1-py3.8.egg (from partd>=0.3.10->dask>=2022.3.0->merlin-core==0.9.0+14.g4f73ff5) (0.2.1)
Requirement already satisfied: six>=1.5 in /var/jenkins_home/.local/lib/python3.8/site-packages (from python-dateutil>=2.7.3->pandas<1.4.0dev0,>=1.2.0->merlin-core==0.9.0+14.g4f73ff5) (1.15.0)
Requirement already satisfied: heapdict in /var/jenkins_home/.local/lib/python3.8/site-packages/HeapDict-1.0.1-py3.8.egg (from zict>=0.1.3->distributed>=2022.3.0->merlin-core==0.9.0+14.g4f73ff5) (1.0.1)
Requirement already satisfied: multidict in /usr/local/lib/python3.8/dist-packages (from grpclib->betterproto<2.0.0->merlin-core==0.9.0+14.g4f73ff5) (6.0.2)
Requirement already satisfied: h2<5,>=3.1.0 in /usr/local/lib/python3.8/dist-packages (from grpclib->betterproto<2.0.0->merlin-core==0.9.0+14.g4f73ff5) (4.1.0)
Requirement already satisfied: MarkupSafe>=2.0 in /usr/local/lib/python3.8/dist-packages (from jinja2->distributed>=2022.3.0->merlin-core==0.9.0+14.g4f73ff5) (2.1.1)
Requirement already satisfied: hpack<5,>=4.0 in /usr/local/lib/python3.8/dist-packages (from h2<5,>=3.1.0->grpclib->betterproto<2.0.0->merlin-core==0.9.0+14.g4f73ff5) (4.0.0)
Requirement already satisfied: hyperframe<7,>=6.0 in /usr/local/lib/python3.8/dist-packages (from h2<5,>=3.1.0->grpclib->betterproto<2.0.0->merlin-core==0.9.0+14.g4f73ff5) (6.0.1)
Building wheels for collected packages: merlin-core
  Building wheel for merlin-core (pyproject.toml): started
  Building wheel for merlin-core (pyproject.toml): finished with status 'done'
  Created wheel for merlin-core: filename=merlin_core-0.9.0+14.g4f73ff5-py3-none-any.whl size=119010 sha256=ee174483cd4b9911c8ca058c657c620b622ffa1dac0b286247e0413b48fe1424
  Stored in directory: /tmp/pip-ephem-wheel-cache-hu5dz58r/wheels/c8/38/16/a6968787eafcec5fa772148af8408b089562f71af0752e8e84
Successfully built merlin-core
Installing collected packages: merlin-core
  Attempting uninstall: merlin-core
    Found existing installation: merlin-core 0.3.0+12.g78ecddd
    Not uninstalling merlin-core at /var/jenkins_home/.local/lib/python3.8/site-packages, outside environment /var/jenkins_home/workspace/nvtabular_tests/nvtabular/.tox/test-gpu
    Can't uninstall 'merlin-core'. No files were found to uninstall.
Successfully installed merlin-core-0.9.0+14.g4f73ff5
test-gpu run-test: commands[1] | python -m pip install --upgrade git+https://github.com/NVIDIA-Merlin/dataloader.git
Looking in indexes: https://pypi.org/simple, https://pypi.ngc.nvidia.com
Collecting git+https://github.com/NVIDIA-Merlin/dataloader.git
  Cloning https://github.com/NVIDIA-Merlin/dataloader.git to /tmp/pip-req-build-2qi_hy67
  Running command git clone --filter=blob:none --quiet https://github.com/NVIDIA-Merlin/dataloader.git /tmp/pip-req-build-2qi_hy67
  Resolved https://github.com/NVIDIA-Merlin/dataloader.git to commit 498543d54629216dc09a5854dca4dbeeabcab356
  Installing build dependencies: started
  Installing build dependencies: finished with status 'done'
  Getting requirements to build wheel: started
  Getting requirements to build wheel: finished with status 'done'
  Preparing metadata (pyproject.toml): started
  Preparing metadata (pyproject.toml): finished with status 'done'
Requirement already satisfied: merlin-core>=0.8.0 in ./.tox/test-gpu/lib/python3.8/site-packages (from merlin-dataloader==0.0.2+22.g498543d) (0.9.0+14.g4f73ff5)
Requirement already satisfied: packaging in /usr/local/lib/python3.8/dist-packages (from merlin-core>=0.8.0->merlin-dataloader==0.0.2+22.g498543d) (21.3)
Requirement already satisfied: distributed>=2022.3.0 in /var/jenkins_home/.local/lib/python3.8/site-packages (from merlin-core>=0.8.0->merlin-dataloader==0.0.2+22.g498543d) (2022.3.0)
Requirement already satisfied: tqdm>=4.0 in /usr/local/lib/python3.8/dist-packages (from merlin-core>=0.8.0->merlin-dataloader==0.0.2+22.g498543d) (4.64.1)
Requirement already satisfied: fsspec==2022.5.0 in /var/jenkins_home/.local/lib/python3.8/site-packages (from merlin-core>=0.8.0->merlin-dataloader==0.0.2+22.g498543d) (2022.5.0)
Requirement already satisfied: numba>=0.54 in /var/jenkins_home/.local/lib/python3.8/site-packages (from merlin-core>=0.8.0->merlin-dataloader==0.0.2+22.g498543d) (0.55.1)
Requirement already satisfied: tensorflow-metadata>=1.2.0 in /usr/local/lib/python3.8/dist-packages (from merlin-core>=0.8.0->merlin-dataloader==0.0.2+22.g498543d) (1.10.0)
Requirement already satisfied: betterproto<2.0.0 in /usr/local/lib/python3.8/dist-packages (from merlin-core>=0.8.0->merlin-dataloader==0.0.2+22.g498543d) (1.2.5)
Requirement already satisfied: pandas<1.4.0dev0,>=1.2.0 in /var/jenkins_home/.local/lib/python3.8/site-packages (from merlin-core>=0.8.0->merlin-dataloader==0.0.2+22.g498543d) (1.3.5)
Requirement already satisfied: protobuf>=3.0.0 in /usr/local/lib/python3.8/dist-packages (from merlin-core>=0.8.0->merlin-dataloader==0.0.2+22.g498543d) (3.19.5)
Requirement already satisfied: pyarrow>=5.0.0 in /usr/local/lib/python3.8/dist-packages (from merlin-core>=0.8.0->merlin-dataloader==0.0.2+22.g498543d) (7.0.0)
Requirement already satisfied: dask>=2022.3.0 in /var/jenkins_home/.local/lib/python3.8/site-packages (from merlin-core>=0.8.0->merlin-dataloader==0.0.2+22.g498543d) (2022.3.0)
Requirement already satisfied: stringcase in /usr/local/lib/python3.8/dist-packages (from betterproto<2.0.0->merlin-core>=0.8.0->merlin-dataloader==0.0.2+22.g498543d) (1.2.0)
Requirement already satisfied: grpclib in /usr/local/lib/python3.8/dist-packages (from betterproto<2.0.0->merlin-core>=0.8.0->merlin-dataloader==0.0.2+22.g498543d) (0.4.3)
Requirement already satisfied: pyyaml>=5.3.1 in /var/jenkins_home/.local/lib/python3.8/site-packages/PyYAML-5.4.1-py3.8-linux-x86_64.egg (from dask>=2022.3.0->merlin-core>=0.8.0->merlin-dataloader==0.0.2+22.g498543d) (5.4.1)
Requirement already satisfied: partd>=0.3.10 in /var/jenkins_home/.local/lib/python3.8/site-packages/partd-1.2.0-py3.8.egg (from dask>=2022.3.0->merlin-core>=0.8.0->merlin-dataloader==0.0.2+22.g498543d) (1.2.0)
Requirement already satisfied: cloudpickle>=1.1.1 in /usr/local/lib/python3.8/dist-packages (from dask>=2022.3.0->merlin-core>=0.8.0->merlin-dataloader==0.0.2+22.g498543d) (2.2.0)
Requirement already satisfied: toolz>=0.8.2 in /usr/local/lib/python3.8/dist-packages (from dask>=2022.3.0->merlin-core>=0.8.0->merlin-dataloader==0.0.2+22.g498543d) (0.12.0)
Requirement already satisfied: tornado>=6.0.3 in /var/jenkins_home/.local/lib/python3.8/site-packages/tornado-6.1-py3.8-linux-x86_64.egg (from distributed>=2022.3.0->merlin-core>=0.8.0->merlin-dataloader==0.0.2+22.g498543d) (6.1)
Requirement already satisfied: click>=6.6 in /usr/local/lib/python3.8/dist-packages (from distributed>=2022.3.0->merlin-core>=0.8.0->merlin-dataloader==0.0.2+22.g498543d) (8.1.3)
Requirement already satisfied: tblib>=1.6.0 in /var/jenkins_home/.local/lib/python3.8/site-packages/tblib-1.7.0-py3.8.egg (from distributed>=2022.3.0->merlin-core>=0.8.0->merlin-dataloader==0.0.2+22.g498543d) (1.7.0)
Requirement already satisfied: jinja2 in /usr/local/lib/python3.8/dist-packages (from distributed>=2022.3.0->merlin-core>=0.8.0->merlin-dataloader==0.0.2+22.g498543d) (3.1.2)
Requirement already satisfied: psutil>=5.0 in /var/jenkins_home/.local/lib/python3.8/site-packages/psutil-5.8.0-py3.8-linux-x86_64.egg (from distributed>=2022.3.0->merlin-core>=0.8.0->merlin-dataloader==0.0.2+22.g498543d) (5.8.0)
Requirement already satisfied: zict>=0.1.3 in /var/jenkins_home/.local/lib/python3.8/site-packages/zict-2.0.0-py3.8.egg (from distributed>=2022.3.0->merlin-core>=0.8.0->merlin-dataloader==0.0.2+22.g498543d) (2.0.0)
Requirement already satisfied: sortedcontainers!=2.0.0,!=2.0.1 in /var/jenkins_home/.local/lib/python3.8/site-packages/sortedcontainers-2.4.0-py3.8.egg (from distributed>=2022.3.0->merlin-core>=0.8.0->merlin-dataloader==0.0.2+22.g498543d) (2.4.0)
Requirement already satisfied: msgpack>=0.6.0 in /usr/local/lib/python3.8/dist-packages (from distributed>=2022.3.0->merlin-core>=0.8.0->merlin-dataloader==0.0.2+22.g498543d) (1.0.4)
Requirement already satisfied: setuptools in ./.tox/test-gpu/lib/python3.8/site-packages (from numba>=0.54->merlin-core>=0.8.0->merlin-dataloader==0.0.2+22.g498543d) (65.5.1)
Requirement already satisfied: numpy<1.22,>=1.18 in /var/jenkins_home/.local/lib/python3.8/site-packages (from numba>=0.54->merlin-core>=0.8.0->merlin-dataloader==0.0.2+22.g498543d) (1.20.3)
Requirement already satisfied: llvmlite<0.39,>=0.38.0rc1 in ./.tox/test-gpu/lib/python3.8/site-packages (from numba>=0.54->merlin-core>=0.8.0->merlin-dataloader==0.0.2+22.g498543d) (0.38.1)
Requirement already satisfied: pyparsing!=3.0.5,>=2.0.2 in /usr/local/lib/python3.8/dist-packages (from packaging->merlin-core>=0.8.0->merlin-dataloader==0.0.2+22.g498543d) (3.0.9)
Requirement already satisfied: python-dateutil>=2.7.3 in /usr/local/lib/python3.8/dist-packages (from pandas<1.4.0dev0,>=1.2.0->merlin-core>=0.8.0->merlin-dataloader==0.0.2+22.g498543d) (2.8.2)
Requirement already satisfied: pytz>=2017.3 in /usr/local/lib/python3.8/dist-packages (from pandas<1.4.0dev0,>=1.2.0->merlin-core>=0.8.0->merlin-dataloader==0.0.2+22.g498543d) (2022.2.1)
Requirement already satisfied: googleapis-common-protos<2,>=1.52.0 in /usr/local/lib/python3.8/dist-packages (from tensorflow-metadata>=1.2.0->merlin-core>=0.8.0->merlin-dataloader==0.0.2+22.g498543d) (1.52.0)
Requirement already satisfied: absl-py<2.0.0,>=0.9 in /usr/local/lib/python3.8/dist-packages (from tensorflow-metadata>=1.2.0->merlin-core>=0.8.0->merlin-dataloader==0.0.2+22.g498543d) (1.2.0)
Requirement already satisfied: locket in /var/jenkins_home/.local/lib/python3.8/site-packages/locket-0.2.1-py3.8.egg (from partd>=0.3.10->dask>=2022.3.0->merlin-core>=0.8.0->merlin-dataloader==0.0.2+22.g498543d) (0.2.1)
Requirement already satisfied: six>=1.5 in /var/jenkins_home/.local/lib/python3.8/site-packages (from python-dateutil>=2.7.3->pandas<1.4.0dev0,>=1.2.0->merlin-core>=0.8.0->merlin-dataloader==0.0.2+22.g498543d) (1.15.0)
Requirement already satisfied: heapdict in /var/jenkins_home/.local/lib/python3.8/site-packages/HeapDict-1.0.1-py3.8.egg (from zict>=0.1.3->distributed>=2022.3.0->merlin-core>=0.8.0->merlin-dataloader==0.0.2+22.g498543d) (1.0.1)
Requirement already satisfied: multidict in /usr/local/lib/python3.8/dist-packages (from grpclib->betterproto<2.0.0->merlin-core>=0.8.0->merlin-dataloader==0.0.2+22.g498543d) (6.0.2)
Requirement already satisfied: h2<5,>=3.1.0 in /usr/local/lib/python3.8/dist-packages (from grpclib->betterproto<2.0.0->merlin-core>=0.8.0->merlin-dataloader==0.0.2+22.g498543d) (4.1.0)
Requirement already satisfied: MarkupSafe>=2.0 in /usr/local/lib/python3.8/dist-packages (from jinja2->distributed>=2022.3.0->merlin-core>=0.8.0->merlin-dataloader==0.0.2+22.g498543d) (2.1.1)
Requirement already satisfied: hpack<5,>=4.0 in /usr/local/lib/python3.8/dist-packages (from h2<5,>=3.1.0->grpclib->betterproto<2.0.0->merlin-core>=0.8.0->merlin-dataloader==0.0.2+22.g498543d) (4.0.0)
Requirement already satisfied: hyperframe<7,>=6.0 in /usr/local/lib/python3.8/dist-packages (from h2<5,>=3.1.0->grpclib->betterproto<2.0.0->merlin-core>=0.8.0->merlin-dataloader==0.0.2+22.g498543d) (6.0.1)
Building wheels for collected packages: merlin-dataloader
  Building wheel for merlin-dataloader (pyproject.toml): started
  Building wheel for merlin-dataloader (pyproject.toml): finished with status 'done'
  Created wheel for merlin-dataloader: filename=merlin_dataloader-0.0.2+22.g498543d-py3-none-any.whl size=40350 sha256=9248700922a4792a9e30ed4f0fe120cbb1e61ad9955359b65581402c06678d67
  Stored in directory: /tmp/pip-ephem-wheel-cache-m1zn86xr/wheels/de/f5/d9/251909f4627d2920fb15548f5ffd6daf1bf24c3c56bb4977b1
Successfully built merlin-dataloader
Installing collected packages: merlin-dataloader
  Attempting uninstall: merlin-dataloader
    Found existing installation: merlin-dataloader 0.0.3
    Uninstalling merlin-dataloader-0.0.3:
      Successfully uninstalled merlin-dataloader-0.0.3
Successfully installed merlin-dataloader-0.0.2+22.g498543d
test-gpu run-test: commands[2] | python -m pip install --upgrade git+https://github.com/NVIDIA-Merlin/models.git
Looking in indexes: https://pypi.org/simple, https://pypi.ngc.nvidia.com
Collecting git+https://github.com/NVIDIA-Merlin/models.git
  Cloning https://github.com/NVIDIA-Merlin/models.git to /tmp/pip-req-build-hygjb2qz
  Running command git clone --filter=blob:none --quiet https://github.com/NVIDIA-Merlin/models.git /tmp/pip-req-build-hygjb2qz
  Resolved https://github.com/NVIDIA-Merlin/models.git to commit e08a72c9c59416a9000e62d25548eb08367fc3fa
  Installing build dependencies: started
  Installing build dependencies: finished with status 'done'
  Getting requirements to build wheel: started
  Getting requirements to build wheel: finished with status 'done'
  Preparing metadata (pyproject.toml): started
  Preparing metadata (pyproject.toml): finished with status 'done'
Requirement already satisfied: merlin-core>=0.2.0 in ./.tox/test-gpu/lib/python3.8/site-packages (from merlin-models==0.9.0+61.ge08a72c9) (0.9.0+14.g4f73ff5)
Requirement already satisfied: packaging in /usr/local/lib/python3.8/dist-packages (from merlin-core>=0.2.0->merlin-models==0.9.0+61.ge08a72c9) (21.3)
Requirement already satisfied: distributed>=2022.3.0 in /var/jenkins_home/.local/lib/python3.8/site-packages (from merlin-core>=0.2.0->merlin-models==0.9.0+61.ge08a72c9) (2022.3.0)
Requirement already satisfied: tqdm>=4.0 in /usr/local/lib/python3.8/dist-packages (from merlin-core>=0.2.0->merlin-models==0.9.0+61.ge08a72c9) (4.64.1)
Requirement already satisfied: fsspec==2022.5.0 in /var/jenkins_home/.local/lib/python3.8/site-packages (from merlin-core>=0.2.0->merlin-models==0.9.0+61.ge08a72c9) (2022.5.0)
Requirement already satisfied: numba>=0.54 in /var/jenkins_home/.local/lib/python3.8/site-packages (from merlin-core>=0.2.0->merlin-models==0.9.0+61.ge08a72c9) (0.55.1)
Requirement already satisfied: tensorflow-metadata>=1.2.0 in /usr/local/lib/python3.8/dist-packages (from merlin-core>=0.2.0->merlin-models==0.9.0+61.ge08a72c9) (1.10.0)
Requirement already satisfied: betterproto<2.0.0 in /usr/local/lib/python3.8/dist-packages (from merlin-core>=0.2.0->merlin-models==0.9.0+61.ge08a72c9) (1.2.5)
Requirement already satisfied: pandas<1.4.0dev0,>=1.2.0 in /var/jenkins_home/.local/lib/python3.8/site-packages (from merlin-core>=0.2.0->merlin-models==0.9.0+61.ge08a72c9) (1.3.5)
Requirement already satisfied: protobuf>=3.0.0 in /usr/local/lib/python3.8/dist-packages (from merlin-core>=0.2.0->merlin-models==0.9.0+61.ge08a72c9) (3.19.5)
Requirement already satisfied: pyarrow>=5.0.0 in /usr/local/lib/python3.8/dist-packages (from merlin-core>=0.2.0->merlin-models==0.9.0+61.ge08a72c9) (7.0.0)
Requirement already satisfied: dask>=2022.3.0 in /var/jenkins_home/.local/lib/python3.8/site-packages (from merlin-core>=0.2.0->merlin-models==0.9.0+61.ge08a72c9) (2022.3.0)
Requirement already satisfied: stringcase in /usr/local/lib/python3.8/dist-packages (from betterproto<2.0.0->merlin-core>=0.2.0->merlin-models==0.9.0+61.ge08a72c9) (1.2.0)
Requirement already satisfied: grpclib in /usr/local/lib/python3.8/dist-packages (from betterproto<2.0.0->merlin-core>=0.2.0->merlin-models==0.9.0+61.ge08a72c9) (0.4.3)
Requirement already satisfied: pyyaml>=5.3.1 in /var/jenkins_home/.local/lib/python3.8/site-packages/PyYAML-5.4.1-py3.8-linux-x86_64.egg (from dask>=2022.3.0->merlin-core>=0.2.0->merlin-models==0.9.0+61.ge08a72c9) (5.4.1)
Requirement already satisfied: partd>=0.3.10 in /var/jenkins_home/.local/lib/python3.8/site-packages/partd-1.2.0-py3.8.egg (from dask>=2022.3.0->merlin-core>=0.2.0->merlin-models==0.9.0+61.ge08a72c9) (1.2.0)
Requirement already satisfied: cloudpickle>=1.1.1 in /usr/local/lib/python3.8/dist-packages (from dask>=2022.3.0->merlin-core>=0.2.0->merlin-models==0.9.0+61.ge08a72c9) (2.2.0)
Requirement already satisfied: toolz>=0.8.2 in /usr/local/lib/python3.8/dist-packages (from dask>=2022.3.0->merlin-core>=0.2.0->merlin-models==0.9.0+61.ge08a72c9) (0.12.0)
Requirement already satisfied: tornado>=6.0.3 in /var/jenkins_home/.local/lib/python3.8/site-packages/tornado-6.1-py3.8-linux-x86_64.egg (from distributed>=2022.3.0->merlin-core>=0.2.0->merlin-models==0.9.0+61.ge08a72c9) (6.1)
Requirement already satisfied: click>=6.6 in /usr/local/lib/python3.8/dist-packages (from distributed>=2022.3.0->merlin-core>=0.2.0->merlin-models==0.9.0+61.ge08a72c9) (8.1.3)
Requirement already satisfied: tblib>=1.6.0 in /var/jenkins_home/.local/lib/python3.8/site-packages/tblib-1.7.0-py3.8.egg (from distributed>=2022.3.0->merlin-core>=0.2.0->merlin-models==0.9.0+61.ge08a72c9) (1.7.0)
Requirement already satisfied: jinja2 in /usr/local/lib/python3.8/dist-packages (from distributed>=2022.3.0->merlin-core>=0.2.0->merlin-models==0.9.0+61.ge08a72c9) (3.1.2)
Requirement already satisfied: psutil>=5.0 in /var/jenkins_home/.local/lib/python3.8/site-packages/psutil-5.8.0-py3.8-linux-x86_64.egg (from distributed>=2022.3.0->merlin-core>=0.2.0->merlin-models==0.9.0+61.ge08a72c9) (5.8.0)
Requirement already satisfied: zict>=0.1.3 in /var/jenkins_home/.local/lib/python3.8/site-packages/zict-2.0.0-py3.8.egg (from distributed>=2022.3.0->merlin-core>=0.2.0->merlin-models==0.9.0+61.ge08a72c9) (2.0.0)
Requirement already satisfied: sortedcontainers!=2.0.0,!=2.0.1 in /var/jenkins_home/.local/lib/python3.8/site-packages/sortedcontainers-2.4.0-py3.8.egg (from distributed>=2022.3.0->merlin-core>=0.2.0->merlin-models==0.9.0+61.ge08a72c9) (2.4.0)
Requirement already satisfied: msgpack>=0.6.0 in /usr/local/lib/python3.8/dist-packages (from distributed>=2022.3.0->merlin-core>=0.2.0->merlin-models==0.9.0+61.ge08a72c9) (1.0.4)
Requirement already satisfied: setuptools in ./.tox/test-gpu/lib/python3.8/site-packages (from numba>=0.54->merlin-core>=0.2.0->merlin-models==0.9.0+61.ge08a72c9) (65.5.1)
Requirement already satisfied: numpy<1.22,>=1.18 in /var/jenkins_home/.local/lib/python3.8/site-packages (from numba>=0.54->merlin-core>=0.2.0->merlin-models==0.9.0+61.ge08a72c9) (1.20.3)
Requirement already satisfied: llvmlite<0.39,>=0.38.0rc1 in ./.tox/test-gpu/lib/python3.8/site-packages (from numba>=0.54->merlin-core>=0.2.0->merlin-models==0.9.0+61.ge08a72c9) (0.38.1)
Requirement already satisfied: pyparsing!=3.0.5,>=2.0.2 in /usr/local/lib/python3.8/dist-packages (from packaging->merlin-core>=0.2.0->merlin-models==0.9.0+61.ge08a72c9) (3.0.9)
Requirement already satisfied: python-dateutil>=2.7.3 in /usr/local/lib/python3.8/dist-packages (from pandas<1.4.0dev0,>=1.2.0->merlin-core>=0.2.0->merlin-models==0.9.0+61.ge08a72c9) (2.8.2)
Requirement already satisfied: pytz>=2017.3 in /usr/local/lib/python3.8/dist-packages (from pandas<1.4.0dev0,>=1.2.0->merlin-core>=0.2.0->merlin-models==0.9.0+61.ge08a72c9) (2022.2.1)
Requirement already satisfied: googleapis-common-protos<2,>=1.52.0 in /usr/local/lib/python3.8/dist-packages (from tensorflow-metadata>=1.2.0->merlin-core>=0.2.0->merlin-models==0.9.0+61.ge08a72c9) (1.52.0)
Requirement already satisfied: absl-py<2.0.0,>=0.9 in /usr/local/lib/python3.8/dist-packages (from tensorflow-metadata>=1.2.0->merlin-core>=0.2.0->merlin-models==0.9.0+61.ge08a72c9) (1.2.0)
Requirement already satisfied: locket in /var/jenkins_home/.local/lib/python3.8/site-packages/locket-0.2.1-py3.8.egg (from partd>=0.3.10->dask>=2022.3.0->merlin-core>=0.2.0->merlin-models==0.9.0+61.ge08a72c9) (0.2.1)
Requirement already satisfied: six>=1.5 in /var/jenkins_home/.local/lib/python3.8/site-packages (from python-dateutil>=2.7.3->pandas<1.4.0dev0,>=1.2.0->merlin-core>=0.2.0->merlin-models==0.9.0+61.ge08a72c9) (1.15.0)
Requirement already satisfied: heapdict in /var/jenkins_home/.local/lib/python3.8/site-packages/HeapDict-1.0.1-py3.8.egg (from zict>=0.1.3->distributed>=2022.3.0->merlin-core>=0.2.0->merlin-models==0.9.0+61.ge08a72c9) (1.0.1)
Requirement already satisfied: multidict in /usr/local/lib/python3.8/dist-packages (from grpclib->betterproto<2.0.0->merlin-core>=0.2.0->merlin-models==0.9.0+61.ge08a72c9) (6.0.2)
Requirement already satisfied: h2<5,>=3.1.0 in /usr/local/lib/python3.8/dist-packages (from grpclib->betterproto<2.0.0->merlin-core>=0.2.0->merlin-models==0.9.0+61.ge08a72c9) (4.1.0)
Requirement already satisfied: MarkupSafe>=2.0 in /usr/local/lib/python3.8/dist-packages (from jinja2->distributed>=2022.3.0->merlin-core>=0.2.0->merlin-models==0.9.0+61.ge08a72c9) (2.1.1)
Requirement already satisfied: hpack<5,>=4.0 in /usr/local/lib/python3.8/dist-packages (from h2<5,>=3.1.0->grpclib->betterproto<2.0.0->merlin-core>=0.2.0->merlin-models==0.9.0+61.ge08a72c9) (4.0.0)
Requirement already satisfied: hyperframe<7,>=6.0 in /usr/local/lib/python3.8/dist-packages (from h2<5,>=3.1.0->grpclib->betterproto<2.0.0->merlin-core>=0.2.0->merlin-models==0.9.0+61.ge08a72c9) (6.0.1)
Building wheels for collected packages: merlin-models
  Building wheel for merlin-models (pyproject.toml): started
  Building wheel for merlin-models (pyproject.toml): finished with status 'done'
  Created wheel for merlin-models: filename=merlin_models-0.9.0+61.ge08a72c9-py3-none-any.whl size=367208 sha256=a8a5d801a0754bcbd14cbd9c184414615ef42f369af9243fe5128aa034efd808
  Stored in directory: /tmp/pip-ephem-wheel-cache-tvbqtxcx/wheels/5a/43/99/d50fe2c33b4f4686db73207ce3865e0d6be6609ffb03abade5
Successfully built merlin-models
Installing collected packages: merlin-models
  Attempting uninstall: merlin-models
    Found existing installation: merlin-models 0.7.0+11.g280956aa4
    Not uninstalling merlin-models at /usr/local/lib/python3.8/dist-packages, outside environment /var/jenkins_home/workspace/nvtabular_tests/nvtabular/.tox/test-gpu
    Can't uninstall 'merlin-models'. No files were found to uninstall.
Successfully installed merlin-models-0.9.0+61.ge08a72c9
test-gpu run-test: commands[3] | python -m pytest --cov-report term --cov merlin -rxs tests/unit
============================= test session starts ==============================
platform linux -- Python 3.8.10, pytest-7.1.3, pluggy-1.0.0
cachedir: .tox/test-gpu/.pytest_cache
rootdir: /var/jenkins_home/workspace/nvtabular_tests/nvtabular, configfile: pyproject.toml
plugins: anyio-3.5.0, xdist-3.0.2, cov-4.0.0
collected 1439 items / 1 skipped

tests/unit/test_dask_nvt.py ............................................ [ 3%]
........................................................................ [ 8%]
.... [ 8%]
tests/unit/test_notebooks.py .... [ 8%]
tests/unit/test_tf4rec.py . [ 8%]
tests/unit/test_tools.py ...................... [ 10%]
tests/unit/test_triton_inference.py ................................ [ 12%]
tests/unit/examples/test_01-Getting-started.py . [ 12%]
tests/unit/examples/test_02-Advanced-NVTabular-workflow.py . [ 12%]
tests/unit/examples/test_03-Running-on-multiple-GPUs-or-on-CPU.py . [ 12%]
tests/unit/framework_utils/test_tf_feature_columns.py . [ 12%]
tests/unit/framework_utils/test_tf_layers.py ........................... [ 14%]
................................................... [ 18%]
tests/unit/framework_utils/test_torch_layers.py . [ 18%]
tests/unit/loader/test_tf_dataloader.py ................................ [ 20%]
........................................s.. [ 23%]
tests/unit/loader/test_torch_dataloader.py ............................. [ 25%]
..................................................... [ 29%]
tests/unit/ops/test_categorify.py ...................................... [ 31%]
........................................................................ [ 36%]
..................................................... [ 40%]
tests/unit/ops/test_column_similarity.py ........................ [ 42%]
tests/unit/ops/test_drop_low_cardinality.py .. [ 42%]
tests/unit/ops/test_fill.py ............................................ [ 45%]
........ [ 45%]
tests/unit/ops/test_groupyby.py ....................... [ 47%]
tests/unit/ops/test_hash_bucket.py ......................... [ 49%]
tests/unit/ops/test_join.py ............................................ [ 52%]
........................................................................ [ 57%]
.................................. [ 59%]
tests/unit/ops/test_lambda.py .......... [ 60%]
tests/unit/ops/test_normalize.py ....................................... [ 63%]
.. [ 63%]
tests/unit/ops/test_ops.py ............................................. [ 66%]
.................... [ 67%]
tests/unit/ops/test_ops_schema.py ...................................... [ 70%]
........................................................................ [ 75%]
........................................................................ [ 80%]
........................................................................ [ 85%]
....................................... [ 88%]
tests/unit/ops/test_reduce_dtype_size.py .. [ 88%]
tests/unit/ops/test_target_encode.py ..................... [ 89%]
tests/unit/ops/test_value_count.py ... [ 89%]
tests/unit/workflow/test_cpu_workflow.py ...... [ 90%]
tests/unit/workflow/test_workflow.py ...FFEF.FFFEEFF..EE....EE..E.FFFEEF [ 92%]
FFFEE..F.EE..FFEEFFF.EE.FFFEE.F.........................F. [ 96%]
tests/unit/workflow/test_workflow_chaining.py ... [ 96%]
tests/unit/workflow/test_workflow_node.py ........... [ 97%]
tests/unit/workflow/test_workflow_ops.py ... [ 97%]
tests/unit/workflow/test_workflow_schemas.py ........................... [ 99%]
... [100%]

==================================== ERRORS ====================================
_________ ERROR at setup of test_gpu_workflow_api[True-True-csv-0.01] __________

request = <SubRequest 'dataset' for <Function test_gpu_workflow_api[True-True-csv-0.01]>>
paths = ['/tmp/pytest-of-jenkins/pytest-6/csv0/dataset-0.csv', '/tmp/pytest-of-jenkins/pytest-6/csv0/dataset-1.csv']
engine = 'csv'

@pytest.fixture(scope="function")
def dataset(request, paths, engine):
    try:
        gpu_memory_frac = request.getfixturevalue("gpu_memory_frac")
    except Exception:  # pylint: disable=broad-except
        gpu_memory_frac = 0.01

    try:
        cpu = request.getfixturevalue("cpu")
    except Exception:  # pylint: disable=broad-except
        cpu = False

    kwargs = {}
    if engine == "csv-no-header":
        kwargs["names"] = allcols_csv
  return nvtabular.Dataset(paths, part_mem_fraction=gpu_memory_frac, cpu=cpu, **kwargs)

tests/conftest.py:224:


.tox/test-gpu/lib/python3.8/site-packages/merlin/io/dataset.py:348: in init
self.infer_schema()
.tox/test-gpu/lib/python3.8/site-packages/merlin/io/dataset.py:1131: in infer_schema
dtypes = self.sample_dtypes(n=n, annotate_lists=True)
.tox/test-gpu/lib/python3.8/site-packages/merlin/io/dataset.py:1151: in sample_dtypes
_real_meta = self.engine.sample_data(n=n)
.tox/test-gpu/lib/python3.8/site-packages/merlin/io/dataset_engine.py:71: in sample_data
_head = _ddf.partitions[partition_index].head(n)
../../../.local/lib/python3.8/site-packages/dask/dataframe/core.py:1196: in head
return self._head(n=n, npartitions=npartitions, compute=compute, safe=safe)
../../../.local/lib/python3.8/site-packages/dask/dataframe/core.py:1230: in _head
result = result.compute()
../../../.local/lib/python3.8/site-packages/dask/base.py:292: in compute
(result,) = compute(self, traverse=False, **kwargs)
../../../.local/lib/python3.8/site-packages/dask/base.py:575: in compute
results = schedule(dsk, keys, **kwargs)
../../../.local/lib/python3.8/site-packages/distributed/client.py:3015: in get
results = self.gather(packed, asynchronous=asynchronous, direct=direct)
../../../.local/lib/python3.8/site-packages/distributed/client.py:2167: in gather
return self.sync(
../../../.local/lib/python3.8/site-packages/distributed/utils.py:309: in sync
return sync(
../../../.local/lib/python3.8/site-packages/distributed/utils.py:376: in sync
raise exc.with_traceback(tb)
../../../.local/lib/python3.8/site-packages/distributed/utils.py:349: in f
result = yield future
../../../.local/lib/python3.8/site-packages/tornado-6.1-py3.8-linux-x86_64.egg/tornado/gen.py:762: in run
value = future.result()
/usr/lib/python3.8/asyncio/futures.py:178: in result
raise self._exception
/usr/lib/python3.8/asyncio/tasks.py:282: in __step
result = coro.throw(exc)
../../../.local/lib/python3.8/site-packages/distributed/client.py:2030: in _gather
raise exception.with_traceback(traceback)
/usr/local/lib/python3.8/dist-packages/dask_cudf/io/csv.py:149: in _read_csv
return cudf.read_csv(fn, **kwargs)
/usr/local/lib/python3.8/dist-packages/nvtx/nvtx.py:101: in inner
result = func(*args, **kwargs)
/usr/local/lib/python3.8/dist-packages/cudf/io/csv.py:74: in read_csv
return libcudf.csv.read_csv(


???
E MemoryError: std::bad_alloc: out_of_memory: CUDA error at: /opt/rapids/rmm/include/rmm/mr/device/cuda_memory_resource.hpp:70: cudaErrorMemoryAllocation out of memory

cudf/_lib/csv.pyx:430: MemoryError
---------------------------- Captured stderr setup -----------------------------
2022-12-01 17:41:39,439 - distributed.worker - WARNING - Compute Failed
Key: ('read-csv-1de58f54ef56bb35810958a9255b04ab', 0)
Function: _read_csv
args: ('/tmp/pytest-of-jenkins/pytest-6/csv0/dataset-0.csv', array([dtype('O'), dtype('int64'), dtype('int64'), dtype('O'),
dtype('float64'), dtype('float64'), dtype('float64')], dtype=object))
kwargs: {'storage_options': {}, 'byte_range': (0, 170693099)}
Exception: "MemoryError('std::bad_alloc: out_of_memory: CUDA error at: /opt/rapids/rmm/include/rmm/mr/device/cuda_memory_resource.hpp:70: cudaErrorMemoryAllocation out of memory')"

_________ ERROR at setup of test_gpu_workflow_api[True-False-csv-0.01] _________

request = <SubRequest 'dataset' for <Function test_gpu_workflow_api[True-False-csv-0.01]>>
paths = ['/tmp/pytest-of-jenkins/pytest-6/csv0/dataset-0.csv', '/tmp/pytest-of-jenkins/pytest-6/csv0/dataset-1.csv']
engine = 'csv'

@pytest.fixture(scope="function")
def dataset(request, paths, engine):
    try:
        gpu_memory_frac = request.getfixturevalue("gpu_memory_frac")
    except Exception:  # pylint: disable=broad-except
        gpu_memory_frac = 0.01

    try:
        cpu = request.getfixturevalue("cpu")
    except Exception:  # pylint: disable=broad-except
        cpu = False

    kwargs = {}
    if engine == "csv-no-header":
        kwargs["names"] = allcols_csv
  return nvtabular.Dataset(paths, part_mem_fraction=gpu_memory_frac, cpu=cpu, **kwargs)

tests/conftest.py:224:


.tox/test-gpu/lib/python3.8/site-packages/merlin/io/dataset.py:348: in init
self.infer_schema()
.tox/test-gpu/lib/python3.8/site-packages/merlin/io/dataset.py:1131: in infer_schema
dtypes = self.sample_dtypes(n=n, annotate_lists=True)
.tox/test-gpu/lib/python3.8/site-packages/merlin/io/dataset.py:1151: in sample_dtypes
_real_meta = self.engine.sample_data(n=n)
.tox/test-gpu/lib/python3.8/site-packages/merlin/io/dataset_engine.py:71: in sample_data
_head = _ddf.partitions[partition_index].head(n)
../../../.local/lib/python3.8/site-packages/dask/dataframe/core.py:1196: in head
return self._head(n=n, npartitions=npartitions, compute=compute, safe=safe)
../../../.local/lib/python3.8/site-packages/dask/dataframe/core.py:1230: in _head
result = result.compute()
../../../.local/lib/python3.8/site-packages/dask/base.py:292: in compute
(result,) = compute(self, traverse=False, **kwargs)
../../../.local/lib/python3.8/site-packages/dask/base.py:575: in compute
results = schedule(dsk, keys, **kwargs)
../../../.local/lib/python3.8/site-packages/distributed/client.py:3015: in get
results = self.gather(packed, asynchronous=asynchronous, direct=direct)
../../../.local/lib/python3.8/site-packages/distributed/client.py:2167: in gather
return self.sync(
../../../.local/lib/python3.8/site-packages/distributed/utils.py:309: in sync
return sync(
../../../.local/lib/python3.8/site-packages/distributed/utils.py:376: in sync
raise exc.with_traceback(tb)
../../../.local/lib/python3.8/site-packages/distributed/utils.py:349: in f
result = yield future
../../../.local/lib/python3.8/site-packages/tornado-6.1-py3.8-linux-x86_64.egg/tornado/gen.py:762: in run
value = future.result()
/usr/lib/python3.8/asyncio/futures.py:178: in result
raise self._exception
/usr/lib/python3.8/asyncio/tasks.py:282: in __step
result = coro.throw(exc)
../../../.local/lib/python3.8/site-packages/distributed/client.py:2030: in _gather
raise exception.with_traceback(traceback)
/usr/local/lib/python3.8/dist-packages/dask_cudf/io/csv.py:149: in _read_csv
return cudf.read_csv(fn, **kwargs)
/usr/local/lib/python3.8/dist-packages/nvtx/nvtx.py:101: in inner
result = func(*args, **kwargs)
/usr/local/lib/python3.8/dist-packages/cudf/io/csv.py:74: in read_csv
return libcudf.csv.read_csv(


???
E MemoryError: std::bad_alloc: out_of_memory: CUDA error at: /opt/rapids/rmm/include/rmm/mr/device/cuda_memory_resource.hpp:70: cudaErrorMemoryAllocation out of memory

cudf/_lib/csv.pyx:430: MemoryError
_________ ERROR at setup of test_gpu_workflow_api[True-False-csv-0.1] __________

request = <SubRequest 'dataset' for <Function test_gpu_workflow_api[True-False-csv-0.1]>>
paths = ['/tmp/pytest-of-jenkins/pytest-6/csv0/dataset-0.csv', '/tmp/pytest-of-jenkins/pytest-6/csv0/dataset-1.csv']
engine = 'csv'

@pytest.fixture(scope="function")
def dataset(request, paths, engine):
    try:
        gpu_memory_frac = request.getfixturevalue("gpu_memory_frac")
    except Exception:  # pylint: disable=broad-except
        gpu_memory_frac = 0.01

    try:
        cpu = request.getfixturevalue("cpu")
    except Exception:  # pylint: disable=broad-except
        cpu = False

    kwargs = {}
    if engine == "csv-no-header":
        kwargs["names"] = allcols_csv
  return nvtabular.Dataset(paths, part_mem_fraction=gpu_memory_frac, cpu=cpu, **kwargs)

tests/conftest.py:224:


.tox/test-gpu/lib/python3.8/site-packages/merlin/io/dataset.py:348: in init
self.infer_schema()
.tox/test-gpu/lib/python3.8/site-packages/merlin/io/dataset.py:1131: in infer_schema
dtypes = self.sample_dtypes(n=n, annotate_lists=True)
.tox/test-gpu/lib/python3.8/site-packages/merlin/io/dataset.py:1151: in sample_dtypes
_real_meta = self.engine.sample_data(n=n)
.tox/test-gpu/lib/python3.8/site-packages/merlin/io/dataset_engine.py:71: in sample_data
_head = _ddf.partitions[partition_index].head(n)
../../../.local/lib/python3.8/site-packages/dask/dataframe/core.py:1196: in head
return self._head(n=n, npartitions=npartitions, compute=compute, safe=safe)
../../../.local/lib/python3.8/site-packages/dask/dataframe/core.py:1230: in _head
result = result.compute()
../../../.local/lib/python3.8/site-packages/dask/base.py:292: in compute
(result,) = compute(self, traverse=False, **kwargs)
../../../.local/lib/python3.8/site-packages/dask/base.py:575: in compute
results = schedule(dsk, keys, **kwargs)
../../../.local/lib/python3.8/site-packages/distributed/client.py:3015: in get
results = self.gather(packed, asynchronous=asynchronous, direct=direct)
../../../.local/lib/python3.8/site-packages/distributed/client.py:2167: in gather
return self.sync(
../../../.local/lib/python3.8/site-packages/distributed/utils.py:309: in sync
return sync(
../../../.local/lib/python3.8/site-packages/distributed/utils.py:376: in sync
raise exc.with_traceback(tb)
../../../.local/lib/python3.8/site-packages/distributed/utils.py:349: in f
result = yield future
../../../.local/lib/python3.8/site-packages/tornado-6.1-py3.8-linux-x86_64.egg/tornado/gen.py:762: in run
value = future.result()
/usr/lib/python3.8/asyncio/futures.py:178: in result
raise self._exception
/usr/lib/python3.8/asyncio/tasks.py:282: in __step
result = coro.throw(exc)
../../../.local/lib/python3.8/site-packages/distributed/client.py:2030: in _gather
raise exception.with_traceback(traceback)
/usr/local/lib/python3.8/dist-packages/dask_cudf/io/csv.py:149: in _read_csv
return cudf.read_csv(fn, **kwargs)
/usr/local/lib/python3.8/dist-packages/nvtx/nvtx.py:101: in inner
result = func(*args, **kwargs)
/usr/local/lib/python3.8/dist-packages/cudf/io/csv.py:74: in read_csv
return libcudf.csv.read_csv(


???
E MemoryError: std::bad_alloc: out_of_memory: CUDA error at: /opt/rapids/rmm/include/rmm/mr/device/cuda_memory_resource.hpp:70: cudaErrorMemoryAllocation out of memory

cudf/_lib/csv.pyx:430: MemoryError
_________ ERROR at setup of test_gpu_workflow_api[False-True-csv-0.01] _________

request = <SubRequest 'dataset' for <Function test_gpu_workflow_api[False-True-csv-0.01]>>
paths = ['/tmp/pytest-of-jenkins/pytest-6/csv0/dataset-0.csv', '/tmp/pytest-of-jenkins/pytest-6/csv0/dataset-1.csv']
engine = 'csv'

@pytest.fixture(scope="function")
def dataset(request, paths, engine):
    try:
        gpu_memory_frac = request.getfixturevalue("gpu_memory_frac")
    except Exception:  # pylint: disable=broad-except
        gpu_memory_frac = 0.01

    try:
        cpu = request.getfixturevalue("cpu")
    except Exception:  # pylint: disable=broad-except
        cpu = False

    kwargs = {}
    if engine == "csv-no-header":
        kwargs["names"] = allcols_csv
  return nvtabular.Dataset(paths, part_mem_fraction=gpu_memory_frac, cpu=cpu, **kwargs)

tests/conftest.py:224:


.tox/test-gpu/lib/python3.8/site-packages/merlin/io/dataset.py:348: in init
self.infer_schema()
.tox/test-gpu/lib/python3.8/site-packages/merlin/io/dataset.py:1131: in infer_schema
dtypes = self.sample_dtypes(n=n, annotate_lists=True)
.tox/test-gpu/lib/python3.8/site-packages/merlin/io/dataset.py:1151: in sample_dtypes
_real_meta = self.engine.sample_data(n=n)
.tox/test-gpu/lib/python3.8/site-packages/merlin/io/dataset_engine.py:71: in sample_data
_head = _ddf.partitions[partition_index].head(n)
../../../.local/lib/python3.8/site-packages/dask/dataframe/core.py:1196: in head
return self._head(n=n, npartitions=npartitions, compute=compute, safe=safe)
../../../.local/lib/python3.8/site-packages/dask/dataframe/core.py:1230: in _head
result = result.compute()
../../../.local/lib/python3.8/site-packages/dask/base.py:292: in compute
(result,) = compute(self, traverse=False, **kwargs)
../../../.local/lib/python3.8/site-packages/dask/base.py:575: in compute
results = schedule(dsk, keys, **kwargs)
../../../.local/lib/python3.8/site-packages/distributed/client.py:3015: in get
results = self.gather(packed, asynchronous=asynchronous, direct=direct)
../../../.local/lib/python3.8/site-packages/distributed/client.py:2167: in gather
return self.sync(
../../../.local/lib/python3.8/site-packages/distributed/utils.py:309: in sync
return sync(
../../../.local/lib/python3.8/site-packages/distributed/utils.py:376: in sync
raise exc.with_traceback(tb)
../../../.local/lib/python3.8/site-packages/distributed/utils.py:349: in f
result = yield future
../../../.local/lib/python3.8/site-packages/tornado-6.1-py3.8-linux-x86_64.egg/tornado/gen.py:762: in run
value = future.result()
/usr/lib/python3.8/asyncio/futures.py:178: in result
raise self._exception
/usr/lib/python3.8/asyncio/tasks.py:282: in __step
result = coro.throw(exc)
../../../.local/lib/python3.8/site-packages/distributed/client.py:2030: in _gather
raise exception.with_traceback(traceback)
/usr/local/lib/python3.8/dist-packages/dask_cudf/io/csv.py:149: in _read_csv
return cudf.read_csv(fn, **kwargs)
/usr/local/lib/python3.8/dist-packages/nvtx/nvtx.py:101: in inner
result = func(*args, **kwargs)
/usr/local/lib/python3.8/dist-packages/cudf/io/csv.py:74: in read_csv
return libcudf.csv.read_csv(


???
E MemoryError: std::bad_alloc: out_of_memory: CUDA error at: /opt/rapids/rmm/include/rmm/mr/device/cuda_memory_resource.hpp:70: cudaErrorMemoryAllocation out of memory

cudf/_lib/csv.pyx:430: MemoryError
_________ ERROR at setup of test_gpu_workflow_api[False-True-csv-0.1] __________

request = <SubRequest 'dataset' for <Function test_gpu_workflow_api[False-True-csv-0.1]>>
paths = ['/tmp/pytest-of-jenkins/pytest-6/csv0/dataset-0.csv', '/tmp/pytest-of-jenkins/pytest-6/csv0/dataset-1.csv']
engine = 'csv'

@pytest.fixture(scope="function")
def dataset(request, paths, engine):
    try:
        gpu_memory_frac = request.getfixturevalue("gpu_memory_frac")
    except Exception:  # pylint: disable=broad-except
        gpu_memory_frac = 0.01

    try:
        cpu = request.getfixturevalue("cpu")
    except Exception:  # pylint: disable=broad-except
        cpu = False

    kwargs = {}
    if engine == "csv-no-header":
        kwargs["names"] = allcols_csv
  return nvtabular.Dataset(paths, part_mem_fraction=gpu_memory_frac, cpu=cpu, **kwargs)

tests/conftest.py:224:


.tox/test-gpu/lib/python3.8/site-packages/merlin/io/dataset.py:348: in init
self.infer_schema()
.tox/test-gpu/lib/python3.8/site-packages/merlin/io/dataset.py:1131: in infer_schema
dtypes = self.sample_dtypes(n=n, annotate_lists=True)
.tox/test-gpu/lib/python3.8/site-packages/merlin/io/dataset.py:1151: in sample_dtypes
_real_meta = self.engine.sample_data(n=n)
.tox/test-gpu/lib/python3.8/site-packages/merlin/io/dataset_engine.py:71: in sample_data
_head = _ddf.partitions[partition_index].head(n)
../../../.local/lib/python3.8/site-packages/dask/dataframe/core.py:1196: in head
return self._head(n=n, npartitions=npartitions, compute=compute, safe=safe)
../../../.local/lib/python3.8/site-packages/dask/dataframe/core.py:1230: in _head
result = result.compute()
../../../.local/lib/python3.8/site-packages/dask/base.py:292: in compute
(result,) = compute(self, traverse=False, **kwargs)
../../../.local/lib/python3.8/site-packages/dask/base.py:575: in compute
results = schedule(dsk, keys, **kwargs)
../../../.local/lib/python3.8/site-packages/distributed/client.py:3015: in get
results = self.gather(packed, asynchronous=asynchronous, direct=direct)
../../../.local/lib/python3.8/site-packages/distributed/client.py:2167: in gather
return self.sync(
../../../.local/lib/python3.8/site-packages/distributed/utils.py:309: in sync
return sync(
../../../.local/lib/python3.8/site-packages/distributed/utils.py:376: in sync
raise exc.with_traceback(tb)
../../../.local/lib/python3.8/site-packages/distributed/utils.py:349: in f
result = yield future
../../../.local/lib/python3.8/site-packages/tornado-6.1-py3.8-linux-x86_64.egg/tornado/gen.py:762: in run
value = future.result()
/usr/lib/python3.8/asyncio/futures.py:178: in result
raise self._exception
/usr/lib/python3.8/asyncio/tasks.py:282: in __step
result = coro.throw(exc)
../../../.local/lib/python3.8/site-packages/distributed/client.py:2030: in _gather
raise exception.with_traceback(traceback)
/usr/local/lib/python3.8/dist-packages/dask_cudf/io/csv.py:149: in _read_csv
return cudf.read_csv(fn, **kwargs)
/usr/local/lib/python3.8/dist-packages/nvtx/nvtx.py:101: in inner
result = func(*args, **kwargs)
/usr/local/lib/python3.8/dist-packages/cudf/io/csv.py:74: in read_csv
return libcudf.csv.read_csv(


???
E MemoryError: std::bad_alloc: out_of_memory: CUDA error at: /opt/rapids/rmm/include/rmm/mr/device/cuda_memory_resource.hpp:70: cudaErrorMemoryAllocation out of memory

cudf/_lib/csv.pyx:430: MemoryError
________ ERROR at setup of test_gpu_workflow_api[False-False-csv-0.01] _________

request = <SubRequest 'dataset' for <Function test_gpu_workflow_api[False-False-csv-0.01]>>
paths = ['/tmp/pytest-of-jenkins/pytest-6/csv0/dataset-0.csv', '/tmp/pytest-of-jenkins/pytest-6/csv0/dataset-1.csv']
engine = 'csv'

@pytest.fixture(scope="function")
def dataset(request, paths, engine):
    try:
        gpu_memory_frac = request.getfixturevalue("gpu_memory_frac")
    except Exception:  # pylint: disable=broad-except
        gpu_memory_frac = 0.01

    try:
        cpu = request.getfixturevalue("cpu")
    except Exception:  # pylint: disable=broad-except
        cpu = False

    kwargs = {}
    if engine == "csv-no-header":
        kwargs["names"] = allcols_csv
  return nvtabular.Dataset(paths, part_mem_fraction=gpu_memory_frac, cpu=cpu, **kwargs)

tests/conftest.py:224:


.tox/test-gpu/lib/python3.8/site-packages/merlin/io/dataset.py:348: in init
self.infer_schema()
.tox/test-gpu/lib/python3.8/site-packages/merlin/io/dataset.py:1131: in infer_schema
dtypes = self.sample_dtypes(n=n, annotate_lists=True)
.tox/test-gpu/lib/python3.8/site-packages/merlin/io/dataset.py:1151: in sample_dtypes
_real_meta = self.engine.sample_data(n=n)
.tox/test-gpu/lib/python3.8/site-packages/merlin/io/dataset_engine.py:71: in sample_data
_head = _ddf.partitions[partition_index].head(n)
../../../.local/lib/python3.8/site-packages/dask/dataframe/core.py:1196: in head
return self._head(n=n, npartitions=npartitions, compute=compute, safe=safe)
../../../.local/lib/python3.8/site-packages/dask/dataframe/core.py:1230: in _head
result = result.compute()
../../../.local/lib/python3.8/site-packages/dask/base.py:292: in compute
(result,) = compute(self, traverse=False, **kwargs)
../../../.local/lib/python3.8/site-packages/dask/base.py:575: in compute
results = schedule(dsk, keys, **kwargs)
../../../.local/lib/python3.8/site-packages/distributed/client.py:3015: in get
results = self.gather(packed, asynchronous=asynchronous, direct=direct)
../../../.local/lib/python3.8/site-packages/distributed/client.py:2167: in gather
return self.sync(
../../../.local/lib/python3.8/site-packages/distributed/utils.py:309: in sync
return sync(
../../../.local/lib/python3.8/site-packages/distributed/utils.py:376: in sync
raise exc.with_traceback(tb)
../../../.local/lib/python3.8/site-packages/distributed/utils.py:349: in f
result = yield future
../../../.local/lib/python3.8/site-packages/tornado-6.1-py3.8-linux-x86_64.egg/tornado/gen.py:762: in run
value = future.result()
/usr/lib/python3.8/asyncio/futures.py:178: in result
raise self._exception
/usr/lib/python3.8/asyncio/tasks.py:282: in __step
result = coro.throw(exc)
../../../.local/lib/python3.8/site-packages/distributed/client.py:2030: in _gather
raise exception.with_traceback(traceback)
/usr/local/lib/python3.8/dist-packages/dask_cudf/io/csv.py:149: in _read_csv
return cudf.read_csv(fn, **kwargs)
/usr/local/lib/python3.8/dist-packages/nvtx/nvtx.py:101: in inner
result = func(*args, **kwargs)
/usr/local/lib/python3.8/dist-packages/cudf/io/csv.py:74: in read_csv
return libcudf.csv.read_csv(


???
E MemoryError: std::bad_alloc: out_of_memory: CUDA error at: /opt/rapids/rmm/include/rmm/mr/device/cuda_memory_resource.hpp:70: cudaErrorMemoryAllocation out of memory

cudf/_lib/csv.pyx:430: MemoryError
_________ ERROR at setup of test_gpu_workflow_api[False-False-csv-0.1] _________

request = <SubRequest 'dataset' for <Function test_gpu_workflow_api[False-False-csv-0.1]>>
paths = ['/tmp/pytest-of-jenkins/pytest-6/csv0/dataset-0.csv', '/tmp/pytest-of-jenkins/pytest-6/csv0/dataset-1.csv']
engine = 'csv'

@pytest.fixture(scope="function")
def dataset(request, paths, engine):
    try:
        gpu_memory_frac = request.getfixturevalue("gpu_memory_frac")
    except Exception:  # pylint: disable=broad-except
        gpu_memory_frac = 0.01

    try:
        cpu = request.getfixturevalue("cpu")
    except Exception:  # pylint: disable=broad-except
        cpu = False

    kwargs = {}
    if engine == "csv-no-header":
        kwargs["names"] = allcols_csv
  return nvtabular.Dataset(paths, part_mem_fraction=gpu_memory_frac, cpu=cpu, **kwargs)

tests/conftest.py:224:


.tox/test-gpu/lib/python3.8/site-packages/merlin/io/dataset.py:348: in init
self.infer_schema()
.tox/test-gpu/lib/python3.8/site-packages/merlin/io/dataset.py:1131: in infer_schema
dtypes = self.sample_dtypes(n=n, annotate_lists=True)
.tox/test-gpu/lib/python3.8/site-packages/merlin/io/dataset.py:1151: in sample_dtypes
_real_meta = self.engine.sample_data(n=n)
.tox/test-gpu/lib/python3.8/site-packages/merlin/io/dataset_engine.py:71: in sample_data
_head = _ddf.partitions[partition_index].head(n)
../../../.local/lib/python3.8/site-packages/dask/dataframe/core.py:1196: in head
return self._head(n=n, npartitions=npartitions, compute=compute, safe=safe)
../../../.local/lib/python3.8/site-packages/dask/dataframe/core.py:1230: in _head
result = result.compute()
../../../.local/lib/python3.8/site-packages/dask/base.py:292: in compute
(result,) = compute(self, traverse=False, **kwargs)
../../../.local/lib/python3.8/site-packages/dask/base.py:575: in compute
results = schedule(dsk, keys, **kwargs)
../../../.local/lib/python3.8/site-packages/distributed/client.py:3015: in get
results = self.gather(packed, asynchronous=asynchronous, direct=direct)
../../../.local/lib/python3.8/site-packages/distributed/client.py:2167: in gather
return self.sync(
../../../.local/lib/python3.8/site-packages/distributed/utils.py:309: in sync
return sync(
../../../.local/lib/python3.8/site-packages/distributed/utils.py:376: in sync
raise exc.with_traceback(tb)
../../../.local/lib/python3.8/site-packages/distributed/utils.py:349: in f
result = yield future
../../../.local/lib/python3.8/site-packages/tornado-6.1-py3.8-linux-x86_64.egg/tornado/gen.py:762: in run
value = future.result()
/usr/lib/python3.8/asyncio/futures.py:178: in result
raise self._exception
/usr/lib/python3.8/asyncio/tasks.py:282: in __step
result = coro.throw(exc)
../../../.local/lib/python3.8/site-packages/distributed/client.py:2030: in _gather
raise exception.with_traceback(traceback)
/usr/local/lib/python3.8/dist-packages/dask_cudf/io/csv.py:149: in _read_csv
return cudf.read_csv(fn, **kwargs)
/usr/local/lib/python3.8/dist-packages/nvtx/nvtx.py:101: in inner
result = func(*args, **kwargs)
/usr/local/lib/python3.8/dist-packages/cudf/io/csv.py:74: in read_csv
return libcudf.csv.read_csv(


???
E MemoryError: std::bad_alloc: out_of_memory: CUDA error at: /opt/rapids/rmm/include/rmm/mr/device/cuda_memory_resource.hpp:70: cudaErrorMemoryAllocation out of memory

cudf/_lib/csv.pyx:430: MemoryError
_____________ ERROR at setup of test_gpu_dataset_iterator_csv[csv] _____________

request = <SubRequest 'dataset' for <Function test_gpu_dataset_iterator_csv[csv]>>
paths = ['/tmp/pytest-of-jenkins/pytest-6/csv0/dataset-0.csv', '/tmp/pytest-of-jenkins/pytest-6/csv0/dataset-1.csv']
engine = 'csv'

@pytest.fixture(scope="function")
def dataset(request, paths, engine):
    try:
        gpu_memory_frac = request.getfixturevalue("gpu_memory_frac")
    except Exception:  # pylint: disable=broad-except
        gpu_memory_frac = 0.01

    try:
        cpu = request.getfixturevalue("cpu")
    except Exception:  # pylint: disable=broad-except
        cpu = False

    kwargs = {}
    if engine == "csv-no-header":
        kwargs["names"] = allcols_csv
  return nvtabular.Dataset(paths, part_mem_fraction=gpu_memory_frac, cpu=cpu, **kwargs)

tests/conftest.py:224:


.tox/test-gpu/lib/python3.8/site-packages/merlin/io/dataset.py:348: in init
self.infer_schema()
.tox/test-gpu/lib/python3.8/site-packages/merlin/io/dataset.py:1131: in infer_schema
dtypes = self.sample_dtypes(n=n, annotate_lists=True)
.tox/test-gpu/lib/python3.8/site-packages/merlin/io/dataset.py:1151: in sample_dtypes
_real_meta = self.engine.sample_data(n=n)
.tox/test-gpu/lib/python3.8/site-packages/merlin/io/dataset_engine.py:71: in sample_data
_head = _ddf.partitions[partition_index].head(n)
../../../.local/lib/python3.8/site-packages/dask/dataframe/core.py:1196: in head
return self._head(n=n, npartitions=npartitions, compute=compute, safe=safe)
../../../.local/lib/python3.8/site-packages/dask/dataframe/core.py:1230: in _head
result = result.compute()
../../../.local/lib/python3.8/site-packages/dask/base.py:292: in compute
(result,) = compute(self, traverse=False, **kwargs)
../../../.local/lib/python3.8/site-packages/dask/base.py:575: in compute
results = schedule(dsk, keys, **kwargs)
../../../.local/lib/python3.8/site-packages/distributed/client.py:3015: in get
results = self.gather(packed, asynchronous=asynchronous, direct=direct)
../../../.local/lib/python3.8/site-packages/distributed/client.py:2167: in gather
return self.sync(
../../../.local/lib/python3.8/site-packages/distributed/utils.py:309: in sync
return sync(
../../../.local/lib/python3.8/site-packages/distributed/utils.py:376: in sync
raise exc.with_traceback(tb)
../../../.local/lib/python3.8/site-packages/distributed/utils.py:349: in f
result = yield future
../../../.local/lib/python3.8/site-packages/tornado-6.1-py3.8-linux-x86_64.egg/tornado/gen.py:762: in run
value = future.result()
/usr/lib/python3.8/asyncio/futures.py:178: in result
raise self._exception
/usr/lib/python3.8/asyncio/tasks.py:282: in __step
result = coro.throw(exc)
../../../.local/lib/python3.8/site-packages/distributed/client.py:2030: in _gather
raise exception.with_traceback(traceback)
/usr/local/lib/python3.8/dist-packages/dask_cudf/io/csv.py:149: in _read_csv
return cudf.read_csv(fn, **kwargs)
/usr/local/lib/python3.8/dist-packages/nvtx/nvtx.py:101: in inner
result = func(*args, **kwargs)
/usr/local/lib/python3.8/dist-packages/cudf/io/csv.py:74: in read_csv
return libcudf.csv.read_csv(


???
E MemoryError: std::bad_alloc: out_of_memory: CUDA error at: /opt/rapids/rmm/include/rmm/mr/device/cuda_memory_resource.hpp:70: cudaErrorMemoryAllocation out of memory

cudf/_lib/csv.pyx:430: MemoryError
______________ ERROR at setup of test_gpu_workflow[True-csv-0.01] ______________

request = <SubRequest 'dataset' for <Function test_gpu_workflow[True-csv-0.01]>>
paths = ['/tmp/pytest-of-jenkins/pytest-6/csv0/dataset-0.csv', '/tmp/pytest-of-jenkins/pytest-6/csv0/dataset-1.csv']
engine = 'csv'

@pytest.fixture(scope="function")
def dataset(request, paths, engine):
    try:
        gpu_memory_frac = request.getfixturevalue("gpu_memory_frac")
    except Exception:  # pylint: disable=broad-except
        gpu_memory_frac = 0.01

    try:
        cpu = request.getfixturevalue("cpu")
    except Exception:  # pylint: disable=broad-except
        cpu = False

    kwargs = {}
    if engine == "csv-no-header":
        kwargs["names"] = allcols_csv
  return nvtabular.Dataset(paths, part_mem_fraction=gpu_memory_frac, cpu=cpu, **kwargs)

tests/conftest.py:224:


.tox/test-gpu/lib/python3.8/site-packages/merlin/io/dataset.py:348: in init
self.infer_schema()
.tox/test-gpu/lib/python3.8/site-packages/merlin/io/dataset.py:1131: in infer_schema
dtypes = self.sample_dtypes(n=n, annotate_lists=True)
.tox/test-gpu/lib/python3.8/site-packages/merlin/io/dataset.py:1151: in sample_dtypes
_real_meta = self.engine.sample_data(n=n)
.tox/test-gpu/lib/python3.8/site-packages/merlin/io/dataset_engine.py:71: in sample_data
_head = _ddf.partitions[partition_index].head(n)
../../../.local/lib/python3.8/site-packages/dask/dataframe/core.py:1196: in head
return self._head(n=n, npartitions=npartitions, compute=compute, safe=safe)
../../../.local/lib/python3.8/site-packages/dask/dataframe/core.py:1230: in _head
result = result.compute()
../../../.local/lib/python3.8/site-packages/dask/base.py:292: in compute
(result,) = compute(self, traverse=False, **kwargs)
../../../.local/lib/python3.8/site-packages/dask/base.py:575: in compute
results = schedule(dsk, keys, **kwargs)
../../../.local/lib/python3.8/site-packages/distributed/client.py:3015: in get
results = self.gather(packed, asynchronous=asynchronous, direct=direct)
../../../.local/lib/python3.8/site-packages/distributed/client.py:2167: in gather
return self.sync(
../../../.local/lib/python3.8/site-packages/distributed/utils.py:309: in sync
return sync(
../../../.local/lib/python3.8/site-packages/distributed/utils.py:376: in sync
raise exc.with_traceback(tb)
../../../.local/lib/python3.8/site-packages/distributed/utils.py:349: in f
result = yield future
../../../.local/lib/python3.8/site-packages/tornado-6.1-py3.8-linux-x86_64.egg/tornado/gen.py:762: in run
value = future.result()
/usr/lib/python3.8/asyncio/futures.py:178: in result
raise self._exception
/usr/lib/python3.8/asyncio/tasks.py:282: in __step
result = coro.throw(exc)
../../../.local/lib/python3.8/site-packages/distributed/client.py:2030: in _gather
raise exception.with_traceback(traceback)
/usr/local/lib/python3.8/dist-packages/dask_cudf/io/csv.py:149: in _read_csv
return cudf.read_csv(fn, **kwargs)
/usr/local/lib/python3.8/dist-packages/nvtx/nvtx.py:101: in inner
result = func(*args, **kwargs)
/usr/local/lib/python3.8/dist-packages/cudf/io/csv.py:74: in read_csv
return libcudf.csv.read_csv(


???
E MemoryError: std::bad_alloc: out_of_memory: CUDA error at: /opt/rapids/rmm/include/rmm/mr/device/cuda_memory_resource.hpp:70: cudaErrorMemoryAllocation out of memory

cudf/_lib/csv.pyx:430: MemoryError
______________ ERROR at setup of test_gpu_workflow[True-csv-0.1] _______________

request = <SubRequest 'dataset' for <Function test_gpu_workflow[True-csv-0.1]>>
paths = ['/tmp/pytest-of-jenkins/pytest-6/csv0/dataset-0.csv', '/tmp/pytest-of-jenkins/pytest-6/csv0/dataset-1.csv']
engine = 'csv'

@pytest.fixture(scope="function")
def dataset(request, paths, engine):
    try:
        gpu_memory_frac = request.getfixturevalue("gpu_memory_frac")
    except Exception:  # pylint: disable=broad-except
        gpu_memory_frac = 0.01

    try:
        cpu = request.getfixturevalue("cpu")
    except Exception:  # pylint: disable=broad-except
        cpu = False

    kwargs = {}
    if engine == "csv-no-header":
        kwargs["names"] = allcols_csv
  return nvtabular.Dataset(paths, part_mem_fraction=gpu_memory_frac, cpu=cpu, **kwargs)

tests/conftest.py:224:


.tox/test-gpu/lib/python3.8/site-packages/merlin/io/dataset.py:348: in init
self.infer_schema()
.tox/test-gpu/lib/python3.8/site-packages/merlin/io/dataset.py:1131: in infer_schema
dtypes = self.sample_dtypes(n=n, annotate_lists=True)
.tox/test-gpu/lib/python3.8/site-packages/merlin/io/dataset.py:1151: in sample_dtypes
_real_meta = self.engine.sample_data(n=n)
.tox/test-gpu/lib/python3.8/site-packages/merlin/io/dataset_engine.py:71: in sample_data
_head = _ddf.partitions[partition_index].head(n)
../../../.local/lib/python3.8/site-packages/dask/dataframe/core.py:1196: in head
return self._head(n=n, npartitions=npartitions, compute=compute, safe=safe)
../../../.local/lib/python3.8/site-packages/dask/dataframe/core.py:1230: in _head
result = result.compute()
../../../.local/lib/python3.8/site-packages/dask/base.py:292: in compute
(result,) = compute(self, traverse=False, **kwargs)
../../../.local/lib/python3.8/site-packages/dask/base.py:575: in compute
results = schedule(dsk, keys, **kwargs)
../../../.local/lib/python3.8/site-packages/distributed/client.py:3015: in get
results = self.gather(packed, asynchronous=asynchronous, direct=direct)
../../../.local/lib/python3.8/site-packages/distributed/client.py:2167: in gather
return self.sync(
../../../.local/lib/python3.8/site-packages/distributed/utils.py:309: in sync
return sync(
../../../.local/lib/python3.8/site-packages/distributed/utils.py:376: in sync
raise exc.with_traceback(tb)
../../../.local/lib/python3.8/site-packages/distributed/utils.py:349: in f
result = yield future
../../../.local/lib/python3.8/site-packages/tornado-6.1-py3.8-linux-x86_64.egg/tornado/gen.py:762: in run
value = future.result()
/usr/lib/python3.8/asyncio/futures.py:178: in result
raise self._exception
/usr/lib/python3.8/asyncio/tasks.py:282: in __step
result = coro.throw(exc)
../../../.local/lib/python3.8/site-packages/distributed/client.py:2030: in _gather
raise exception.with_traceback(traceback)
/usr/local/lib/python3.8/dist-packages/dask_cudf/io/csv.py:149: in _read_csv
return cudf.read_csv(fn, **kwargs)
/usr/local/lib/python3.8/dist-packages/nvtx/nvtx.py:101: in inner
result = func(*args, **kwargs)
/usr/local/lib/python3.8/dist-packages/cudf/io/csv.py:74: in read_csv
return libcudf.csv.read_csv(


???
E MemoryError: std::bad_alloc: out_of_memory: CUDA error at: /opt/rapids/rmm/include/rmm/mr/device/cuda_memory_resource.hpp:70: cudaErrorMemoryAllocation out of memory

cudf/_lib/csv.pyx:430: MemoryError
_____________ ERROR at setup of test_gpu_workflow[False-csv-0.01] ______________

request = <SubRequest 'dataset' for <Function test_gpu_workflow[False-csv-0.01]>>
paths = ['/tmp/pytest-of-jenkins/pytest-6/csv0/dataset-0.csv', '/tmp/pytest-of-jenkins/pytest-6/csv0/dataset-1.csv']
engine = 'csv'

@pytest.fixture(scope="function")
def dataset(request, paths, engine):
    try:
        gpu_memory_frac = request.getfixturevalue("gpu_memory_frac")
    except Exception:  # pylint: disable=broad-except
        gpu_memory_frac = 0.01

    try:
        cpu = request.getfixturevalue("cpu")
    except Exception:  # pylint: disable=broad-except
        cpu = False

    kwargs = {}
    if engine == "csv-no-header":
        kwargs["names"] = allcols_csv
  return nvtabular.Dataset(paths, part_mem_fraction=gpu_memory_frac, cpu=cpu, **kwargs)

tests/conftest.py:224:


.tox/test-gpu/lib/python3.8/site-packages/merlin/io/dataset.py:348: in init
self.infer_schema()
.tox/test-gpu/lib/python3.8/site-packages/merlin/io/dataset.py:1131: in infer_schema
dtypes = self.sample_dtypes(n=n, annotate_lists=True)
.tox/test-gpu/lib/python3.8/site-packages/merlin/io/dataset.py:1151: in sample_dtypes
_real_meta = self.engine.sample_data(n=n)
.tox/test-gpu/lib/python3.8/site-packages/merlin/io/dataset_engine.py:71: in sample_data
_head = _ddf.partitions[partition_index].head(n)
../../../.local/lib/python3.8/site-packages/dask/dataframe/core.py:1196: in head
return self._head(n=n, npartitions=npartitions, compute=compute, safe=safe)
../../../.local/lib/python3.8/site-packages/dask/dataframe/core.py:1230: in _head
result = result.compute()
../../../.local/lib/python3.8/site-packages/dask/base.py:292: in compute
(result,) = compute(self, traverse=False, **kwargs)
../../../.local/lib/python3.8/site-packages/dask/base.py:575: in compute
results = schedule(dsk, keys, **kwargs)
../../../.local/lib/python3.8/site-packages/distributed/client.py:3015: in get
results = self.gather(packed, asynchronous=asynchronous, direct=direct)
../../../.local/lib/python3.8/site-packages/distributed/client.py:2167: in gather
return self.sync(
../../../.local/lib/python3.8/site-packages/distributed/utils.py:309: in sync
return sync(
../../../.local/lib/python3.8/site-packages/distributed/utils.py:376: in sync
raise exc.with_traceback(tb)
../../../.local/lib/python3.8/site-packages/distributed/utils.py:349: in f
result = yield future
../../../.local/lib/python3.8/site-packages/tornado-6.1-py3.8-linux-x86_64.egg/tornado/gen.py:762: in run
value = future.result()
/usr/lib/python3.8/asyncio/futures.py:178: in result
raise self._exception
/usr/lib/python3.8/asyncio/tasks.py:282: in __step
result = coro.throw(exc)
../../../.local/lib/python3.8/site-packages/distributed/client.py:2030: in _gather
raise exception.with_traceback(traceback)
/usr/local/lib/python3.8/dist-packages/dask_cudf/io/csv.py:149: in _read_csv
return cudf.read_csv(fn, **kwargs)
/usr/local/lib/python3.8/dist-packages/nvtx/nvtx.py:101: in inner
result = func(*args, **kwargs)
/usr/local/lib/python3.8/dist-packages/cudf/io/csv.py:74: in read_csv
return libcudf.csv.read_csv(


???
E MemoryError: std::bad_alloc: out_of_memory: CUDA error at: /opt/rapids/rmm/include/rmm/mr/device/cuda_memory_resource.hpp:70: cudaErrorMemoryAllocation out of memory

cudf/_lib/csv.pyx:430: MemoryError
______________ ERROR at setup of test_gpu_workflow[False-csv-0.1] ______________

request = <SubRequest 'dataset' for <Function test_gpu_workflow[False-csv-0.1]>>
paths = ['/tmp/pytest-of-jenkins/pytest-6/csv0/dataset-0.csv', '/tmp/pytest-of-jenkins/pytest-6/csv0/dataset-1.csv']
engine = 'csv'

@pytest.fixture(scope="function")
def dataset(request, paths, engine):
    try:
        gpu_memory_frac = request.getfixturevalue("gpu_memory_frac")
    except Exception:  # pylint: disable=broad-except
        gpu_memory_frac = 0.01

    try:
        cpu = request.getfixturevalue("cpu")
    except Exception:  # pylint: disable=broad-except
        cpu = False

    kwargs = {}
    if engine == "csv-no-header":
        kwargs["names"] = allcols_csv
  return nvtabular.Dataset(paths, part_mem_fraction=gpu_memory_frac, cpu=cpu, **kwargs)

tests/conftest.py:224:


.tox/test-gpu/lib/python3.8/site-packages/merlin/io/dataset.py:348: in init
self.infer_schema()
.tox/test-gpu/lib/python3.8/site-packages/merlin/io/dataset.py:1131: in infer_schema
dtypes = self.sample_dtypes(n=n, annotate_lists=True)
.tox/test-gpu/lib/python3.8/site-packages/merlin/io/dataset.py:1151: in sample_dtypes
_real_meta = self.engine.sample_data(n=n)
.tox/test-gpu/lib/python3.8/site-packages/merlin/io/dataset_engine.py:71: in sample_data
_head = _ddf.partitions[partition_index].head(n)
../../../.local/lib/python3.8/site-packages/dask/dataframe/core.py:1196: in head
return self._head(n=n, npartitions=npartitions, compute=compute, safe=safe)
../../../.local/lib/python3.8/site-packages/dask/dataframe/core.py:1230: in _head
result = result.compute()
../../../.local/lib/python3.8/site-packages/dask/base.py:292: in compute
(result,) = compute(self, traverse=False, **kwargs)
../../../.local/lib/python3.8/site-packages/dask/base.py:575: in compute
results = schedule(dsk, keys, **kwargs)
../../../.local/lib/python3.8/site-packages/distributed/client.py:3015: in get
results = self.gather(packed, asynchronous=asynchronous, direct=direct)
../../../.local/lib/python3.8/site-packages/distributed/client.py:2167: in gather
return self.sync(
../../../.local/lib/python3.8/site-packages/distributed/utils.py:309: in sync
return sync(
../../../.local/lib/python3.8/site-packages/distributed/utils.py:376: in sync
raise exc.with_traceback(tb)
../../../.local/lib/python3.8/site-packages/distributed/utils.py:349: in f
result = yield future
../../../.local/lib/python3.8/site-packages/tornado-6.1-py3.8-linux-x86_64.egg/tornado/gen.py:762: in run
value = future.result()
/usr/lib/python3.8/asyncio/futures.py:178: in result
raise self._exception
/usr/lib/python3.8/asyncio/tasks.py:282: in __step
result = coro.throw(exc)
../../../.local/lib/python3.8/site-packages/distributed/client.py:2030: in _gather
raise exception.with_traceback(traceback)
/usr/local/lib/python3.8/dist-packages/dask_cudf/io/csv.py:149: in _read_csv
return cudf.read_csv(fn, **kwargs)
/usr/local/lib/python3.8/dist-packages/nvtx/nvtx.py:101: in inner
result = func(*args, **kwargs)
/usr/local/lib/python3.8/dist-packages/cudf/io/csv.py:74: in read_csv
return libcudf.csv.read_csv(


???
E MemoryError: std::bad_alloc: out_of_memory: CUDA error at: /opt/rapids/rmm/include/rmm/mr/device/cuda_memory_resource.hpp:70: cudaErrorMemoryAllocation out of memory

cudf/_lib/csv.pyx:430: MemoryError
________ ERROR at setup of test_gpu_workflow_config[True-True-csv-0.01] ________

request = <SubRequest 'dataset' for <Function test_gpu_workflow_config[True-True-csv-0.01]>>
paths = ['/tmp/pytest-of-jenkins/pytest-6/csv0/dataset-0.csv', '/tmp/pytest-of-jenkins/pytest-6/csv0/dataset-1.csv']
engine = 'csv'

@pytest.fixture(scope="function")
def dataset(request, paths, engine):
    try:
        gpu_memory_frac = request.getfixturevalue("gpu_memory_frac")
    except Exception:  # pylint: disable=broad-except
        gpu_memory_frac = 0.01

    try:
        cpu = request.getfixturevalue("cpu")
    except Exception:  # pylint: disable=broad-except
        cpu = False

    kwargs = {}
    if engine == "csv-no-header":
        kwargs["names"] = allcols_csv
  return nvtabular.Dataset(paths, part_mem_fraction=gpu_memory_frac, cpu=cpu, **kwargs)

tests/conftest.py:224:


.tox/test-gpu/lib/python3.8/site-packages/merlin/io/dataset.py:348: in init
self.infer_schema()
.tox/test-gpu/lib/python3.8/site-packages/merlin/io/dataset.py:1131: in infer_schema
dtypes = self.sample_dtypes(n=n, annotate_lists=True)
.tox/test-gpu/lib/python3.8/site-packages/merlin/io/dataset.py:1151: in sample_dtypes
_real_meta = self.engine.sample_data(n=n)
.tox/test-gpu/lib/python3.8/site-packages/merlin/io/dataset_engine.py:71: in sample_data
_head = _ddf.partitions[partition_index].head(n)
../../../.local/lib/python3.8/site-packages/dask/dataframe/core.py:1196: in head
return self._head(n=n, npartitions=npartitions, compute=compute, safe=safe)
../../../.local/lib/python3.8/site-packages/dask/dataframe/core.py:1230: in _head
result = result.compute()
../../../.local/lib/python3.8/site-packages/dask/base.py:292: in compute
(result,) = compute(self, traverse=False, **kwargs)
../../../.local/lib/python3.8/site-packages/dask/base.py:575: in compute
results = schedule(dsk, keys, **kwargs)
../../../.local/lib/python3.8/site-packages/distributed/client.py:3015: in get
results = self.gather(packed, asynchronous=asynchronous, direct=direct)
../../../.local/lib/python3.8/site-packages/distributed/client.py:2167: in gather
return self.sync(
../../../.local/lib/python3.8/site-packages/distributed/utils.py:309: in sync
return sync(
../../../.local/lib/python3.8/site-packages/distributed/utils.py:376: in sync
raise exc.with_traceback(tb)
../../../.local/lib/python3.8/site-packages/distributed/utils.py:349: in f
result = yield future
../../../.local/lib/python3.8/site-packages/tornado-6.1-py3.8-linux-x86_64.egg/tornado/gen.py:762: in run
value = future.result()
/usr/lib/python3.8/asyncio/futures.py:178: in result
raise self._exception
/usr/lib/python3.8/asyncio/tasks.py:282: in __step
result = coro.throw(exc)
../../../.local/lib/python3.8/site-packages/distributed/client.py:2030: in _gather
raise exception.with_traceback(traceback)
/usr/local/lib/python3.8/dist-packages/dask_cudf/io/csv.py:149: in _read_csv
return cudf.read_csv(fn, **kwargs)
/usr/local/lib/python3.8/dist-packages/nvtx/nvtx.py:101: in inner
result = func(*args, **kwargs)
/usr/local/lib/python3.8/dist-packages/cudf/io/csv.py:74: in read_csv
return libcudf.csv.read_csv(


???
E MemoryError: std::bad_alloc: out_of_memory: CUDA error at: /opt/rapids/rmm/include/rmm/mr/device/cuda_memory_resource.hpp:70: cudaErrorMemoryAllocation out of memory

cudf/_lib/csv.pyx:430: MemoryError
________ ERROR at setup of test_gpu_workflow_config[True-True-csv-0.1] _________

request = <SubRequest 'dataset' for <Function test_gpu_workflow_config[True-True-csv-0.1]>>
paths = ['/tmp/pytest-of-jenkins/pytest-6/csv0/dataset-0.csv', '/tmp/pytest-of-jenkins/pytest-6/csv0/dataset-1.csv']
engine = 'csv'

@pytest.fixture(scope="function")
def dataset(request, paths, engine):
    try:
        gpu_memory_frac = request.getfixturevalue("gpu_memory_frac")
    except Exception:  # pylint: disable=broad-except
        gpu_memory_frac = 0.01

    try:
        cpu = request.getfixturevalue("cpu")
    except Exception:  # pylint: disable=broad-except
        cpu = False

    kwargs = {}
    if engine == "csv-no-header":
        kwargs["names"] = allcols_csv
  return nvtabular.Dataset(paths, part_mem_fraction=gpu_memory_frac, cpu=cpu, **kwargs)

tests/conftest.py:224:


.tox/test-gpu/lib/python3.8/site-packages/merlin/io/dataset.py:348: in init
self.infer_schema()
.tox/test-gpu/lib/python3.8/site-packages/merlin/io/dataset.py:1131: in infer_schema
dtypes = self.sample_dtypes(n=n, annotate_lists=True)
.tox/test-gpu/lib/python3.8/site-packages/merlin/io/dataset.py:1151: in sample_dtypes
_real_meta = self.engine.sample_data(n=n)
.tox/test-gpu/lib/python3.8/site-packages/merlin/io/dataset_engine.py:71: in sample_data
_head = _ddf.partitions[partition_index].head(n)
../../../.local/lib/python3.8/site-packages/dask/dataframe/core.py:1196: in head
return self._head(n=n, npartitions=npartitions, compute=compute, safe=safe)
../../../.local/lib/python3.8/site-packages/dask/dataframe/core.py:1230: in _head
result = result.compute()
../../../.local/lib/python3.8/site-packages/dask/base.py:292: in compute
(result,) = compute(self, traverse=False, **kwargs)
../../../.local/lib/python3.8/site-packages/dask/base.py:575: in compute
results = schedule(dsk, keys, **kwargs)
../../../.local/lib/python3.8/site-packages/distributed/client.py:3015: in get
results = self.gather(packed, asynchronous=asynchronous, direct=direct)
../../../.local/lib/python3.8/site-packages/distributed/client.py:2167: in gather
return self.sync(
../../../.local/lib/python3.8/site-packages/distributed/utils.py:309: in sync
return sync(
../../../.local/lib/python3.8/site-packages/distributed/utils.py:376: in sync
raise exc.with_traceback(tb)
../../../.local/lib/python3.8/site-packages/distributed/utils.py:349: in f
result = yield future
../../../.local/lib/python3.8/site-packages/tornado-6.1-py3.8-linux-x86_64.egg/tornado/gen.py:762: in run
value = future.result()
/usr/lib/python3.8/asyncio/futures.py:178: in result
raise self._exception
/usr/lib/python3.8/asyncio/tasks.py:282: in __step
result = coro.throw(exc)
../../../.local/lib/python3.8/site-packages/distributed/client.py:2030: in _gather
raise exception.with_traceback(traceback)
/usr/local/lib/python3.8/dist-packages/dask_cudf/io/csv.py:149: in _read_csv
return cudf.read_csv(fn, **kwargs)
/usr/local/lib/python3.8/dist-packages/nvtx/nvtx.py:101: in inner
result = func(*args, **kwargs)
/usr/local/lib/python3.8/dist-packages/cudf/io/csv.py:74: in read_csv
return libcudf.csv.read_csv(


???
E MemoryError: std::bad_alloc: out_of_memory: CUDA error at: /opt/rapids/rmm/include/rmm/mr/device/cuda_memory_resource.hpp:70: cudaErrorMemoryAllocation out of memory

cudf/_lib/csv.pyx:430: MemoryError
_______ ERROR at setup of test_gpu_workflow_config[True-False-csv-0.01] ________

request = <SubRequest 'dataset' for <Function test_gpu_workflow_config[True-False-csv-0.01]>>
paths = ['/tmp/pytest-of-jenkins/pytest-6/csv0/dataset-0.csv', '/tmp/pytest-of-jenkins/pytest-6/csv0/dataset-1.csv']
engine = 'csv'

@pytest.fixture(scope="function")
def dataset(request, paths, engine):
    try:
        gpu_memory_frac = request.getfixturevalue("gpu_memory_frac")
    except Exception:  # pylint: disable=broad-except
        gpu_memory_frac = 0.01

    try:
        cpu = request.getfixturevalue("cpu")
    except Exception:  # pylint: disable=broad-except
        cpu = False

    kwargs = {}
    if engine == "csv-no-header":
        kwargs["names"] = allcols_csv
  return nvtabular.Dataset(paths, part_mem_fraction=gpu_memory_frac, cpu=cpu, **kwargs)

tests/conftest.py:224:


.tox/test-gpu/lib/python3.8/site-packages/merlin/io/dataset.py:348: in init
self.infer_schema()
.tox/test-gpu/lib/python3.8/site-packages/merlin/io/dataset.py:1131: in infer_schema
dtypes = self.sample_dtypes(n=n, annotate_lists=True)
.tox/test-gpu/lib/python3.8/site-packages/merlin/io/dataset.py:1151: in sample_dtypes
_real_meta = self.engine.sample_data(n=n)
.tox/test-gpu/lib/python3.8/site-packages/merlin/io/dataset_engine.py:71: in sample_data
_head = _ddf.partitions[partition_index].head(n)
../../../.local/lib/python3.8/site-packages/dask/dataframe/core.py:1196: in head
return self._head(n=n, npartitions=npartitions, compute=compute, safe=safe)
../../../.local/lib/python3.8/site-packages/dask/dataframe/core.py:1230: in _head
result = result.compute()
../../../.local/lib/python3.8/site-packages/dask/base.py:292: in compute
(result,) = compute(self, traverse=False, **kwargs)
../../../.local/lib/python3.8/site-packages/dask/base.py:575: in compute
results = schedule(dsk, keys, **kwargs)
../../../.local/lib/python3.8/site-packages/distributed/client.py:3015: in get
results = self.gather(packed, asynchronous=asynchronous, direct=direct)
../../../.local/lib/python3.8/site-packages/distributed/client.py:2167: in gather
return self.sync(
../../../.local/lib/python3.8/site-packages/distributed/utils.py:309: in sync
return sync(
../../../.local/lib/python3.8/site-packages/distributed/utils.py:376: in sync
raise exc.with_traceback(tb)
../../../.local/lib/python3.8/site-packages/distributed/utils.py:349: in f
result = yield future
../../../.local/lib/python3.8/site-packages/tornado-6.1-py3.8-linux-x86_64.egg/tornado/gen.py:762: in run
value = future.result()
/usr/lib/python3.8/asyncio/futures.py:178: in result
raise self._exception
/usr/lib/python3.8/asyncio/tasks.py:282: in __step
result = coro.throw(exc)
../../../.local/lib/python3.8/site-packages/distributed/client.py:2030: in _gather
raise exception.with_traceback(traceback)
/usr/local/lib/python3.8/dist-packages/dask_cudf/io/csv.py:149: in _read_csv
return cudf.read_csv(fn, **kwargs)
/usr/local/lib/python3.8/dist-packages/nvtx/nvtx.py:101: in inner
result = func(*args, **kwargs)
/usr/local/lib/python3.8/dist-packages/cudf/io/csv.py:74: in read_csv
return libcudf.csv.read_csv(


???
E MemoryError: std::bad_alloc: out_of_memory: CUDA error at: /opt/rapids/rmm/include/rmm/mr/device/cuda_memory_resource.hpp:70: cudaErrorMemoryAllocation out of memory

cudf/_lib/csv.pyx:430: MemoryError
________ ERROR at setup of test_gpu_workflow_config[True-False-csv-0.1] ________

request = <SubRequest 'dataset' for <Function test_gpu_workflow_config[True-False-csv-0.1]>>
paths = ['/tmp/pytest-of-jenkins/pytest-6/csv0/dataset-0.csv', '/tmp/pytest-of-jenkins/pytest-6/csv0/dataset-1.csv']
engine = 'csv'

@pytest.fixture(scope="function")
def dataset(request, paths, engine):
    try:
        gpu_memory_frac = request.getfixturevalue("gpu_memory_frac")
    except Exception:  # pylint: disable=broad-except
        gpu_memory_frac = 0.01

    try:
        cpu = request.getfixturevalue("cpu")
    except Exception:  # pylint: disable=broad-except
        cpu = False

    kwargs = {}
    if engine == "csv-no-header":
        kwargs["names"] = allcols_csv
  return nvtabular.Dataset(paths, part_mem_fraction=gpu_memory_frac, cpu=cpu, **kwargs)

tests/conftest.py:224:


.tox/test-gpu/lib/python3.8/site-packages/merlin/io/dataset.py:348: in init
self.infer_schema()
.tox/test-gpu/lib/python3.8/site-packages/merlin/io/dataset.py:1131: in infer_schema
dtypes = self.sample_dtypes(n=n, annotate_lists=True)
.tox/test-gpu/lib/python3.8/site-packages/merlin/io/dataset.py:1151: in sample_dtypes
_real_meta = self.engine.sample_data(n=n)
.tox/test-gpu/lib/python3.8/site-packages/merlin/io/dataset_engine.py:71: in sample_data
_head = _ddf.partitions[partition_index].head(n)
../../../.local/lib/python3.8/site-packages/dask/dataframe/core.py:1196: in head
return self._head(n=n, npartitions=npartitions, compute=compute, safe=safe)
../../../.local/lib/python3.8/site-packages/dask/dataframe/core.py:1230: in _head
result = result.compute()
../../../.local/lib/python3.8/site-packages/dask/base.py:292: in compute
(result,) = compute(self, traverse=False, **kwargs)
../../../.local/lib/python3.8/site-packages/dask/base.py:575: in compute
results = schedule(dsk, keys, **kwargs)
../../../.local/lib/python3.8/site-packages/distributed/client.py:3015: in get
results = self.gather(packed, asynchronous=asynchronous, direct=direct)
../../../.local/lib/python3.8/site-packages/distributed/client.py:2167: in gather
return self.sync(
../../../.local/lib/python3.8/site-packages/distributed/utils.py:309: in sync
return sync(
../../../.local/lib/python3.8/site-packages/distributed/utils.py:376: in sync
raise exc.with_traceback(tb)
../../../.local/lib/python3.8/site-packages/distributed/utils.py:349: in f
result = yield future
../../../.local/lib/python3.8/site-packages/tornado-6.1-py3.8-linux-x86_64.egg/tornado/gen.py:762: in run
value = future.result()
/usr/lib/python3.8/asyncio/futures.py:178: in result
raise self._exception
/usr/lib/python3.8/asyncio/tasks.py:282: in __step
result = coro.throw(exc)
../../../.local/lib/python3.8/site-packages/distributed/client.py:2030: in _gather
raise exception.with_traceback(traceback)
/usr/local/lib/python3.8/dist-packages/dask_cudf/io/csv.py:149: in _read_csv
return cudf.read_csv(fn, **kwargs)
/usr/local/lib/python3.8/dist-packages/nvtx/nvtx.py:101: in inner
result = func(*args, **kwargs)
/usr/local/lib/python3.8/dist-packages/cudf/io/csv.py:74: in read_csv
return libcudf.csv.read_csv(


???
E MemoryError: std::bad_alloc: out_of_memory: CUDA error at: /opt/rapids/rmm/include/rmm/mr/device/cuda_memory_resource.hpp:70: cudaErrorMemoryAllocation out of memory

cudf/_lib/csv.pyx:430: MemoryError
_______ ERROR at setup of test_gpu_workflow_config[False-True-csv-0.01] ________

request = <SubRequest 'dataset' for <Function test_gpu_workflow_config[False-True-csv-0.01]>>
paths = ['/tmp/pytest-of-jenkins/pytest-6/csv0/dataset-0.csv', '/tmp/pytest-of-jenkins/pytest-6/csv0/dataset-1.csv']
engine = 'csv'

@pytest.fixture(scope="function")
def dataset(request, paths, engine):
    try:
        gpu_memory_frac = request.getfixturevalue("gpu_memory_frac")
    except Exception:  # pylint: disable=broad-except
        gpu_memory_frac = 0.01

    try:
        cpu = request.getfixturevalue("cpu")
    except Exception:  # pylint: disable=broad-except
        cpu = False

    kwargs = {}
    if engine == "csv-no-header":
        kwargs["names"] = allcols_csv
  return nvtabular.Dataset(paths, part_mem_fraction=gpu_memory_frac, cpu=cpu, **kwargs)

tests/conftest.py:224:


.tox/test-gpu/lib/python3.8/site-packages/merlin/io/dataset.py:348: in init
self.infer_schema()
.tox/test-gpu/lib/python3.8/site-packages/merlin/io/dataset.py:1131: in infer_schema
dtypes = self.sample_dtypes(n=n, annotate_lists=True)
.tox/test-gpu/lib/python3.8/site-packages/merlin/io/dataset.py:1151: in sample_dtypes
_real_meta = self.engine.sample_data(n=n)
.tox/test-gpu/lib/python3.8/site-packages/merlin/io/dataset_engine.py:71: in sample_data
_head = _ddf.partitions[partition_index].head(n)
../../../.local/lib/python3.8/site-packages/dask/dataframe/core.py:1196: in head
return self._head(n=n, npartitions=npartitions, compute=compute, safe=safe)
../../../.local/lib/python3.8/site-packages/dask/dataframe/core.py:1230: in _head
result = result.compute()
../../../.local/lib/python3.8/site-packages/dask/base.py:292: in compute
(result,) = compute(self, traverse=False, **kwargs)
../../../.local/lib/python3.8/site-packages/dask/base.py:575: in compute
results = schedule(dsk, keys, **kwargs)
../../../.local/lib/python3.8/site-packages/distributed/client.py:3015: in get
results = self.gather(packed, asynchronous=asynchronous, direct=direct)
../../../.local/lib/python3.8/site-packages/distributed/client.py:2167: in gather
return self.sync(
../../../.local/lib/python3.8/site-packages/distributed/utils.py:309: in sync
return sync(
../../../.local/lib/python3.8/site-packages/distributed/utils.py:376: in sync
raise exc.with_traceback(tb)
../../../.local/lib/python3.8/site-packages/distributed/utils.py:349: in f
result = yield future
../../../.local/lib/python3.8/site-packages/tornado-6.1-py3.8-linux-x86_64.egg/tornado/gen.py:762: in run
value = future.result()
/usr/lib/python3.8/asyncio/futures.py:178: in result
raise self._exception
/usr/lib/python3.8/asyncio/tasks.py:282: in __step
result = coro.throw(exc)
../../../.local/lib/python3.8/site-packages/distributed/client.py:2030: in _gather
raise exception.with_traceback(traceback)
/usr/local/lib/python3.8/dist-packages/dask_cudf/io/csv.py:149: in _read_csv
return cudf.read_csv(fn, **kwargs)
/usr/local/lib/python3.8/dist-packages/nvtx/nvtx.py:101: in inner
result = func(*args, **kwargs)
/usr/local/lib/python3.8/dist-packages/cudf/io/csv.py:74: in read_csv
return libcudf.csv.read_csv(


???
E MemoryError: std::bad_alloc: out_of_memory: CUDA error at: /opt/rapids/rmm/include/rmm/mr/device/cuda_memory_resource.hpp:70: cudaErrorMemoryAllocation out of memory

cudf/_lib/csv.pyx:430: MemoryError
________ ERROR at setup of test_gpu_workflow_config[False-True-csv-0.1] ________

request = <SubRequest 'dataset' for <Function test_gpu_workflow_config[False-True-csv-0.1]>>
paths = ['/tmp/pytest-of-jenkins/pytest-6/csv0/dataset-0.csv', '/tmp/pytest-of-jenkins/pytest-6/csv0/dataset-1.csv']
engine = 'csv'

@pytest.fixture(scope="function")
def dataset(request, paths, engine):
    try:
        gpu_memory_frac = request.getfixturevalue("gpu_memory_frac")
    except Exception:  # pylint: disable=broad-except
        gpu_memory_frac = 0.01

    try:
        cpu = request.getfixturevalue("cpu")
    except Exception:  # pylint: disable=broad-except
        cpu = False

    kwargs = {}
    if engine == "csv-no-header":
        kwargs["names"] = allcols_csv
  return nvtabular.Dataset(paths, part_mem_fraction=gpu_memory_frac, cpu=cpu, **kwargs)

tests/conftest.py:224:


.tox/test-gpu/lib/python3.8/site-packages/merlin/io/dataset.py:348: in init
self.infer_schema()
.tox/test-gpu/lib/python3.8/site-packages/merlin/io/dataset.py:1131: in infer_schema
dtypes = self.sample_dtypes(n=n, annotate_lists=True)
.tox/test-gpu/lib/python3.8/site-packages/merlin/io/dataset.py:1151: in sample_dtypes
_real_meta = self.engine.sample_data(n=n)
.tox/test-gpu/lib/python3.8/site-packages/merlin/io/dataset_engine.py:71: in sample_data
_head = _ddf.partitions[partition_index].head(n)
../../../.local/lib/python3.8/site-packages/dask/dataframe/core.py:1196: in head
return self._head(n=n, npartitions=npartitions, compute=compute, safe=safe)
../../../.local/lib/python3.8/site-packages/dask/dataframe/core.py:1230: in _head
result = result.compute()
../../../.local/lib/python3.8/site-packages/dask/base.py:292: in compute
(result,) = compute(self, traverse=False, **kwargs)
../../../.local/lib/python3.8/site-packages/dask/base.py:575: in compute
results = schedule(dsk, keys, **kwargs)
../../../.local/lib/python3.8/site-packages/distributed/client.py:3015: in get
results = self.gather(packed, asynchronous=asynchronous, direct=direct)
../../../.local/lib/python3.8/site-packages/distributed/client.py:2167: in gather
return self.sync(
../../../.local/lib/python3.8/site-packages/distributed/utils.py:309: in sync
return sync(
../../../.local/lib/python3.8/site-packages/distributed/utils.py:376: in sync
raise exc.with_traceback(tb)
../../../.local/lib/python3.8/site-packages/distributed/utils.py:349: in f
result = yield future
../../../.local/lib/python3.8/site-packages/tornado-6.1-py3.8-linux-x86_64.egg/tornado/gen.py:762: in run
value = future.result()
/usr/lib/python3.8/asyncio/futures.py:178: in result
raise self._exception
/usr/lib/python3.8/asyncio/tasks.py:282: in __step
result = coro.throw(exc)
../../../.local/lib/python3.8/site-packages/distributed/client.py:2030: in _gather
raise exception.with_traceback(traceback)
/usr/local/lib/python3.8/dist-packages/dask_cudf/io/csv.py:149: in _read_csv
return cudf.read_csv(fn, **kwargs)
/usr/local/lib/python3.8/dist-packages/nvtx/nvtx.py:101: in inner
result = func(*args, **kwargs)
/usr/local/lib/python3.8/dist-packages/cudf/io/csv.py:74: in read_csv
return libcudf.csv.read_csv(


???
E MemoryError: std::bad_alloc: out_of_memory: CUDA error at: /opt/rapids/rmm/include/rmm/mr/device/cuda_memory_resource.hpp:70: cudaErrorMemoryAllocation out of memory

cudf/_lib/csv.pyx:430: MemoryError
_______ ERROR at setup of test_gpu_workflow_config[False-False-csv-0.01] _______

request = <SubRequest 'dataset' for <Function test_gpu_workflow_config[False-False-csv-0.01]>>
paths = ['/tmp/pytest-of-jenkins/pytest-6/csv0/dataset-0.csv', '/tmp/pytest-of-jenkins/pytest-6/csv0/dataset-1.csv']
engine = 'csv'

@pytest.fixture(scope="function")
def dataset(request, paths, engine):
    try:
        gpu_memory_frac = request.getfixturevalue("gpu_memory_frac")
    except Exception:  # pylint: disable=broad-except
        gpu_memory_frac = 0.01

    try:
        cpu = request.getfixturevalue("cpu")
    except Exception:  # pylint: disable=broad-except
        cpu = False

    kwargs = {}
    if engine == "csv-no-header":
        kwargs["names"] = allcols_csv
  return nvtabular.Dataset(paths, part_mem_fraction=gpu_memory_frac, cpu=cpu, **kwargs)

tests/conftest.py:224:


.tox/test-gpu/lib/python3.8/site-packages/merlin/io/dataset.py:348: in init
self.infer_schema()
.tox/test-gpu/lib/python3.8/site-packages/merlin/io/dataset.py:1131: in infer_schema
dtypes = self.sample_dtypes(n=n, annotate_lists=True)
.tox/test-gpu/lib/python3.8/site-packages/merlin/io/dataset.py:1151: in sample_dtypes
_real_meta = self.engine.sample_data(n=n)
.tox/test-gpu/lib/python3.8/site-packages/merlin/io/dataset_engine.py:71: in sample_data
_head = _ddf.partitions[partition_index].head(n)
../../../.local/lib/python3.8/site-packages/dask/dataframe/core.py:1196: in head
return self._head(n=n, npartitions=npartitions, compute=compute, safe=safe)
../../../.local/lib/python3.8/site-packages/dask/dataframe/core.py:1230: in _head
result = result.compute()
../../../.local/lib/python3.8/site-packages/dask/base.py:292: in compute
(result,) = compute(self, traverse=False, **kwargs)
../../../.local/lib/python3.8/site-packages/dask/base.py:575: in compute
results = schedule(dsk, keys, **kwargs)
../../../.local/lib/python3.8/site-packages/distributed/client.py:3015: in get
results = self.gather(packed, asynchronous=asynchronous, direct=direct)
../../../.local/lib/python3.8/site-packages/distributed/client.py:2167: in gather
return self.sync(
../../../.local/lib/python3.8/site-packages/distributed/utils.py:309: in sync
return sync(
../../../.local/lib/python3.8/site-packages/distributed/utils.py:376: in sync
raise exc.with_traceback(tb)
../../../.local/lib/python3.8/site-packages/distributed/utils.py:349: in f
result = yield future
../../../.local/lib/python3.8/site-packages/tornado-6.1-py3.8-linux-x86_64.egg/tornado/gen.py:762: in run
value = future.result()
/usr/lib/python3.8/asyncio/futures.py:178: in result
raise self._exception
/usr/lib/python3.8/asyncio/tasks.py:282: in __step
result = coro.throw(exc)
../../../.local/lib/python3.8/site-packages/distributed/client.py:2030: in _gather
raise exception.with_traceback(traceback)
/usr/local/lib/python3.8/dist-packages/dask_cudf/io/csv.py:149: in _read_csv
return cudf.read_csv(fn, **kwargs)
/usr/local/lib/python3.8/dist-packages/nvtx/nvtx.py:101: in inner
result = func(*args, **kwargs)
/usr/local/lib/python3.8/dist-packages/cudf/io/csv.py:74: in read_csv
return libcudf.csv.read_csv(


???
E MemoryError: std::bad_alloc: out_of_memory: CUDA error at: /opt/rapids/rmm/include/rmm/mr/device/cuda_memory_resource.hpp:70: cudaErrorMemoryAllocation out of memory

cudf/_lib/csv.pyx:430: MemoryError
_______ ERROR at setup of test_gpu_workflow_config[False-False-csv-0.1] ________

request = <SubRequest 'dataset' for <Function test_gpu_workflow_config[False-False-csv-0.1]>>
paths = ['/tmp/pytest-of-jenkins/pytest-6/csv0/dataset-0.csv', '/tmp/pytest-of-jenkins/pytest-6/csv0/dataset-1.csv']
engine = 'csv'

@pytest.fixture(scope="function")
def dataset(request, paths, engine):
    try:
        gpu_memory_frac = request.getfixturevalue("gpu_memory_frac")
    except Exception:  # pylint: disable=broad-except
        gpu_memory_frac = 0.01

    try:
        cpu = request.getfixturevalue("cpu")
    except Exception:  # pylint: disable=broad-except
        cpu = False

    kwargs = {}
    if engine == "csv-no-header":
        kwargs["names"] = allcols_csv
  return nvtabular.Dataset(paths, part_mem_fraction=gpu_memory_frac, cpu=cpu, **kwargs)

tests/conftest.py:224:


.tox/test-gpu/lib/python3.8/site-packages/merlin/io/dataset.py:348: in init
self.infer_schema()
.tox/test-gpu/lib/python3.8/site-packages/merlin/io/dataset.py:1131: in infer_schema
dtypes = self.sample_dtypes(n=n, annotate_lists=True)
.tox/test-gpu/lib/python3.8/site-packages/merlin/io/dataset.py:1151: in sample_dtypes
_real_meta = self.engine.sample_data(n=n)
.tox/test-gpu/lib/python3.8/site-packages/merlin/io/dataset_engine.py:71: in sample_data
_head = _ddf.partitions[partition_index].head(n)
../../../.local/lib/python3.8/site-packages/dask/dataframe/core.py:1196: in head
return self._head(n=n, npartitions=npartitions, compute=compute, safe=safe)
../../../.local/lib/python3.8/site-packages/dask/dataframe/core.py:1230: in _head
result = result.compute()
../../../.local/lib/python3.8/site-packages/dask/base.py:292: in compute
(result,) = compute(self, traverse=False, **kwargs)
../../../.local/lib/python3.8/site-packages/dask/base.py:575: in compute
results = schedule(dsk, keys, **kwargs)
../../../.local/lib/python3.8/site-packages/distributed/client.py:3015: in get
results = self.gather(packed, asynchronous=asynchronous, direct=direct)
../../../.local/lib/python3.8/site-packages/distributed/client.py:2167: in gather
return self.sync(
../../../.local/lib/python3.8/site-packages/distributed/utils.py:309: in sync
return sync(
../../../.local/lib/python3.8/site-packages/distributed/utils.py:376: in sync
raise exc.with_traceback(tb)
../../../.local/lib/python3.8/site-packages/distributed/utils.py:349: in f
result = yield future
../../../.local/lib/python3.8/site-packages/tornado-6.1-py3.8-linux-x86_64.egg/tornado/gen.py:762: in run
value = future.result()
/usr/lib/python3.8/asyncio/futures.py:178: in result
raise self._exception
/usr/lib/python3.8/asyncio/tasks.py:282: in __step
result = coro.throw(exc)
../../../.local/lib/python3.8/site-packages/distributed/client.py:2030: in _gather
raise exception.with_traceback(traceback)
/usr/local/lib/python3.8/dist-packages/dask_cudf/io/csv.py:149: in _read_csv
return cudf.read_csv(fn, **kwargs)
/usr/local/lib/python3.8/dist-packages/nvtx/nvtx.py:101: in inner
result = func(*args, **kwargs)
/usr/local/lib/python3.8/dist-packages/cudf/io/csv.py:74: in read_csv
return libcudf.csv.read_csv(


???
E MemoryError: std::bad_alloc: out_of_memory: CUDA error at: /opt/rapids/rmm/include/rmm/mr/device/cuda_memory_resource.hpp:70: cudaErrorMemoryAllocation out of memory

cudf/_lib/csv.pyx:430: MemoryError
=================================== FAILURES ===================================
________________ test_gpu_workflow_api[True-True-parquet-0.01] _________________

tmpdir = local('/tmp/pytest-of-jenkins/pytest-6/test_gpu_workflow_api_True_Tru0')
client = <Client: 'tcp://127.0.0.1:43757' processes=2 threads=16, memory=125.83 GiB>
df = name-cat name-string id label x y
0 Dan Tim 1045 1062 -0.145672 -0.89864...h 956 996 -0.716058 -0.292705
4320 Laura Yvonne 1015 975 -0.259790 0.710177

[4321 rows x 6 columns]
dataset = <merlin.io.dataset.Dataset object at 0x7f2cdc1596d0>
gpu_memory_frac = 0.01, engine = 'parquet', dump = True, use_client = True

@pytest.mark.parametrize("gpu_memory_frac", [0.01, 0.1])
@pytest.mark.parametrize("engine", ["parquet", "csv", "csv-no-header"])
@pytest.mark.parametrize("dump", [True, False])
@pytest.mark.parametrize("use_client", [True, False])
def test_gpu_workflow_api(tmpdir, client, df, dataset, gpu_memory_frac, engine, dump, use_client):
    cat_names = ["name-cat", "name-string"] if engine == "parquet" else ["name-string"]
    cont_names = ["x", "y", "id"]
    label_name = ["label"]

    set_dask_client(client=client if use_client else None)
    norms = ops.Normalize()
    cat_features = cat_names >> ops.Categorify(cat_cache="host")
    cont_features = cont_names >> ops.FillMissing() >> ops.Clip(min_value=0) >> ops.LogOp >> norms

    workflow = Workflow(cat_features + cont_features + label_name)
  workflow.fit(dataset)

tests/unit/workflow/test_workflow.py:112:


nvtabular/workflow/workflow.py:198: in fit
self.executor.fit(ddf, current_phase)
.tox/test-gpu/lib/python3.8/site-packages/merlin/dag/executors.py:334: in fit
results = [r.result() for r in dask_client.compute(stats)]
.tox/test-gpu/lib/python3.8/site-packages/merlin/dag/executors.py:334: in
results = [r.result() for r in dask_client.compute(stats)]
../../../.local/lib/python3.8/site-packages/distributed/client.py:279: in result
raise exc.with_traceback(tb)
../../../.local/lib/python3.8/site-packages/dask/optimization.py:990: in call
return core.get(self.dsk, self.outkey, dict(zip(self.inkeys, args)))
../../../.local/lib/python3.8/site-packages/dask/core.py:149: in get
result = _execute_task(task, cache)
../../../.local/lib/python3.8/site-packages/dask/core.py:119: in _execute_task
return func((_execute_task(a, cache) for a in args))
../../../.local/lib/python3.8/site-packages/dask/core.py:119: in
return func(
(_execute_task(a, cache) for a in args))
../../../.local/lib/python3.8/site-packages/dask/core.py:113: in _execute_task
return [_execute_task(a, cache) for a in arg]
../../../.local/lib/python3.8/site-packages/dask/core.py:113: in
return [_execute_task(a, cache) for a in arg]
../../../.local/lib/python3.8/site-packages/dask/core.py:119: in _execute_task
return func(*(_execute_task(a, cache) for a in args))
../../../.local/lib/python3.8/site-packages/dask/dataframe/io/parquet/core.py:82: in call
return read_parquet_part(
../../../.local/lib/python3.8/site-packages/dask/dataframe/io/parquet/core.py:490: in read_parquet_part
dfs = [
../../../.local/lib/python3.8/site-packages/dask/dataframe/io/parquet/core.py:491: in
func(fs, rg, columns.copy(), index, **toolz.merge(kwargs, kw))
.tox/test-gpu/lib/python3.8/site-packages/merlin/io/parquet.py:128: in read_partition
return CudfEngine.read_partition(fs, pieces, *args, **kwargs)
/usr/local/lib/python3.8/dist-packages/dask_cudf/io/parquet.py:241: in read_partition
cls._read_paths(
/usr/local/lib/python3.8/dist-packages/dask_cudf/io/parquet.py:92: in _read_paths
df = cudf.read_parquet(
/usr/local/lib/python3.8/dist-packages/nvtx/nvtx.py:101: in inner
result = func(*args, **kwargs)
/usr/local/lib/python3.8/dist-packages/cudf/io/parquet.py:470: in read_parquet
return _parquet_to_frame(
/usr/local/lib/python3.8/dist-packages/nvtx/nvtx.py:101: in inner
result = func(*args, **kwargs)
/usr/local/lib/python3.8/dist-packages/cudf/io/parquet.py:499: in _parquet_to_frame
return _read_parquet(
/usr/local/lib/python3.8/dist-packages/nvtx/nvtx.py:101: in inner
result = func(*args, **kwargs)
/usr/local/lib/python3.8/dist-packages/cudf/io/parquet.py:576: in _read_parquet
return libparquet.read_parquet(
cudf/_lib/parquet.pyx:113: in cudf._lib.parquet.read_parquet
???


???
E RuntimeError: CUDA error encountered at: ../src/io/utilities/hostdevice_vector.hpp:57: 2 cudaErrorMemoryAllocation out of memory

cudf/_lib/parquet.pyx:173: RuntimeError
----------------------------- Captured stderr call -----------------------------
2022-12-01 17:41:36,269 - distributed.worker - WARNING - Compute Failed
Key: ('transform-de706c0319a4bcdf181f137e3e5e61c4', 1)
Function: subgraph_callable-03e9d2b4-edad-4fa5-8c15-63c4080b
args: ({'piece': ('/tmp/pytest-of-jenkins/pytest-6/parquet0/dataset-1.parquet', [0], [])})
kwargs: {}
Exception: "RuntimeError('CUDA error encountered at: ../src/io/utilities/hostdevice_vector.hpp:57: 2 cudaErrorMemoryAllocation out of memory')"

2022-12-01 17:41:36,281 - distributed.worker - WARNING - Compute Failed
Key: ('transform-efcba79e4267ced2f9402c48794fe075', 0)
Function: subgraph_callable-149ceb44-07c8-4434-890c-49e4db40
args: ({'piece': ('/tmp/pytest-of-jenkins/pytest-6/parquet0/dataset-0.parquet', [0], [])})
kwargs: {}
Exception: "RuntimeError('CUDA error encountered at: ../src/io/utilities/hostdevice_vector.hpp:57: 2 cudaErrorMemoryAllocation out of memory')"

_________________ test_gpu_workflow_api[True-True-parquet-0.1] _________________

tmpdir = local('/tmp/pytest-of-jenkins/pytest-6/test_gpu_workflow_api_True_Tru1')
client = <Client: 'tcp://127.0.0.1:43757' processes=2 threads=16, memory=125.83 GiB>
df = name-cat name-string id label x y
0 Dan Tim 1045 1062 -0.145672 -0.89864...h 956 996 -0.716058 -0.292705
4320 Laura Yvonne 1015 975 -0.259790 0.710177

[4321 rows x 6 columns]
dataset = <merlin.io.dataset.Dataset object at 0x7f2985885700>
gpu_memory_frac = 0.1, engine = 'parquet', dump = True, use_client = True

@pytest.mark.parametrize("gpu_memory_frac", [0.01, 0.1])
@pytest.mark.parametrize("engine", ["parquet", "csv", "csv-no-header"])
@pytest.mark.parametrize("dump", [True, False])
@pytest.mark.parametrize("use_client", [True, False])
def test_gpu_workflow_api(tmpdir, client, df, dataset, gpu_memory_frac, engine, dump, use_client):
    cat_names = ["name-cat", "name-string"] if engine == "parquet" else ["name-string"]
    cont_names = ["x", "y", "id"]
    label_name = ["label"]

    set_dask_client(client=client if use_client else None)
    norms = ops.Normalize()
    cat_features = cat_names >> ops.Categorify(cat_cache="host")
    cont_features = cont_names >> ops.FillMissing() >> ops.Clip(min_value=0) >> ops.LogOp >> norms

    workflow = Workflow(cat_features + cont_features + label_name)
  workflow.fit(dataset)

tests/unit/workflow/test_workflow.py:112:


nvtabular/workflow/workflow.py:198: in fit
self.executor.fit(ddf, current_phase)
.tox/test-gpu/lib/python3.8/site-packages/merlin/dag/executors.py:334: in fit
results = [r.result() for r in dask_client.compute(stats)]
.tox/test-gpu/lib/python3.8/site-packages/merlin/dag/executors.py:334: in
results = [r.result() for r in dask_client.compute(stats)]
../../../.local/lib/python3.8/site-packages/distributed/client.py:279: in result
raise exc.with_traceback(tb)
../../../.local/lib/python3.8/site-packages/dask/optimization.py:990: in call
return core.get(self.dsk, self.outkey, dict(zip(self.inkeys, args)))
../../../.local/lib/python3.8/site-packages/dask/core.py:149: in get
result = _execute_task(task, cache)
../../../.local/lib/python3.8/site-packages/dask/core.py:119: in _execute_task
return func((_execute_task(a, cache) for a in args))
../../../.local/lib/python3.8/site-packages/dask/core.py:119: in
return func(
(_execute_task(a, cache) for a in args))
../../../.local/lib/python3.8/site-packages/dask/core.py:113: in _execute_task
return [_execute_task(a, cache) for a in arg]
../../../.local/lib/python3.8/site-packages/dask/core.py:113: in
return [_execute_task(a, cache) for a in arg]
../../../.local/lib/python3.8/site-packages/dask/core.py:119: in _execute_task
return func(*(_execute_task(a, cache) for a in args))
../../../.local/lib/python3.8/site-packages/dask/dataframe/io/parquet/core.py:82: in call
return read_parquet_part(
../../../.local/lib/python3.8/site-packages/dask/dataframe/io/parquet/core.py:490: in read_parquet_part
dfs = [
../../../.local/lib/python3.8/site-packages/dask/dataframe/io/parquet/core.py:491: in
func(fs, rg, columns.copy(), index, **toolz.merge(kwargs, kw))
.tox/test-gpu/lib/python3.8/site-packages/merlin/io/parquet.py:128: in read_partition
return CudfEngine.read_partition(fs, pieces, *args, **kwargs)


raise MemoryError(
"Parquet data was larger than the available GPU memory!\n\n"
"See the notes on split_row_groups in the read_parquet "
"documentation.\n\n"
"Original Error: " + str(err)
)
E MemoryError: Parquet data was larger than the available GPU memory!
E
E See the notes on split_row_groups in the read_parquet documentation.
E
E Original Error: std::bad_alloc: out_of_memory: CUDA error at: /opt/rapids/rmm/include/rmm/mr/device/cuda_memory_resource.hpp:70: cudaErrorMemoryAllocation out of memory

/usr/local/lib/python3.8/dist-packages/dask_cudf/io/parquet.py:265: MemoryError
----------------------------- Captured stderr call -----------------------------
2022-12-01 17:41:38,607 - distributed.worker - WARNING - Compute Failed
Key: ('transform-6150d6df13aafcc4c59dcb4543fb4814', 1)
Function: subgraph_callable-0481128e-7aa7-4063-9a5b-a7dff93a
args: ({'piece': ('/tmp/pytest-of-jenkins/pytest-6/parquet0/dataset-1.parquet', [0], [])})
kwargs: {}
Exception: "MemoryError('Parquet data was larger than the available GPU memory!\n\nSee the notes on split_row_groups in the read_parquet documentation.\n\nOriginal Error: std::bad_alloc: out_of_memory: CUDA error at: /opt/rapids/rmm/include/rmm/mr/device/cuda_memory_resource.hpp:70: cudaErrorMemoryAllocation out of memory')"

2022-12-01 17:41:38,608 - distributed.worker - WARNING - Compute Failed
Key: ('transform-6150d6df13aafcc4c59dcb4543fb4814', 0)
Function: subgraph_callable-0481128e-7aa7-4063-9a5b-a7dff93a
args: ({'piece': ('/tmp/pytest-of-jenkins/pytest-6/parquet0/dataset-0.parquet', [0], [])})
kwargs: {}
Exception: "RuntimeError('CUDA error encountered at: ../src/io/utilities/hostdevice_vector.hpp:57: 2 cudaErrorMemoryAllocation out of memory')"

2022-12-01 17:41:38,614 - distributed.worker - WARNING - Compute Failed
Key: ('transform-4653fb45d25fdf73b3d80938a29dcc58', 0)
Function: subgraph_callable-534bba4d-2354-4006-b714-d219d6a3
args: ({'piece': ('/tmp/pytest-of-jenkins/pytest-6/parquet0/dataset-0.parquet', [0], [])})
kwargs: {}
Exception: "MemoryError('Parquet data was larger than the available GPU memory!\n\nSee the notes on split_row_groups in the read_parquet documentation.\n\nOriginal Error: std::bad_alloc: out_of_memory: CUDA error at: /opt/rapids/rmm/include/rmm/mr/device/cuda_memory_resource.hpp:70: cudaErrorMemoryAllocation out of memory')"

2022-12-01 17:41:38,621 - distributed.worker - WARNING - Compute Failed
Key: ('transform-4653fb45d25fdf73b3d80938a29dcc58', 1)
Function: subgraph_callable-534bba4d-2354-4006-b714-d219d6a3
args: ({'piece': ('/tmp/pytest-of-jenkins/pytest-6/parquet0/dataset-1.parquet', [0], [])})
kwargs: {}
Exception: "RuntimeError('CUDA error encountered at: ../src/io/utilities/hostdevice_vector.hpp:57: 2 cudaErrorMemoryAllocation out of memory')"

___________________ test_gpu_workflow_api[True-True-csv-0.1] ___________________

tmpdir = local('/tmp/pytest-of-jenkins/pytest-6/test_gpu_workflow_api_True_Tru3')
client = <Client: 'tcp://127.0.0.1:43757' processes=2 threads=16, memory=125.83 GiB>
df = name-string id label x y
0 Tim 1045 1062 -0.145672 -0.898646
1 Laura ... Hannah 956 996 -0.716058 -0.292705
2160 Yvonne 1015 975 -0.259790 0.710177

[4321 rows x 5 columns]
dataset = <merlin.io.dataset.Dataset object at 0x7f28d46cf490>
gpu_memory_frac = 0.1, engine = 'csv', dump = True, use_client = True

@pytest.mark.parametrize("gpu_memory_frac", [0.01, 0.1])
@pytest.mark.parametrize("engine", ["parquet", "csv", "csv-no-header"])
@pytest.mark.parametrize("dump", [True, False])
@pytest.mark.parametrize("use_client", [True, False])
def test_gpu_workflow_api(tmpdir, client, df, dataset, gpu_memory_frac, engine, dump, use_client):
    cat_names = ["name-cat", "name-string"] if engine == "parquet" else ["name-string"]
    cont_names = ["x", "y", "id"]
    label_name = ["label"]

    set_dask_client(client=client if use_client else None)
    norms = ops.Normalize()
    cat_features = cat_names >> ops.Categorify(cat_cache="host")
    cont_features = cont_names >> ops.FillMissing() >> ops.Clip(min_value=0) >> ops.LogOp >> norms

    workflow = Workflow(cat_features + cont_features + label_name)
  workflow.fit(dataset)

tests/unit/workflow/test_workflow.py:112:


nvtabular/workflow/workflow.py:198: in fit
self.executor.fit(ddf, current_phase)
.tox/test-gpu/lib/python3.8/site-packages/merlin/dag/executors.py:334: in fit
results = [r.result() for r in dask_client.compute(stats)]
.tox/test-gpu/lib/python3.8/site-packages/merlin/dag/executors.py:334: in
results = [r.result() for r in dask_client.compute(stats)]
../../../.local/lib/python3.8/site-packages/distributed/client.py:279: in result
raise exc.with_traceback(tb)
/usr/local/lib/python3.8/dist-packages/dask_cudf/io/csv.py:149: in _read_csv
return cudf.read_csv(fn, **kwargs)
/usr/local/lib/python3.8/dist-packages/nvtx/nvtx.py:101: in inner
result = func(*args, **kwargs)
/usr/local/lib/python3.8/dist-packages/cudf/io/csv.py:74: in read_csv
return libcudf.csv.read_csv(


???
E MemoryError: std::bad_alloc: out_of_memory: CUDA error at: /opt/rapids/rmm/include/rmm/mr/device/cuda_memory_resource.hpp:70: cudaErrorMemoryAllocation out of memory

cudf/_lib/csv.pyx:430: MemoryError
----------------------------- Captured stderr call -----------------------------
2022-12-01 17:41:41,462 - distributed.worker - WARNING - Compute Failed
Key: ('read-csv-1de58f54ef56bb35810958a9255b04ab', 0)
Function: _read_csv
args: ('/tmp/pytest-of-jenkins/pytest-6/csv0/dataset-0.csv', array([dtype('O'), dtype('int64'), dtype('int64'), dtype('O'),
dtype('float64'), dtype('float64'), dtype('float64')], dtype=object))
kwargs: {'storage_options': {}, 'byte_range': (0, 1706930995)}
Exception: "MemoryError('std::bad_alloc: out_of_memory: CUDA error at: /opt/rapids/rmm/include/rmm/mr/device/cuda_memory_resource.hpp:70: cudaErrorMemoryAllocation out of memory')"

______________ test_gpu_workflow_api[True-True-csv-no-header-0.1] ______________

tmpdir = local('/tmp/pytest-of-jenkins/pytest-6/test_gpu_workflow_api_True_Tru5')
client = <Client: 'tcp://127.0.0.1:43757' processes=2 threads=16, memory=125.83 GiB>
df = name-string id label x y
0 Tim 1045 1062 -0.145672 -0.898646
1 Laura ... Hannah 956 996 -0.716058 -0.292705
2160 Yvonne 1015 975 -0.259790 0.710177

[4321 rows x 5 columns]
dataset = <merlin.io.dataset.Dataset object at 0x7f29568afa60>
gpu_memory_frac = 0.1, engine = 'csv-no-header', dump = True, use_client = True

@pytest.mark.parametrize("gpu_memory_frac", [0.01, 0.1])
@pytest.mark.parametrize("engine", ["parquet", "csv", "csv-no-header"])
@pytest.mark.parametrize("dump", [True, False])
@pytest.mark.parametrize("use_client", [True, False])
def test_gpu_workflow_api(tmpdir, client, df, dataset, gpu_memory_frac, engine, dump, use_client):
    cat_names = ["name-cat", "name-string"] if engine == "parquet" else ["name-string"]
    cont_names = ["x", "y", "id"]
    label_name = ["label"]

    set_dask_client(client=client if use_client else None)
    norms = ops.Normalize()
    cat_features = cat_names >> ops.Categorify(cat_cache="host")
    cont_features = cont_names >> ops.FillMissing() >> ops.Clip(min_value=0) >> ops.LogOp >> norms

    workflow = Workflow(cat_features + cont_features + label_name)
  workflow.fit(dataset)

tests/unit/workflow/test_workflow.py:112:


nvtabular/workflow/workflow.py:198: in fit
self.executor.fit(ddf, current_phase)
.tox/test-gpu/lib/python3.8/site-packages/merlin/dag/executors.py:334: in fit
results = [r.result() for r in dask_client.compute(stats)]
.tox/test-gpu/lib/python3.8/site-packages/merlin/dag/executors.py:334: in
results = [r.result() for r in dask_client.compute(stats)]
../../../.local/lib/python3.8/site-packages/distributed/client.py:279: in result
raise exc.with_traceback(tb)
nvtabular/ops/moments.py:87: in _tree_node_moments
out[val] = _concat(df_list, ignore_index=True).sum().to_frame().transpose()
/usr/local/lib/python3.8/dist-packages/nvtx/nvtx.py:101: in inner
result = func(*args, **kwargs)
/usr/local/lib/python3.8/dist-packages/cudf/core/dataframe.py:3313: in transpose
result_columns = libcudf.transpose.transpose(source_columns)


???
E RuntimeError: parallel_for failed: cudaErrorMemoryAllocation: out of memory

cudf/_lib/transpose.pyx:21: RuntimeError
----------------------------- Captured stderr call -----------------------------
2022-12-01 17:41:45,337 - distributed.worker - WARNING - Compute Failed
Key: ('chunkwise-moments-39fae054ef745a3cac8d088f6bef9b33', 0, 1)
Function: _tree_node_moments
args: ([{'count': x y id
0 2160 2160 2160, 'sum': x y id
0 420.041901 438.897888 14920.920898, 'squaredsum': x y id
0 207.678443 218.071076 103073.463963}, {'count': x y id
0 2161 2161 2161, 'sum': x y id
0 406.924896 429.870178 14927.633789, 'squaredsum': x y id
0 195.741594 209.219389 103118.338565}])
kwargs: {}
Exception: "RuntimeError('parallel_for failed: cudaErrorMemoryAllocation: out of memory')"

________________ test_gpu_workflow_api[True-False-parquet-0.01] ________________

tmpdir = local('/tmp/pytest-of-jenkins/pytest-6/test_gpu_workflow_api_True_Fal0')
client = <Client: 'tcp://127.0.0.1:43757' processes=2 threads=16, memory=125.83 GiB>
df = name-cat name-string id label x y
0 Dan Tim 1045 1062 -0.145672 -0.89864...h 956 996 -0.716058 -0.292705
4320 Laura Yvonne 1015 975 -0.259790 0.710177

[4321 rows x 6 columns]
dataset = <merlin.io.dataset.Dataset object at 0x7f2c307ba580>
gpu_memory_frac = 0.01, engine = 'parquet', dump = False, use_client = True

@pytest.mark.parametrize("gpu_memory_frac", [0.01, 0.1])
@pytest.mark.parametrize("engine", ["parquet", "csv", "csv-no-header"])
@pytest.mark.parametrize("dump", [True, False])
@pytest.mark.parametrize("use_client", [True, False])
def test_gpu_workflow_api(tmpdir, client, df, dataset, gpu_memory_frac, engine, dump, use_client):
    cat_names = ["name-cat", "name-string"] if engine == "parquet" else ["name-string"]
    cont_names = ["x", "y", "id"]
    label_name = ["label"]

    set_dask_client(client=client if use_client else None)
    norms = ops.Normalize()
    cat_features = cat_names >> ops.Categorify(cat_cache="host")
    cont_features = cont_names >> ops.FillMissing() >> ops.Clip(min_value=0) >> ops.LogOp >> norms

    workflow = Workflow(cat_features + cont_features + label_name)
  workflow.fit(dataset)

tests/unit/workflow/test_workflow.py:112:


nvtabular/workflow/workflow.py:198: in fit
self.executor.fit(ddf, current_phase)
.tox/test-gpu/lib/python3.8/site-packages/merlin/dag/executors.py:334: in fit
results = [r.result() for r in dask_client.compute(stats)]
.tox/test-gpu/lib/python3.8/site-packages/merlin/dag/executors.py:334: in
results = [r.result() for r in dask_client.compute(stats)]
../../../.local/lib/python3.8/site-packages/distributed/client.py:279: in result
raise exc.with_traceback(tb)
nvtabular/ops/moments.py:87: in _tree_node_moments
out[val] = _concat(df_list, ignore_index=True).sum().to_frame().transpose()
/usr/local/lib/python3.8/dist-packages/nvtx/nvtx.py:101: in inner
result = func(*args, **kwargs)
/usr/local/lib/python3.8/dist-packages/cudf/core/dataframe.py:3313: in transpose
result_columns = libcudf.transpose.transpose(source_columns)


???
E RuntimeError: parallel_for failed: cudaErrorMemoryAllocation: out of memory

cudf/_lib/transpose.pyx:21: RuntimeError
----------------------------- Captured stderr call -----------------------------
2022-12-01 17:41:46,417 - distributed.worker - WARNING - Compute Failed
Key: ('chunkwise-moments-da8a90e6be92389c9e5eb1871f2d1db1', 0, 1)
Function: _tree_node_moments
args: ([{'count': x y id
0 2160 2160 2160, 'sum': x y id
0 420.041901 438.897888 14920.920898, 'squaredsum': x y id
0 207.678443 218.071076 103073.463963}, {'count': x y id
0 2161 2161 2161, 'sum': x y id
0 406.924896 429.870178 14927.633789, 'squaredsum': x y id
0 195.741594 209.219389 103118.338565}])
kwargs: {}
Exception: "RuntimeError('parallel_for failed: cudaErrorMemoryAllocation: out of memory')"

________________ test_gpu_workflow_api[True-False-parquet-0.1] _________________

tmpdir = local('/tmp/pytest-of-jenkins/pytest-6/test_gpu_workflow_api_True_Fal1')
client = <Client: 'tcp://127.0.0.1:43757' processes=2 threads=16, memory=125.83 GiB>
df = name-cat name-string id label x y
0 Dan Tim 1045 1062 -0.145672 -0.89864...h 956 996 -0.716058 -0.292705
4320 Laura Yvonne 1015 975 -0.259790 0.710177

[4321 rows x 6 columns]
dataset = <merlin.io.dataset.Dataset object at 0x7f2caa004280>
gpu_memory_frac = 0.1, engine = 'parquet', dump = False, use_client = True

@pytest.mark.parametrize("gpu_memory_frac", [0.01, 0.1])
@pytest.mark.parametrize("engine", ["parquet", "csv", "csv-no-header"])
@pytest.mark.parametrize("dump", [True, False])
@pytest.mark.parametrize("use_client", [True, False])
def test_gpu_workflow_api(tmpdir, client, df, dataset, gpu_memory_frac, engine, dump, use_client):
    cat_names = ["name-cat", "name-string"] if engine == "parquet" else ["name-string"]
    cont_names = ["x", "y", "id"]
    label_name = ["label"]

    set_dask_client(client=client if use_client else None)
    norms = ops.Normalize()
    cat_features = cat_names >> ops.Categorify(cat_cache="host")
    cont_features = cont_names >> ops.FillMissing() >> ops.Clip(min_value=0) >> ops.LogOp >> norms

    workflow = Workflow(cat_features + cont_features + label_name)
  workflow.fit(dataset)

tests/unit/workflow/test_workflow.py:112:


nvtabular/workflow/workflow.py:198: in fit
self.executor.fit(ddf, current_phase)
.tox/test-gpu/lib/python3.8/site-packages/merlin/dag/executors.py:334: in fit
results = [r.result() for r in dask_client.compute(stats)]
.tox/test-gpu/lib/python3.8/site-packages/merlin/dag/executors.py:334: in
results = [r.result() for r in dask_client.compute(stats)]
../../../.local/lib/python3.8/site-packages/distributed/client.py:279: in result
raise exc.with_traceback(tb)
nvtabular/ops/moments.py:87: in _tree_node_moments
out[val] = _concat(df_list, ignore_index=True).sum().to_frame().transpose()
/usr/local/lib/python3.8/dist-packages/nvtx/nvtx.py:101: in inner
result = func(*args, **kwargs)
/usr/local/lib/python3.8/dist-packages/cudf/core/dataframe.py:3313: in transpose
result_columns = libcudf.transpose.transpose(source_columns)


???
E RuntimeError: parallel_for failed: cudaErrorMemoryAllocation: out of memory

cudf/_lib/transpose.pyx:21: RuntimeError
----------------------------- Captured stderr call -----------------------------
2022-12-01 17:41:47,748 - distributed.worker - WARNING - Compute Failed
Key: ('chunkwise-moments-3530d776a269eb58c1cef62c3fa8342b', 0, 1)
Function: _tree_node_moments
args: ([{'count': x y id
0 2160 2160 2160, 'sum': x y id
0 420.041901 438.897888 14920.920898, 'squaredsum': x y id
0 207.678443 218.071076 103073.463963}, {'count': x y id
0 2161 2161 2161, 'sum': x y id
0 406.924896 429.870178 14927.633789, 'squaredsum': x y id
0 195.741594 209.219389 103118.338565}])
kwargs: {}
Exception: "RuntimeError('parallel_for failed: cudaErrorMemoryAllocation: out of memory')"

_____________ test_gpu_workflow_api[True-False-csv-no-header-0.01] _____________

tmpdir = local('/tmp/pytest-of-jenkins/pytest-6/test_gpu_workflow_api_True_Fal4')
client = <Client: 'tcp://127.0.0.1:43757' processes=2 threads=16, memory=125.83 GiB>
df = name-string id label x y
0 Tim 1045 1062 -0.145672 -0.898646
1 Laura ... Hannah 956 996 -0.716058 -0.292705
2160 Yvonne 1015 975 -0.259790 0.710177

[4321 rows x 5 columns]
dataset = <merlin.io.dataset.Dataset object at 0x7f28c44cfe80>
gpu_memory_frac = 0.01, engine = 'csv-no-header', dump = False
use_client = True

@pytest.mark.parametrize("gpu_memory_frac", [0.01, 0.1])
@pytest.mark.parametrize("engine", ["parquet", "csv", "csv-no-header"])
@pytest.mark.parametrize("dump", [True, False])
@pytest.mark.parametrize("use_client", [True, False])
def test_gpu_workflow_api(tmpdir, client, df, dataset, gpu_memory_frac, engine, dump, use_client):
    cat_names = ["name-cat", "name-string"] if engine == "parquet" else ["name-string"]
    cont_names = ["x", "y", "id"]
    label_name = ["label"]

    set_dask_client(client=client if use_client else None)
    norms = ops.Normalize()
    cat_features = cat_names >> ops.Categorify(cat_cache="host")
    cont_features = cont_names >> ops.FillMissing() >> ops.Clip(min_value=0) >> ops.LogOp >> norms

    workflow = Workflow(cat_features + cont_features + label_name)
  workflow.fit(dataset)

tests/unit/workflow/test_workflow.py:112:


nvtabular/workflow/workflow.py:198: in fit
self.executor.fit(ddf, current_phase)
.tox/test-gpu/lib/python3.8/site-packages/merlin/dag/executors.py:334: in fit
results = [r.result() for r in dask_client.compute(stats)]
.tox/test-gpu/lib/python3.8/site-packages/merlin/dag/executors.py:334: in
results = [r.result() for r in dask_client.compute(stats)]
../../../.local/lib/python3.8/site-packages/distributed/client.py:279: in result
raise exc.with_traceback(tb)
nvtabular/ops/moments.py:87: in _tree_node_moments
out[val] = _concat(df_list, ignore_index=True).sum().to_frame().transpose()
/usr/local/lib/python3.8/dist-packages/nvtx/nvtx.py:101: in inner
result = func(*args, **kwargs)
/usr/local/lib/python3.8/dist-packages/cudf/core/dataframe.py:3313: in transpose
result_columns = libcudf.transpose.transpose(source_columns)


???
E RuntimeError: parallel_for failed: cudaErrorMemoryAllocation: out of memory

cudf/_lib/transpose.pyx:21: RuntimeError
----------------------------- Captured stderr call -----------------------------
2022-12-01 17:41:51,017 - distributed.worker - WARNING - Compute Failed
Key: ('chunkwise-moments-880646e56222f6c818f055a8f2377044', 0, 1)
Function: _tree_node_moments
args: ([{'count': x y id
0 2160 2160 2160, 'sum': x y id
0 420.041901 438.897888 14920.920898, 'squaredsum': x y id
0 207.678443 218.071076 103073.463963}, {'count': x y id
0 2161 2161 2161, 'sum': x y id
0 406.924896 429.870178 14927.633789, 'squaredsum': x y id
0 195.741594 209.219389 103118.338565}])
kwargs: {}
Exception: "RuntimeError('parallel_for failed: cudaErrorMemoryAllocation: out of memory')"

_____________ test_gpu_workflow_api[True-False-csv-no-header-0.1] ______________

tmpdir = local('/tmp/pytest-of-jenkins/pytest-6/test_gpu_workflow_api_True_Fal5')
client = <Client: 'tcp://127.0.0.1:43757' processes=2 threads=16, memory=125.83 GiB>
df = name-string id label x y
0 Tim 1045 1062 -0.145672 -0.898646
1 Laura ... Hannah 956 996 -0.716058 -0.292705
2160 Yvonne 1015 975 -0.259790 0.710177

[4321 rows x 5 columns]
dataset = <merlin.io.dataset.Dataset object at 0x7f2c30745d60>
gpu_memory_frac = 0.1, engine = 'csv-no-header', dump = False, use_client = True

@pytest.mark.parametrize("gpu_memory_frac", [0.01, 0.1])
@pytest.mark.parametrize("engine", ["parquet", "csv", "csv-no-header"])
@pytest.mark.parametrize("dump", [True, False])
@pytest.mark.parametrize("use_client", [True, False])
def test_gpu_workflow_api(tmpdir, client, df, dataset, gpu_memory_frac, engine, dump, use_client):
    cat_names = ["name-cat", "name-string"] if engine == "parquet" else ["name-string"]
    cont_names = ["x", "y", "id"]
    label_name = ["label"]

    set_dask_client(client=client if use_client else None)
    norms = ops.Normalize()
    cat_features = cat_names >> ops.Categorify(cat_cache="host")
    cont_features = cont_names >> ops.FillMissing() >> ops.Clip(min_value=0) >> ops.LogOp >> norms

    workflow = Workflow(cat_features + cont_features + label_name)
  workflow.fit(dataset)

tests/unit/workflow/test_workflow.py:112:


nvtabular/workflow/workflow.py:198: in fit
self.executor.fit(ddf, current_phase)
.tox/test-gpu/lib/python3.8/site-packages/merlin/dag/executors.py:334: in fit
results = [r.result() for r in dask_client.compute(stats)]
.tox/test-gpu/lib/python3.8/site-packages/merlin/dag/executors.py:334: in
results = [r.result() for r in dask_client.compute(stats)]
../../../.local/lib/python3.8/site-packages/distributed/client.py:279: in result
raise exc.with_traceback(tb)
nvtabular/ops/moments.py:87: in _tree_node_moments
out[val] = _concat(df_list, ignore_index=True).sum().to_frame().transpose()
/usr/local/lib/python3.8/dist-packages/nvtx/nvtx.py:101: in inner
result = func(*args, **kwargs)
/usr/local/lib/python3.8/dist-packages/cudf/core/dataframe.py:3313: in transpose
result_columns = libcudf.transpose.transpose(source_columns)


???
E RuntimeError: parallel_for failed: cudaErrorMemoryAllocation: out of memory

cudf/_lib/transpose.pyx:21: RuntimeError
----------------------------- Captured stderr call -----------------------------
2022-12-01 17:41:51,939 - distributed.worker - WARNING - Compute Failed
Key: ('chunkwise-moments-ba5b38b9fc029fe357b9e038c8b3ec49', 0, 1)
Function: _tree_node_moments
args: ([{'count': x y id
0 2160 2160 2160, 'sum': x y id
0 420.041901 438.897888 14920.920898, 'squaredsum': x y id
0 207.678443 218.071076 103073.463963}, {'count': x y id
0 2161 2161 2161, 'sum': x y id
0 406.924896 429.870178 14927.633789, 'squaredsum': x y id
0 195.741594 209.219389 103118.338565}])
kwargs: {}
Exception: "RuntimeError('parallel_for failed: cudaErrorMemoryAllocation: out of memory')"

________________________________ test_spec_set _________________________________

tmpdir = local('/tmp/pytest-of-jenkins/pytest-6/test_spec_set0')
client = <Client: 'tcp://127.0.0.1:43757' processes=2 threads=16, memory=125.83 GiB>

def test_spec_set(tmpdir, client):
    gdf_test = make_df(
        {
            "ad_id": [1, 2, 2, 6, 6, 8, 3, 3],
            "source_id": [2, 4, 4, 7, 5, 2, 5, 2],
            "platform": [1, 2, np.nan, 2, 1, 3, 3, 1],
            "cont": [1, 2, np.nan, 2, 1, 3, 3, 1],
            "clicked": [1, 0, 1, 0, 0, 1, 1, 0],
        }
    )

    cats = ColumnSelector(["ad_id", "source_id", "platform"])
    cat_features = cats >> ops.Categorify
    cont_features = ColumnSelector(["cont"]) >> ops.FillMissing >> ops.Normalize
    te_features = cats >> ops.TargetEncoding("clicked", kfold=5, fold_seed=42, p_smooth=20)

    set_dask_client(client=client)
    p = Workflow(cat_features + cont_features + te_features)
  p.fit_transform(nvt.Dataset(gdf_test)).to_ddf().compute()

tests/unit/workflow/test_workflow.py:194:


nvtabular/workflow/workflow.py:234: in fit_transform
self.fit(dataset)
nvtabular/workflow/workflow.py:198: in fit
self.executor.fit(ddf, current_phase)
.tox/test-gpu/lib/python3.8/site-packages/merlin/dag/executors.py:334: in fit
results = [r.result() for r in dask_client.compute(stats)]
.tox/test-gpu/lib/python3.8/site-packages/merlin/dag/executors.py:334: in
results = [r.result() for r in dask_client.compute(stats)]
../../../.local/lib/python3.8/site-packages/distributed/client.py:279: in result
raise exc.with_traceback(tb)
nvtabular/ops/moments.py:92: in _finalize_moments
n = inp["count"].iloc[0]
/usr/local/lib/python3.8/dist-packages/cudf/core/dataframe.py:138: in getitem
return self._getitem_tuple_arg(arg)
/usr/local/lib/python3.8/dist-packages/nvtx/nvtx.py:101: in inner
result = func(*args, **kwargs)
/usr/local/lib/python3.8/dist-packages/cudf/core/dataframe.py:456: in _getitem_tuple_arg
return self._downcast_to_series(df, arg)
/usr/local/lib/python3.8/dist-packages/nvtx/nvtx.py:101: in inner
result = func(*args, **kwargs)
/usr/local/lib/python3.8/dist-packages/cudf/core/dataframe.py:219: in _downcast_to_series
sr = df.T
/usr/local/lib/python3.8/dist-packages/nvtx/nvtx.py:101: in inner
result = func(*args, **kwargs)
/usr/local/lib/python3.8/dist-packages/cudf/core/dataframe.py:3313: in transpose
result_columns = libcudf.transpose.transpose(source_columns)


???
E RuntimeError: parallel_for failed: cudaErrorMemoryAllocation: out of memory

cudf/_lib/transpose.pyx:21: RuntimeError
----------------------------- Captured stderr call -----------------------------
2022-12-01 17:42:37,634 - distributed.worker - WARNING - Compute Failed
Key: global-moments-290e4c40024d638723f7e3d504203f22
Function: _finalize_moments
args: ({'count': cont
0 8, 'sum': cont
0 13.0, 'squaredsum': cont
0 29.0})
kwargs: {}
Exception: "RuntimeError('parallel_for failed: cudaErrorMemoryAllocation: out of memory')"

2022-12-01 17:42:37,659 - distributed.worker - WARNING - Compute Failed
Key: global-moments-536293ac8248693148f8360577879cd7
Function: _finalize_moments
args: ({'count': clicked
0 8, 'sum': clicked
0 4.0, 'squaredsum': clicked
0 4.0})
kwargs: {}
Exception: "RuntimeError('parallel_for failed: cudaErrorMemoryAllocation: out of memory')"

_____________________ test_gpu_workflow[True-parquet-0.01] _____________________

tmpdir = local('/tmp/pytest-of-jenkins/pytest-6/test_gpu_workflow_True_parquet0')
df = name-cat name-string id label x y
0 Dan Tim 1045 1062 -0.145672 -0.89864...h 956 996 -0.716058 -0.292705
4320 Laura Yvonne 1015 975 -0.259790 0.710177

[4321 rows x 6 columns]
dataset = <merlin.io.dataset.Dataset object at 0x7f2ca8d81ac0>
gpu_memory_frac = 0.01, engine = 'parquet', dump = True

@pytest.mark.parametrize("gpu_memory_frac", [0.01, 0.1])
@pytest.mark.parametrize("engine", ["parquet", "csv", "csv-no-header"])
@pytest.mark.parametrize("dump", [True, False])
def test_gpu_workflow(tmpdir, df, dataset, gpu_memory_frac, engine, dump):
    cat_names = ["name-cat", "name-string"] if engine == "parquet" else ["name-string"]
    cont_names = ["x", "y", "id"]
    label_name = ["label"]

    norms = ops.Normalize()
    conts = cont_names >> ops.FillMissing() >> ops.Clip(min_value=0) >> norms
    cats = cat_names >> ops.Categorify()
    workflow = nvt.Workflow(conts + cats + label_name)
  workflow.fit(dataset)

tests/unit/workflow/test_workflow.py:210:


nvtabular/workflow/workflow.py:198: in fit
self.executor.fit(ddf, current_phase)
.tox/test-gpu/lib/python3.8/site-packages/merlin/dag/executors.py:334: in fit
results = [r.result() for r in dask_client.compute(stats)]
.tox/test-gpu/lib/python3.8/site-packages/merlin/dag/executors.py:334: in
results = [r.result() for r in dask_client.compute(stats)]
../../../.local/lib/python3.8/site-packages/distributed/client.py:279: in result
raise exc.with_traceback(tb)
nvtabular/ops/moments.py:87: in _tree_node_moments
out[val] = _concat(df_list, ignore_index=True).sum().to_frame().transpose()
/usr/local/lib/python3.8/dist-packages/nvtx/nvtx.py:101: in inner
result = func(*args, **kwargs)
/usr/local/lib/python3.8/dist-packages/cudf/core/dataframe.py:3313: in transpose
result_columns = libcudf.transpose.transpose(source_columns)


???
E RuntimeError: parallel_for failed: cudaErrorMemoryAllocation: out of memory

cudf/_lib/transpose.pyx:21: RuntimeError
----------------------------- Captured stderr call -----------------------------
2022-12-01 17:42:39,066 - distributed.worker - WARNING - Compute Failed
Key: ('chunkwise-moments-6d2fefddfab1dbda38272bb9079188d3', 0, 1)
Function: _tree_node_moments
args: ([{'count': x y id
0 2160 2160 2160, 'sum': x y id
0 545.692609 570.8883 2159119.0, 'squaredsum': x y id
0 369.774444 388.684377 2.160456e+09}, {'count': x y id
0 2161 2161 2161, 'sum': x y id
0 524.859054 556.152692 2159847.0, 'squaredsum': x y id
0 344.297198 370.008654 2.160758e+09}])
kwargs: {}
Exception: "RuntimeError('parallel_for failed: cudaErrorMemoryAllocation: out of memory')"

_____________________ test_gpu_workflow[True-parquet-0.1] ______________________

tmpdir = local('/tmp/pytest-of-jenkins/pytest-6/test_gpu_workflow_True_parquet1')
df = name-cat name-string id label x y
0 Dan Tim 1045 1062 -0.145672 -0.89864...h 956 996 -0.716058 -0.292705
4320 Laura Yvonne 1015 975 -0.259790 0.710177

[4321 rows x 6 columns]
dataset = <merlin.io.dataset.Dataset object at 0x7f2c841c7a00>
gpu_memory_frac = 0.1, engine = 'parquet', dump = True

@pytest.mark.parametrize("gpu_memory_frac", [0.01, 0.1])
@pytest.mark.parametrize("engine", ["parquet", "csv", "csv-no-header"])
@pytest.mark.parametrize("dump", [True, False])
def test_gpu_workflow(tmpdir, df, dataset, gpu_memory_frac, engine, dump):
    cat_names = ["name-cat", "name-string"] if engine == "parquet" else ["name-string"]
    cont_names = ["x", "y", "id"]
    label_name = ["label"]

    norms = ops.Normalize()
    conts = cont_names >> ops.FillMissing() >> ops.Clip(min_value=0) >> norms
    cats = cat_names >> ops.Categorify()
    workflow = nvt.Workflow(conts + cats + label_name)
  workflow.fit(dataset)

tests/unit/workflow/test_workflow.py:210:


nvtabular/workflow/workflow.py:198: in fit
self.executor.fit(ddf, current_phase)
.tox/test-gpu/lib/python3.8/site-packages/merlin/dag/executors.py:334: in fit
results = [r.result() for r in dask_client.compute(stats)]
.tox/test-gpu/lib/python3.8/site-packages/merlin/dag/executors.py:334: in
results = [r.result() for r in dask_client.compute(stats)]
../../../.local/lib/python3.8/site-packages/distributed/client.py:279: in result
raise exc.with_traceback(tb)
nvtabular/ops/moments.py:87: in _tree_node_moments
out[val] = _concat(df_list, ignore_index=True).sum().to_frame().transpose()
/usr/local/lib/python3.8/dist-packages/nvtx/nvtx.py:101: in inner
result = func(*args, **kwargs)
/usr/local/lib/python3.8/dist-packages/cudf/core/dataframe.py:3313: in transpose
result_columns = libcudf.transpose.transpose(source_columns)


???
E RuntimeError: parallel_for failed: cudaErrorMemoryAllocation: out of memory

cudf/_lib/transpose.pyx:21: RuntimeError
----------------------------- Captured stderr call -----------------------------
2022-12-01 17:42:40,100 - distributed.worker - WARNING - Compute Failed
Key: ('chunkwise-moments-904ee248547c4ac251208f3272a95ffc', 0, 1)
Function: _tree_node_moments
args: ([{'count': x y id
0 2160 2160 2160, 'sum': x y id
0 545.692609 570.8883 2159119.0, 'squaredsum': x y id
0 369.774444 388.684377 2.160456e+09}, {'count': x y id
0 2161 2161 2161, 'sum': x y id
0 524.859054 556.152692 2159847.0, 'squaredsum': x y id
0 344.297198 370.008654 2.160758e+09}])
kwargs: {}
Exception: "RuntimeError('parallel_for failed: cudaErrorMemoryAllocation: out of memory')"

__________________ test_gpu_workflow[True-csv-no-header-0.01] __________________

tmpdir = local('/tmp/pytest-of-jenkins/pytest-6/test_gpu_workflow_True_csv_no_0')
df = name-string id label x y
0 Tim 1045 1062 -0.145672 -0.898646
1 Laura ... Hannah 956 996 -0.716058 -0.292705
2160 Yvonne 1015 975 -0.259790 0.710177

[4321 rows x 5 columns]
dataset = <merlin.io.dataset.Dataset object at 0x7f283eff48b0>
gpu_memory_frac = 0.01, engine = 'csv-no-header', dump = True

@pytest.mark.parametrize("gpu_memory_frac", [0.01, 0.1])
@pytest.mark.parametrize("engine", ["parquet", "csv", "csv-no-header"])
@pytest.mark.parametrize("dump", [True, False])
def test_gpu_workflow(tmpdir, df, dataset, gpu_memory_frac, engine, dump):
    cat_names = ["name-cat", "name-string"] if engine == "parquet" else ["name-string"]
    cont_names = ["x", "y", "id"]
    label_name = ["label"]

    norms = ops.Normalize()
    conts = cont_names >> ops.FillMissing() >> ops.Clip(min_value=0) >> norms
    cats = cat_names >> ops.Categorify()
    workflow = nvt.Workflow(conts + cats + label_name)
  workflow.fit(dataset)

tests/unit/workflow/test_workflow.py:210:


nvtabular/workflow/workflow.py:198: in fit
self.executor.fit(ddf, current_phase)
.tox/test-gpu/lib/python3.8/site-packages/merlin/dag/executors.py:334: in fit
results = [r.result() for r in dask_client.compute(stats)]
.tox/test-gpu/lib/python3.8/site-packages/merlin/dag/executors.py:334: in
results = [r.result() for r in dask_client.compute(stats)]
../../../.local/lib/python3.8/site-packages/distributed/client.py:279: in result
raise exc.with_traceback(tb)
nvtabular/ops/moments.py:87: in _tree_node_moments
out[val] = _concat(df_list, ignore_index=True).sum().to_frame().transpose()
/usr/local/lib/python3.8/dist-packages/nvtx/nvtx.py:101: in inner
result = func(*args, **kwargs)
/usr/local/lib/python3.8/dist-packages/cudf/core/dataframe.py:3313: in transpose
result_columns = libcudf.transpose.transpose(source_columns)


???
E RuntimeError: parallel_for failed: cudaErrorMemoryAllocation: out of memory

cudf/_lib/transpose.pyx:21: RuntimeError
----------------------------- Captured stderr call -----------------------------
2022-12-01 17:42:44,417 - distributed.worker - WARNING - Compute Failed
Key: ('chunkwise-moments-60c3584e68286268023d4828499e7fe1', 0, 1)
Function: _tree_node_moments
args: ([{'count': x y id
0 2160 2160 2160, 'sum': x y id
0 545.692609 570.8883 2159119.0, 'squaredsum': x y id
0 369.774444 388.684377 2.160456e+09}, {'count': x y id
0 2161 2161 2161, 'sum': x y id
0 524.859054 556.152692 2159847.0, 'squaredsum': x y id
0 344.297198 370.008654 2.160758e+09}])
kwargs: {}
Exception: "RuntimeError('parallel_for failed: cudaErrorMemoryAllocation: out of memory')"

__________________ test_gpu_workflow[True-csv-no-header-0.1] ___________________

tmpdir = local('/tmp/pytest-of-jenkins/pytest-6/test_gpu_workflow_True_csv_no_1')
df = name-string id label x y
0 Tim 1045 1062 -0.145672 -0.898646
1 Laura ... Hannah 956 996 -0.716058 -0.292705
2160 Yvonne 1015 975 -0.259790 0.710177

[4321 rows x 5 columns]
dataset = <merlin.io.dataset.Dataset object at 0x7f2ca8ced550>
gpu_memory_frac = 0.1, engine = 'csv-no-header', dump = True

@pytest.mark.parametrize("gpu_memory_frac", [0.01, 0.1])
@pytest.mark.parametrize("engine", ["parquet", "csv", "csv-no-header"])
@pytest.mark.parametrize("dump", [True, False])
def test_gpu_workflow(tmpdir, df, dataset, gpu_memory_frac, engine, dump):
    cat_names = ["name-cat", "name-string"] if engine == "parquet" else ["name-string"]
    cont_names = ["x", "y", "id"]
    label_name = ["label"]

    norms = ops.Normalize()
    conts = cont_names >> ops.FillMissing() >> ops.Clip(min_value=0) >> norms
    cats = cat_names >> ops.Categorify()
    workflow = nvt.Workflow(conts + cats + label_name)
  workflow.fit(dataset)

tests/unit/workflow/test_workflow.py:210:


nvtabular/workflow/workflow.py:198: in fit
self.executor.fit(ddf, current_phase)
.tox/test-gpu/lib/python3.8/site-packages/merlin/dag/executors.py:334: in fit
results = [r.result() for r in dask_client.compute(stats)]
.tox/test-gpu/lib/python3.8/site-packages/merlin/dag/executors.py:334: in
results = [r.result() for r in dask_client.compute(stats)]
../../../.local/lib/python3.8/site-packages/distributed/client.py:279: in result
raise exc.with_traceback(tb)
nvtabular/ops/moments.py:87: in _tree_node_moments
out[val] = _concat(df_list, ignore_index=True).sum().to_frame().transpose()
/usr/local/lib/python3.8/dist-packages/nvtx/nvtx.py:101: in inner
result = func(*args, **kwargs)
/usr/local/lib/python3.8/dist-packages/cudf/core/dataframe.py:3313: in transpose
result_columns = libcudf.transpose.transpose(source_columns)


???
E RuntimeError: parallel_for failed: cudaErrorMemoryAllocation: out of memory

cudf/_lib/transpose.pyx:21: RuntimeError
----------------------------- Captured stderr call -----------------------------
2022-12-01 17:42:45,220 - distributed.worker - WARNING - Compute Failed
Key: ('chunkwise-moments-9e47d47a8b4a3b154f63147a9cf14a10', 0, 1)
Function: _tree_node_moments
args: ([{'count': x y id
0 2160 2160 2160, 'sum': x y id
0 545.692609 570.8883 2159119.0, 'squaredsum': x y id
0 369.774444 388.684377 2.160456e+09}, {'count': x y id
0 2161 2161 2161, 'sum': x y id
0 524.859054 556.152692 2159847.0, 'squaredsum': x y id
0 344.297198 370.008654 2.160758e+09}])
kwargs: {}
Exception: "RuntimeError('parallel_for failed: cudaErrorMemoryAllocation: out of memory')"

____________________ test_gpu_workflow[False-parquet-0.01] _____________________

tmpdir = local('/tmp/pytest-of-jenkins/pytest-6/test_gpu_workflow_False_parque0')
df = name-cat name-string id label x y
0 Dan Tim 1045 1062 -0.145672 -0.89864...h 956 996 -0.716058 -0.292705
4320 Laura Yvonne 1015 975 -0.259790 0.710177

[4321 rows x 6 columns]
dataset = <merlin.io.dataset.Dataset object at 0x7f2c30731550>
gpu_memory_frac = 0.01, engine = 'parquet', dump = False

@pytest.mark.parametrize("gpu_memory_frac", [0.01, 0.1])
@pytest.mark.parametrize("engine", ["parquet", "csv", "csv-no-header"])
@pytest.mark.parametrize("dump", [True, False])
def test_gpu_workflow(tmpdir, df, dataset, gpu_memory_frac, engine, dump):
    cat_names = ["name-cat", "name-string"] if engine == "parquet" else ["name-string"]
    cont_names = ["x", "y", "id"]
    label_name = ["label"]

    norms = ops.Normalize()
    conts = cont_names >> ops.FillMissing() >> ops.Clip(min_value=0) >> norms
    cats = cat_names >> ops.Categorify()
    workflow = nvt.Workflow(conts + cats + label_name)
  workflow.fit(dataset)

tests/unit/workflow/test_workflow.py:210:


nvtabular/workflow/workflow.py:198: in fit
self.executor.fit(ddf, current_phase)
.tox/test-gpu/lib/python3.8/site-packages/merlin/dag/executors.py:334: in fit
results = [r.result() for r in dask_client.compute(stats)]
.tox/test-gpu/lib/python3.8/site-packages/merlin/dag/executors.py:334: in
results = [r.result() for r in dask_client.compute(stats)]
../../../.local/lib/python3.8/site-packages/distributed/client.py:279: in result
raise exc.with_traceback(tb)
nvtabular/ops/moments.py:87: in _tree_node_moments
out[val] = _concat(df_list, ignore_index=True).sum().to_frame().transpose()
/usr/local/lib/python3.8/dist-packages/nvtx/nvtx.py:101: in inner
result = func(*args, **kwargs)
/usr/local/lib/python3.8/dist-packages/cudf/core/dataframe.py:3313: in transpose
result_columns = libcudf.transpose.transpose(source_columns)


???
E RuntimeError: parallel_for failed: cudaErrorMemoryAllocation: out of memory

cudf/_lib/transpose.pyx:21: RuntimeError
----------------------------- Captured stderr call -----------------------------
2022-12-01 17:42:46,242 - distributed.worker - WARNING - Compute Failed
Key: ('chunkwise-moments-6f1df1f1e4d4b4cb5b4b4511e167e999', 0, 1)
Function: _tree_node_moments
args: ([{'count': x y id
0 2160 2160 2160, 'sum': x y id
0 545.692609 570.8883 2159119.0, 'squaredsum': x y id
0 369.774444 388.684377 2.160456e+09}, {'count': x y id
0 2161 2161 2161, 'sum': x y id
0 524.859054 556.152692 2159847.0, 'squaredsum': x y id
0 344.297198 370.008654 2.160758e+09}])
kwargs: {}
Exception: "RuntimeError('parallel_for failed: cudaErrorMemoryAllocation: out of memory')"

_____________________ test_gpu_workflow[False-parquet-0.1] _____________________

tmpdir = local('/tmp/pytest-of-jenkins/pytest-6/test_gpu_workflow_False_parque1')
df = name-cat name-string id label x y
0 Dan Tim 1045 1062 -0.145672 -0.89864...h 956 996 -0.716058 -0.292705
4320 Laura Yvonne 1015 975 -0.259790 0.710177

[4321 rows x 6 columns]
dataset = <merlin.io.dataset.Dataset object at 0x7f2c6c6d0670>
gpu_memory_frac = 0.1, engine = 'parquet', dump = False

@pytest.mark.parametrize("gpu_memory_frac", [0.01, 0.1])
@pytest.mark.parametrize("engine", ["parquet", "csv", "csv-no-header"])
@pytest.mark.parametrize("dump", [True, False])
def test_gpu_workflow(tmpdir, df, dataset, gpu_memory_frac, engine, dump):
    cat_names = ["name-cat", "name-string"] if engine == "parquet" else ["name-string"]
    cont_names = ["x", "y", "id"]
    label_name = ["label"]

    norms = ops.Normalize()
    conts = cont_names >> ops.FillMissing() >> ops.Clip(min_value=0) >> norms
    cats = cat_names >> ops.Categorify()
    workflow = nvt.Workflow(conts + cats + label_name)
  workflow.fit(dataset)

tests/unit/workflow/test_workflow.py:210:


nvtabular/workflow/workflow.py:198: in fit
self.executor.fit(ddf, current_phase)
.tox/test-gpu/lib/python3.8/site-packages/merlin/dag/executors.py:334: in fit
results = [r.result() for r in dask_client.compute(stats)]
.tox/test-gpu/lib/python3.8/site-packages/merlin/dag/executors.py:334: in
results = [r.result() for r in dask_client.compute(stats)]
../../../.local/lib/python3.8/site-packages/distributed/client.py:279: in result
raise exc.with_traceback(tb)
nvtabular/ops/moments.py:87: in _tree_node_moments
out[val] = _concat(df_list, ignore_index=True).sum().to_frame().transpose()
/usr/local/lib/python3.8/dist-packages/nvtx/nvtx.py:101: in inner
result = func(*args, **kwargs)
/usr/local/lib/python3.8/dist-packages/cudf/core/dataframe.py:3313: in transpose
result_columns = libcudf.transpose.transpose(source_columns)


???
E RuntimeError: parallel_for failed: cudaErrorMemoryAllocation: out of memory

cudf/_lib/transpose.pyx:21: RuntimeError
----------------------------- Captured stderr call -----------------------------
2022-12-01 17:42:47,214 - distributed.worker - WARNING - Compute Failed
Key: ('chunkwise-moments-64b076cf8b27634370d88171f80c8b6a', 0, 1)
Function: _tree_node_moments
args: ([{'count': x y id
0 2160 2160 2160, 'sum': x y id
0 545.692609 570.8883 2159119.0, 'squaredsum': x y id
0 369.774444 388.684377 2.160456e+09}, {'count': x y id
0 2161 2161 2161, 'sum': x y id
0 524.859054 556.152692 2159847.0, 'squaredsum': x y id
0 344.297198 370.008654 2.160758e+09}])
kwargs: {}
Exception: "RuntimeError('parallel_for failed: cudaErrorMemoryAllocation: out of memory')"

_______________ test_gpu_workflow_config[True-True-parquet-0.01] _______________

tmpdir = local('/tmp/pytest-of-jenkins/pytest-6/test_gpu_workflow_config_True_0')
client = <Client: 'tcp://127.0.0.1:43757' processes=2 threads=16, memory=125.83 GiB>
df = name-cat name-string id label x y
0 Dan Tim 1045 1062 -0.145672 -0.89864...h 956 996 -0.716058 -0.292705
4320 Laura Yvonne 1015 975 -0.259790 0.710177

[4321 rows x 6 columns]
dataset = <merlin.io.dataset.Dataset object at 0x7f2ca978f310>
gpu_memory_frac = 0.01, engine = 'parquet', dump = True, replace = True

@pytest.mark.parametrize("gpu_memory_frac", [0.01, 0.1])
@pytest.mark.parametrize("engine", ["parquet", "csv", "csv-no-header"])
@pytest.mark.parametrize("dump", [True, False])
@pytest.mark.parametrize("replace", [True, False])
def test_gpu_workflow_config(tmpdir, client, df, dataset, gpu_memory_frac, engine, dump, replace):
    cat_names = ["name-cat", "name-string"] if engine == "parquet" else ["name-string"]
    cont_names = ["x", "y", "id"]
    label_name = ["label"]

    norms = ops.Normalize()
    cat_features = cat_names >> ops.Categorify()
    if replace:
        cont_features = cont_names >> ops.FillMissing() >> ops.LogOp >> norms
    else:
        fillmissing_logop = (
            cont_names
            >> ops.FillMissing()
            >> ops.LogOp
            >> ops.Rename(postfix="_FillMissing_1_LogOp_1")
        )
        cont_features = cont_names + fillmissing_logop >> norms

    set_dask_client(client=client)
    workflow = Workflow(cat_features + cont_features + label_name)
  workflow.fit(dataset)

tests/unit/workflow/test_workflow.py:284:


nvtabular/workflow/workflow.py:198: in fit
self.executor.fit(ddf, current_phase)
.tox/test-gpu/lib/python3.8/site-packages/merlin/dag/executors.py:334: in fit
results = [r.result() for r in dask_client.compute(stats)]
.tox/test-gpu/lib/python3.8/site-packages/merlin/dag/executors.py:334: in
results = [r.result() for r in dask_client.compute(stats)]
../../../.local/lib/python3.8/site-packages/distributed/client.py:279: in result
raise exc.with_traceback(tb)
nvtabular/ops/moments.py:87: in _tree_node_moments
out[val] = _concat(df_list, ignore_index=True).sum().to_frame().transpose()
/usr/local/lib/python3.8/dist-packages/nvtx/nvtx.py:101: in inner
result = func(*args, **kwargs)
/usr/local/lib/python3.8/dist-packages/cudf/core/dataframe.py:3313: in transpose
result_columns = libcudf.transpose.transpose(source_columns)


???
E RuntimeError: parallel_for failed: cudaErrorMemoryAllocation: out of memory

cudf/_lib/transpose.pyx:21: RuntimeError
----------------------------- Captured stderr call -----------------------------
2022-12-01 17:42:56,513 - distributed.worker - WARNING - Compute Failed
Key: ('chunkwise-moments-aa60655b91391d74b8289dabb01284bb', 0, 1)
Function: _tree_node_moments
args: ([{'count': x y id
0 2160 2160 2160, 'sum': x y id
0 -729.951294 -563.958984 14920.920898, 'squaredsum': x y id
0 2541.541672 2091.07722 103073.463963}, {'count': x y id
0 2161 2161 2161, 'sum': x y id
0 -662.805664 -590.724854 14927.633789, 'squaredsum': x y id
0 2350.272056 2154.738497 103118.338565}])
kwargs: {}
Exception: "RuntimeError('parallel_for failed: cudaErrorMemoryAllocation: out of memory')"

______________ test_gpu_workflow_config[True-False-parquet-0.01] _______________

tmpdir = local('/tmp/pytest-of-jenkins/pytest-6/test_gpu_workflow_config_True_6')
client = <Client: 'tcp://127.0.0.1:43757' processes=2 threads=16, memory=125.83 GiB>
df = name-cat name-string id label x y
0 Dan Tim 1045 1062 -0.145672 -0.89864...h 956 996 -0.716058 -0.292705
4320 Laura Yvonne 1015 975 -0.259790 0.710177

[4321 rows x 6 columns]
dataset = <merlin.io.dataset.Dataset object at 0x7f2c6c7ee0d0>
gpu_memory_frac = 0.01, engine = 'parquet', dump = False, replace = True

@pytest.mark.parametrize("gpu_memory_frac", [0.01, 0.1])
@pytest.mark.parametrize("engine", ["parquet", "csv", "csv-no-header"])
@pytest.mark.parametrize("dump", [True, False])
@pytest.mark.parametrize("replace", [True, False])
def test_gpu_workflow_config(tmpdir, client, df, dataset, gpu_memory_frac, engine, dump, replace):
    cat_names = ["name-cat", "name-string"] if engine == "parquet" else ["name-string"]
    cont_names = ["x", "y", "id"]
    label_name = ["label"]

    norms = ops.Normalize()
    cat_features = cat_names >> ops.Categorify()
    if replace:
        cont_features = cont_names >> ops.FillMissing() >> ops.LogOp >> norms
    else:
        fillmissing_logop = (
            cont_names
            >> ops.FillMissing()
            >> ops.LogOp
            >> ops.Rename(postfix="_FillMissing_1_LogOp_1")
        )
        cont_features = cont_names + fillmissing_logop >> norms

    set_dask_client(client=client)
    workflow = Workflow(cat_features + cont_features + label_name)
  workflow.fit(dataset)

tests/unit/workflow/test_workflow.py:284:


nvtabular/workflow/workflow.py:198: in fit
self.executor.fit(ddf, current_phase)
.tox/test-gpu/lib/python3.8/site-packages/merlin/dag/executors.py:334: in fit
results = [r.result() for r in dask_client.compute(stats)]
.tox/test-gpu/lib/python3.8/site-packages/merlin/dag/executors.py:334: in
results = [r.result() for r in dask_client.compute(stats)]
../../../.local/lib/python3.8/site-packages/distributed/client.py:279: in result
raise exc.with_traceback(tb)
nvtabular/ops/moments.py:87: in _tree_node_moments
out[val] = _concat(df_list, ignore_index=True).sum().to_frame().transpose()
/usr/local/lib/python3.8/dist-packages/nvtx/nvtx.py:101: in inner
result = func(*args, **kwargs)
/usr/local/lib/python3.8/dist-packages/cudf/core/dataframe.py:3313: in transpose
result_columns = libcudf.transpose.transpose(source_columns)


???
E RuntimeError: parallel_for failed: cudaErrorMemoryAllocation: out of memory

cudf/_lib/transpose.pyx:21: RuntimeError
----------------------------- Captured stderr call -----------------------------
2022-12-01 17:43:07,438 - distributed.worker - WARNING - Compute Failed
Key: ('chunkwise-moments-e7ea6133ce4e60aa2fd0dfe9740a3f48', 0, 1)
Function: _tree_node_moments
args: ([{'count': x y id
0 2160 2160 2160, 'sum': x y id
0 -729.951294 -563.958984 14920.920898, 'squaredsum': x y id
0 2541.541672 2091.07722 103073.463963}, {'count': x y id
0 2161 2161 2161, 'sum': x y id
0 -662.805664 -590.724854 14927.633789, 'squaredsum': x y id
0 2350.272056 2154.738497 103118.338565}])
kwargs: {}
Exception: "RuntimeError('parallel_for failed: cudaErrorMemoryAllocation: out of memory')"

_______________ test_gpu_workflow_config[True-False-parquet-0.1] _______________

tmpdir = local('/tmp/pytest-of-jenkins/pytest-6/test_gpu_workflow_config_True_7')
client = <Client: 'tcp://127.0.0.1:43757' processes=2 threads=16, memory=125.83 GiB>
df = name-cat name-string id label x y
0 Dan Tim 1045 1062 -0.145672 -0.89864...h 956 996 -0.716058 -0.292705
4320 Laura Yvonne 1015 975 -0.259790 0.710177

[4321 rows x 6 columns]
dataset = <merlin.io.dataset.Dataset object at 0x7f2c6c63ecd0>
gpu_memory_frac = 0.1, engine = 'parquet', dump = False, replace = True

@pytest.mark.parametrize("gpu_memory_frac", [0.01, 0.1])
@pytest.mark.parametrize("engine", ["parquet", "csv", "csv-no-header"])
@pytest.mark.parametrize("dump", [True, False])
@pytest.mark.parametrize("replace", [True, False])
def test_gpu_workflow_config(tmpdir, client, df, dataset, gpu_memory_frac, engine, dump, replace):
    cat_names = ["name-cat", "name-string"] if engine == "parquet" else ["name-string"]
    cont_names = ["x", "y", "id"]
    label_name = ["label"]

    norms = ops.Normalize()
    cat_features = cat_names >> ops.Categorify()
    if replace:
        cont_features = cont_names >> ops.FillMissing() >> ops.LogOp >> norms
    else:
        fillmissing_logop = (
            cont_names
            >> ops.FillMissing()
            >> ops.LogOp
            >> ops.Rename(postfix="_FillMissing_1_LogOp_1")
        )
        cont_features = cont_names + fillmissing_logop >> norms

    set_dask_client(client=client)
    workflow = Workflow(cat_features + cont_features + label_name)
  workflow.fit(dataset)

tests/unit/workflow/test_workflow.py:284:


nvtabular/workflow/workflow.py:198: in fit
self.executor.fit(ddf, current_phase)
.tox/test-gpu/lib/python3.8/site-packages/merlin/dag/executors.py:334: in fit
results = [r.result() for r in dask_client.compute(stats)]
.tox/test-gpu/lib/python3.8/site-packages/merlin/dag/executors.py:334: in
results = [r.result() for r in dask_client.compute(stats)]
../../../.local/lib/python3.8/site-packages/distributed/client.py:279: in result
raise exc.with_traceback(tb)
nvtabular/ops/moments.py:87: in _tree_node_moments
out[val] = _concat(df_list, ignore_index=True).sum().to_frame().transpose()
/usr/local/lib/python3.8/dist-packages/nvtx/nvtx.py:101: in inner
result = func(*args, **kwargs)
/usr/local/lib/python3.8/dist-packages/cudf/core/dataframe.py:3313: in transpose
result_columns = libcudf.transpose.transpose(source_columns)


???
E RuntimeError: parallel_for failed: cudaErrorMemoryAllocation: out of memory

cudf/_lib/transpose.pyx:21: RuntimeError
----------------------------- Captured stderr call -----------------------------
2022-12-01 17:43:08,615 - distributed.worker - WARNING - Compute Failed
Key: ('chunkwise-moments-fbae527831ffe5b8dfc372fce3546e01', 0, 1)
Function: _tree_node_moments
args: ([{'count': x y id
0 2160 2160 2160, 'sum': x y id
0 -729.951294 -563.958984 14920.920898, 'squaredsum': x y id
0 2541.541672 2091.07722 103073.463963}, {'count': x y id
0 2161 2161 2161, 'sum': x y id
0 -662.805664 -590.724854 14927.633789, 'squaredsum': x y id
0 2350.272056 2154.738497 103118.338565}])
kwargs: {}
Exception: "RuntimeError('parallel_for failed: cudaErrorMemoryAllocation: out of memory')"

___________ test_gpu_workflow_config[True-False-csv-no-header-0.01] ____________

tmpdir = local('/tmp/pytest-of-jenkins/pytest-6/test_gpu_workflow_config_True_10')
client = <Client: 'tcp://127.0.0.1:43757' processes=2 threads=16, memory=125.83 GiB>
df = name-string id label x y
0 Tim 1045 1062 -0.145672 -0.898646
1 Laura ... Hannah 956 996 -0.716058 -0.292705
2160 Yvonne 1015 975 -0.259790 0.710177

[4321 rows x 5 columns]
dataset = <merlin.io.dataset.Dataset object at 0x7f2816b13280>
gpu_memory_frac = 0.01, engine = 'csv-no-header', dump = False, replace = True

@pytest.mark.parametrize("gpu_memory_frac", [0.01, 0.1])
@pytest.mark.parametrize("engine", ["parquet", "csv", "csv-no-header"])
@pytest.mark.parametrize("dump", [True, False])
@pytest.mark.parametrize("replace", [True, False])
def test_gpu_workflow_config(tmpdir, client, df, dataset, gpu_memory_frac, engine, dump, replace):
    cat_names = ["name-cat", "name-string"] if engine == "parquet" else ["name-string"]
    cont_names = ["x", "y", "id"]
    label_name = ["label"]

    norms = ops.Normalize()
    cat_features = cat_names >> ops.Categorify()
    if replace:
        cont_features = cont_names >> ops.FillMissing() >> ops.LogOp >> norms
    else:
        fillmissing_logop = (
            cont_names
            >> ops.FillMissing()
            >> ops.LogOp
            >> ops.Rename(postfix="_FillMissing_1_LogOp_1")
        )
        cont_features = cont_names + fillmissing_logop >> norms

    set_dask_client(client=client)
    workflow = Workflow(cat_features + cont_features + label_name)
  workflow.fit(dataset)

tests/unit/workflow/test_workflow.py:284:


nvtabular/workflow/workflow.py:198: in fit
self.executor.fit(ddf, current_phase)
.tox/test-gpu/lib/python3.8/site-packages/merlin/dag/executors.py:334: in fit
results = [r.result() for r in dask_client.compute(stats)]
.tox/test-gpu/lib/python3.8/site-packages/merlin/dag/executors.py:334: in
results = [r.result() for r in dask_client.compute(stats)]
../../../.local/lib/python3.8/site-packages/distributed/client.py:279: in result
raise exc.with_traceback(tb)
nvtabular/ops/moments.py:87: in _tree_node_moments
out[val] = _concat(df_list, ignore_index=True).sum().to_frame().transpose()
/usr/local/lib/python3.8/dist-packages/nvtx/nvtx.py:101: in inner
result = func(*args, **kwargs)
/usr/local/lib/python3.8/dist-packages/cudf/core/dataframe.py:3313: in transpose
result_columns = libcudf.transpose.transpose(source_columns)


???
E RuntimeError: parallel_for failed: cudaErrorMemoryAllocation: out of memory

cudf/_lib/transpose.pyx:21: RuntimeError
----------------------------- Captured stderr call -----------------------------
2022-12-01 17:43:12,841 - distributed.worker - WARNING - Compute Failed
Key: ('chunkwise-moments-7805d5f4bc9baf4635bf452a3e31336f', 0, 1)
Function: _tree_node_moments
args: ([{'count': x y id
0 2160 2160 2160, 'sum': x y id
0 -729.951294 -563.958984 14920.920898, 'squaredsum': x y id
0 2541.541673 2091.077221 103073.463963}, {'count': x y id
0 2161 2161 2161, 'sum': x y id
0 -662.805664 -590.724854 14927.633789, 'squaredsum': x y id
0 2350.272057 2154.738509 103118.338565}])
kwargs: {}
Exception: "RuntimeError('parallel_for failed: cudaErrorMemoryAllocation: out of memory')"

____________ test_gpu_workflow_config[True-False-csv-no-header-0.1] ____________

tmpdir = local('/tmp/pytest-of-jenkins/pytest-6/test_gpu_workflow_config_True_11')
client = <Client: 'tcp://127.0.0.1:43757' processes=2 threads=16, memory=125.83 GiB>
df = name-string id label x y
0 Tim 1045 1062 -0.145672 -0.898646
1 Laura ... Hannah 956 996 -0.716058 -0.292705
2160 Yvonne 1015 975 -0.259790 0.710177

[4321 rows x 5 columns]
dataset = <merlin.io.dataset.Dataset object at 0x7f2c6c6582b0>
gpu_memory_frac = 0.1, engine = 'csv-no-header', dump = False, replace = True

@pytest.mark.parametrize("gpu_memory_frac", [0.01, 0.1])
@pytest.mark.parametrize("engine", ["parquet", "csv", "csv-no-header"])
@pytest.mark.parametrize("dump", [True, False])
@pytest.mark.parametrize("replace", [True, False])
def test_gpu_workflow_config(tmpdir, client, df, dataset, gpu_memory_frac, engine, dump, replace):
    cat_names = ["name-cat", "name-string"] if engine == "parquet" else ["name-string"]
    cont_names = ["x", "y", "id"]
    label_name = ["label"]

    norms = ops.Normalize()
    cat_features = cat_names >> ops.Categorify()
    if replace:
        cont_features = cont_names >> ops.FillMissing() >> ops.LogOp >> norms
    else:
        fillmissing_logop = (
            cont_names
            >> ops.FillMissing()
            >> ops.LogOp
            >> ops.Rename(postfix="_FillMissing_1_LogOp_1")
        )
        cont_features = cont_names + fillmissing_logop >> norms

    set_dask_client(client=client)
    workflow = Workflow(cat_features + cont_features + label_name)
  workflow.fit(dataset)

tests/unit/workflow/test_workflow.py:284:


nvtabular/workflow/workflow.py:198: in fit
self.executor.fit(ddf, current_phase)
.tox/test-gpu/lib/python3.8/site-packages/merlin/dag/executors.py:334: in fit
results = [r.result() for r in dask_client.compute(stats)]
.tox/test-gpu/lib/python3.8/site-packages/merlin/dag/executors.py:334: in
results = [r.result() for r in dask_client.compute(stats)]
../../../.local/lib/python3.8/site-packages/distributed/client.py:279: in result
raise exc.with_traceback(tb)
nvtabular/ops/moments.py:87: in _tree_node_moments
out[val] = _concat(df_list, ignore_index=True).sum().to_frame().transpose()
/usr/local/lib/python3.8/dist-packages/nvtx/nvtx.py:101: in inner
result = func(*args, **kwargs)
/usr/local/lib/python3.8/dist-packages/cudf/core/dataframe.py:3313: in transpose
result_columns = libcudf.transpose.transpose(source_columns)


???
E RuntimeError: parallel_for failed: cudaErrorMemoryAllocation: out of memory

cudf/_lib/transpose.pyx:21: RuntimeError
----------------------------- Captured stderr call -----------------------------
2022-12-01 17:43:13,881 - distributed.worker - WARNING - Compute Failed
Key: ('chunkwise-moments-af0ef4b2d4c499324e0ab0d25e71f18d', 0, 1)
Function: _tree_node_moments
args: ([{'count': x y id
0 2160 2160 2160, 'sum': x y id
0 -729.951294 -563.958984 14920.920898, 'squaredsum': x y id
0 2541.541673 2091.077221 103073.463963}, {'count': x y id
0 2161 2161 2161, 'sum': x y id
0 -662.805664 -590.724854 14927.633789, 'squaredsum': x y id
0 2350.272057 2154.738509 103118.338565}])
kwargs: {}
Exception: "RuntimeError('parallel_for failed: cudaErrorMemoryAllocation: out of memory')"

______________ test_gpu_workflow_config[False-True-parquet-0.01] _______________

tmpdir = local('/tmp/pytest-of-jenkins/pytest-6/test_gpu_workflow_config_False0')
client = <Client: 'tcp://127.0.0.1:43757' processes=2 threads=16, memory=125.83 GiB>
df = name-cat name-string id label x y
0 Dan Tim 1045 1062 -0.145672 -0.89864...h 956 996 -0.716058 -0.292705
4320 Laura Yvonne 1015 975 -0.259790 0.710177

[4321 rows x 6 columns]
dataset = <merlin.io.dataset.Dataset object at 0x7f2ca97408b0>
gpu_memory_frac = 0.01, engine = 'parquet', dump = True, replace = False

@pytest.mark.parametrize("gpu_memory_frac", [0.01, 0.1])
@pytest.mark.parametrize("engine", ["parquet", "csv", "csv-no-header"])
@pytest.mark.parametrize("dump", [True, False])
@pytest.mark.parametrize("replace", [True, False])
def test_gpu_workflow_config(tmpdir, client, df, dataset, gpu_memory_frac, engine, dump, replace):
    cat_names = ["name-cat", "name-string"] if engine == "parquet" else ["name-string"]
    cont_names = ["x", "y", "id"]
    label_name = ["label"]

    norms = ops.Normalize()
    cat_features = cat_names >> ops.Categorify()
    if replace:
        cont_features = cont_names >> ops.FillMissing() >> ops.LogOp >> norms
    else:
        fillmissing_logop = (
            cont_names
            >> ops.FillMissing()
            >> ops.LogOp
            >> ops.Rename(postfix="_FillMissing_1_LogOp_1")
        )
        cont_features = cont_names + fillmissing_logop >> norms

    set_dask_client(client=client)
    workflow = Workflow(cat_features + cont_features + label_name)
  workflow.fit(dataset)

tests/unit/workflow/test_workflow.py:284:


nvtabular/workflow/workflow.py:198: in fit
self.executor.fit(ddf, current_phase)
.tox/test-gpu/lib/python3.8/site-packages/merlin/dag/executors.py:334: in fit
results = [r.result() for r in dask_client.compute(stats)]
.tox/test-gpu/lib/python3.8/site-packages/merlin/dag/executors.py:334: in
results = [r.result() for r in dask_client.compute(stats)]
../../../.local/lib/python3.8/site-packages/distributed/client.py:279: in result
raise exc.with_traceback(tb)
nvtabular/ops/moments.py:87: in _tree_node_moments
out[val] = _concat(df_list, ignore_index=True).sum().to_frame().transpose()
/usr/local/lib/python3.8/dist-packages/nvtx/nvtx.py:101: in inner
result = func(*args, **kwargs)
/usr/local/lib/python3.8/dist-packages/cudf/core/dataframe.py:3313: in transpose
result_columns = libcudf.transpose.transpose(source_columns)


???
E RuntimeError: parallel_for failed: cudaErrorMemoryAllocation: out of memory

cudf/_lib/transpose.pyx:21: RuntimeError
----------------------------- Captured stderr call -----------------------------
2022-12-01 17:43:15,097 - distributed.worker - WARNING - Compute Failed
Key: ('chunkwise-moments-5a63de1d067e9698eeb5c9d7ef1e6e15', 0, 1)
Function: _tree_node_moments
args: ([{'count': x_FillMissing_1_LogOp_1 y_FillMissing_1_LogOp_1 ... y id
0 2160 2160 ... 2160 2160

[1 rows x 6 columns], 'sum': x_FillMissing_1_LogOp_1 y_FillMissing_1_LogOp_1 ... y id
0 -729.951294 -563.958984 ... 55.893506 2159119.0

[1 rows x 6 columns], 'squaredsum': x_FillMissing_1_LogOp_1 y_FillMissing_1_LogOp_1 ... y id
0 2541.541672 2091.07722 ... 726.64947 2.160456e+09

[1 rows x 6 columns]}, {'count': x_FillMissing_1_LogOp_1 y_FillMissing_1_LogOp_1 ... y id
0 2161 2161 ... 2161 2161

[1 rows x 6 columns], 'sum': x_FillMissing_1_LogOp_1 y_FillMissing_1_LogOp_1 ... y id
0 -662.805664 -590.724854 ... 34.551734 2159847.0

[1 rows x 6 columns], 'squaredsum': x_FillMissing_1_LogOp_1 y_FillMissing_1_LogOp_1 ...
kwargs: {}
Exception: "RuntimeError('parallel_for failed: cudaErrorMemoryAllocation: out of memory')"

____________ test_gpu_workflow_config[False-True-csv-no-header-0.1] ____________

tmpdir = local('/tmp/pytest-of-jenkins/pytest-6/test_gpu_workflow_config_False5')
client = <Client: 'tcp://127.0.0.1:43757' processes=2 threads=16, memory=125.83 GiB>
df = name-string id label x y
0 Tim 1045 1062 -0.145672 -0.898646
1 Laura ... Hannah 956 996 -0.716058 -0.292705
2160 Yvonne 1015 975 -0.259790 0.710177

[4321 rows x 5 columns]
dataset = <merlin.io.dataset.Dataset object at 0x7f2816b58f40>
gpu_memory_frac = 0.1, engine = 'csv-no-header', dump = True, replace = False

@pytest.mark.parametrize("gpu_memory_frac", [0.01, 0.1])
@pytest.mark.parametrize("engine", ["parquet", "csv", "csv-no-header"])
@pytest.mark.parametrize("dump", [True, False])
@pytest.mark.parametrize("replace", [True, False])
def test_gpu_workflow_config(tmpdir, client, df, dataset, gpu_memory_frac, engine, dump, replace):
    cat_names = ["name-cat", "name-string"] if engine == "parquet" else ["name-string"]
    cont_names = ["x", "y", "id"]
    label_name = ["label"]

    norms = ops.Normalize()
    cat_features = cat_names >> ops.Categorify()
    if replace:
        cont_features = cont_names >> ops.FillMissing() >> ops.LogOp >> norms
    else:
        fillmissing_logop = (
            cont_names
            >> ops.FillMissing()
            >> ops.LogOp
            >> ops.Rename(postfix="_FillMissing_1_LogOp_1")
        )
        cont_features = cont_names + fillmissing_logop >> norms

    set_dask_client(client=client)
    workflow = Workflow(cat_features + cont_features + label_name)
  workflow.fit(dataset)

tests/unit/workflow/test_workflow.py:284:


nvtabular/workflow/workflow.py:198: in fit
self.executor.fit(ddf, current_phase)
.tox/test-gpu/lib/python3.8/site-packages/merlin/dag/executors.py:334: in fit
results = [r.result() for r in dask_client.compute(stats)]
.tox/test-gpu/lib/python3.8/site-packages/merlin/dag/executors.py:334: in
results = [r.result() for r in dask_client.compute(stats)]
../../../.local/lib/python3.8/site-packages/distributed/client.py:279: in result
raise exc.with_traceback(tb)
nvtabular/ops/moments.py:87: in _tree_node_moments
out[val] = _concat(df_list, ignore_index=True).sum().to_frame().transpose()
/usr/local/lib/python3.8/dist-packages/nvtx/nvtx.py:101: in inner
result = func(*args, **kwargs)
/usr/local/lib/python3.8/dist-packages/cudf/core/dataframe.py:3313: in transpose
result_columns = libcudf.transpose.transpose(source_columns)


???
E RuntimeError: parallel_for failed: cudaErrorMemoryAllocation: out of memory

cudf/_lib/transpose.pyx:21: RuntimeError
----------------------------- Captured stderr call -----------------------------
2022-12-01 17:43:25,358 - distributed.worker - WARNING - Compute Failed
Key: ('chunkwise-moments-d6c45c18cb97e9fc79aef09cd477f869', 0, 1)
Function: _tree_node_moments
args: ([{'count': x_FillMissing_1_LogOp_1 y_FillMissing_1_LogOp_1 ... y id
0 2160 2160 ... 2160 2160

[1 rows x 6 columns], 'sum': x_FillMissing_1_LogOp_1 y_FillMissing_1_LogOp_1 ... y id
0 -729.951294 -563.958984 ... 55.893506 2159119.0

[1 rows x 6 columns], 'squaredsum': x_FillMissing_1_LogOp_1 y_FillMissing_1_LogOp_1 ... y id
0 2541.541673 2091.077221 ... 726.64947 2.160456e+09

[1 rows x 6 columns]}, {'count': x_FillMissing_1_LogOp_1 y_FillMissing_1_LogOp_1 ... y id
0 2161 2161 ... 2161 2161

[1 rows x 6 columns], 'sum': x_FillMissing_1_LogOp_1 y_FillMissing_1_LogOp_1 ... y id
0 -662.805664 -590.724854 ... 34.551734 2159847.0

[1 rows x 6 columns], 'squaredsum': x_FillMissing_1_LogOp_1 y_FillMissing_1_LogOp_1 ...
kwargs: {}
Exception: "RuntimeError('parallel_for failed: cudaErrorMemoryAllocation: out of memory')"

______________ test_gpu_workflow_config[False-False-parquet-0.01] ______________

tmpdir = local('/tmp/pytest-of-jenkins/pytest-6/test_gpu_workflow_config_False6')
client = <Client: 'tcp://127.0.0.1:43757' processes=2 threads=16, memory=125.83 GiB>
df = name-cat name-string id label x y
0 Dan Tim 1045 1062 -0.145672 -0.89864...h 956 996 -0.716058 -0.292705
4320 Laura Yvonne 1015 975 -0.259790 0.710177

[4321 rows x 6 columns]
dataset = <merlin.io.dataset.Dataset object at 0x7f2ca8d98100>
gpu_memory_frac = 0.01, engine = 'parquet', dump = False, replace = False

@pytest.mark.parametrize("gpu_memory_frac", [0.01, 0.1])
@pytest.mark.parametrize("engine", ["parquet", "csv", "csv-no-header"])
@pytest.mark.parametrize("dump", [True, False])
@pytest.mark.parametrize("replace", [True, False])
def test_gpu_workflow_config(tmpdir, client, df, dataset, gpu_memory_frac, engine, dump, replace):
    cat_names = ["name-cat", "name-string"] if engine == "parquet" else ["name-string"]
    cont_names = ["x", "y", "id"]
    label_name = ["label"]

    norms = ops.Normalize()
    cat_features = cat_names >> ops.Categorify()
    if replace:
        cont_features = cont_names >> ops.FillMissing() >> ops.LogOp >> norms
    else:
        fillmissing_logop = (
            cont_names
            >> ops.FillMissing()
            >> ops.LogOp
            >> ops.Rename(postfix="_FillMissing_1_LogOp_1")
        )
        cont_features = cont_names + fillmissing_logop >> norms

    set_dask_client(client=client)
    workflow = Workflow(cat_features + cont_features + label_name)
  workflow.fit(dataset)

tests/unit/workflow/test_workflow.py:284:


nvtabular/workflow/workflow.py:198: in fit
self.executor.fit(ddf, current_phase)
.tox/test-gpu/lib/python3.8/site-packages/merlin/dag/executors.py:334: in fit
results = [r.result() for r in dask_client.compute(stats)]
.tox/test-gpu/lib/python3.8/site-packages/merlin/dag/executors.py:334: in
results = [r.result() for r in dask_client.compute(stats)]
../../../.local/lib/python3.8/site-packages/distributed/client.py:279: in result
raise exc.with_traceback(tb)
nvtabular/ops/moments.py:87: in _tree_node_moments
out[val] = _concat(df_list, ignore_index=True).sum().to_frame().transpose()
/usr/local/lib/python3.8/dist-packages/nvtx/nvtx.py:101: in inner
result = func(*args, **kwargs)
/usr/local/lib/python3.8/dist-packages/cudf/core/dataframe.py:3313: in transpose
result_columns = libcudf.transpose.transpose(source_columns)


???
E RuntimeError: parallel_for failed: cudaErrorMemoryAllocation: out of memory

cudf/_lib/transpose.pyx:21: RuntimeError
----------------------------- Captured stderr call -----------------------------
2022-12-01 17:43:26,406 - distributed.worker - WARNING - Compute Failed
Key: ('chunkwise-moments-ef70958d5b61a4cc5879b6f4080236ea', 0, 1)
Function: _tree_node_moments
args: ([{'count': x_FillMissing_1_LogOp_1 y_FillMissing_1_LogOp_1 ... y id
0 2160 2160 ... 2160 2160

[1 rows x 6 columns], 'sum': x_FillMissing_1_LogOp_1 y_FillMissing_1_LogOp_1 ... y id
0 -729.951294 -563.958984 ... 55.893506 2159119.0

[1 rows x 6 columns], 'squaredsum': x_FillMissing_1_LogOp_1 y_FillMissing_1_LogOp_1 ... y id
0 2541.541672 2091.07722 ... 726.64947 2.160456e+09

[1 rows x 6 columns]}, {'count': x_FillMissing_1_LogOp_1 y_FillMissing_1_LogOp_1 ... y id
0 2161 2161 ... 2161 2161

[1 rows x 6 columns], 'sum': x_FillMissing_1_LogOp_1 y_FillMissing_1_LogOp_1 ... y id
0 -662.805664 -590.724854 ... 34.551734 2159847.0

[1 rows x 6 columns], 'squaredsum': x_FillMissing_1_LogOp_1 y_FillMissing_1_LogOp_1 ...
kwargs: {}
Exception: "RuntimeError('parallel_for failed: cudaErrorMemoryAllocation: out of memory')"

______________ test_gpu_workflow_config[False-False-parquet-0.1] _______________

tmpdir = local('/tmp/pytest-of-jenkins/pytest-6/test_gpu_workflow_config_False7')
client = <Client: 'tcp://127.0.0.1:43757' processes=2 threads=16, memory=125.83 GiB>
df = name-cat name-string id label x y
0 Dan Tim 1045 1062 -0.145672 -0.89864...h 956 996 -0.716058 -0.292705
4320 Laura Yvonne 1015 975 -0.259790 0.710177

[4321 rows x 6 columns]
dataset = <merlin.io.dataset.Dataset object at 0x7f2c145c6340>
gpu_memory_frac = 0.1, engine = 'parquet', dump = False, replace = False

@pytest.mark.parametrize("gpu_memory_frac", [0.01, 0.1])
@pytest.mark.parametrize("engine", ["parquet", "csv", "csv-no-header"])
@pytest.mark.parametrize("dump", [True, False])
@pytest.mark.parametrize("replace", [True, False])
def test_gpu_workflow_config(tmpdir, client, df, dataset, gpu_memory_frac, engine, dump, replace):
    cat_names = ["name-cat", "name-string"] if engine == "parquet" else ["name-string"]
    cont_names = ["x", "y", "id"]
    label_name = ["label"]

    norms = ops.Normalize()
    cat_features = cat_names >> ops.Categorify()
    if replace:
        cont_features = cont_names >> ops.FillMissing() >> ops.LogOp >> norms
    else:
        fillmissing_logop = (
            cont_names
            >> ops.FillMissing()
            >> ops.LogOp
            >> ops.Rename(postfix="_FillMissing_1_LogOp_1")
        )
        cont_features = cont_names + fillmissing_logop >> norms

    set_dask_client(client=client)
    workflow = Workflow(cat_features + cont_features + label_name)
  workflow.fit(dataset)

tests/unit/workflow/test_workflow.py:284:


nvtabular/workflow/workflow.py:198: in fit
self.executor.fit(ddf, current_phase)
.tox/test-gpu/lib/python3.8/site-packages/merlin/dag/executors.py:334: in fit
results = [r.result() for r in dask_client.compute(stats)]
.tox/test-gpu/lib/python3.8/site-packages/merlin/dag/executors.py:334: in
results = [r.result() for r in dask_client.compute(stats)]
../../../.local/lib/python3.8/site-packages/distributed/client.py:279: in result
raise exc.with_traceback(tb)
nvtabular/ops/moments.py:87: in _tree_node_moments
out[val] = _concat(df_list, ignore_index=True).sum().to_frame().transpose()
/usr/local/lib/python3.8/dist-packages/nvtx/nvtx.py:101: in inner
result = func(*args, **kwargs)
/usr/local/lib/python3.8/dist-packages/cudf/core/dataframe.py:3313: in transpose
result_columns = libcudf.transpose.transpose(source_columns)


???
E RuntimeError: parallel_for failed: cudaErrorMemoryAllocation: out of memory

cudf/_lib/transpose.pyx:21: RuntimeError
----------------------------- Captured stderr call -----------------------------
2022-12-01 17:43:27,678 - distributed.worker - WARNING - Compute Failed
Key: ('chunkwise-moments-189823fad5d442202cd2ab43ce2cffc0', 0, 1)
Function: _tree_node_moments
args: ([{'count': x_FillMissing_1_LogOp_1 y_FillMissing_1_LogOp_1 ... y id
0 2160 2160 ... 2160 2160

[1 rows x 6 columns], 'sum': x_FillMissing_1_LogOp_1 y_FillMissing_1_LogOp_1 ... y id
0 -729.951294 -563.958984 ... 55.893506 2159119.0

[1 rows x 6 columns], 'squaredsum': x_FillMissing_1_LogOp_1 y_FillMissing_1_LogOp_1 ... y id
0 2541.541672 2091.07722 ... 726.64947 2.160456e+09

[1 rows x 6 columns]}, {'count': x_FillMissing_1_LogOp_1 y_FillMissing_1_LogOp_1 ... y id
0 2161 2161 ... 2161 2161

[1 rows x 6 columns], 'sum': x_FillMissing_1_LogOp_1 y_FillMissing_1_LogOp_1 ... y id
0 -662.805664 -590.724854 ... 34.551734 2159847.0

[1 rows x 6 columns], 'squaredsum': x_FillMissing_1_LogOp_1 y_FillMissing_1_LogOp_1 ...
kwargs: {}
Exception: "RuntimeError('parallel_for failed: cudaErrorMemoryAllocation: out of memory')"

___________ test_gpu_workflow_config[False-False-csv-no-header-0.1] ____________

tmpdir = local('/tmp/pytest-of-jenkins/pytest-6/test_gpu_workflow_config_False11')
client = <Client: 'tcp://127.0.0.1:43757' processes=2 threads=16, memory=125.83 GiB>
df = name-string id label x y
0 Tim 1045 1062 -0.145672 -0.898646
1 Laura ... Hannah 956 996 -0.716058 -0.292705
2160 Yvonne 1015 975 -0.259790 0.710177

[4321 rows x 5 columns]
dataset = <merlin.io.dataset.Dataset object at 0x7f295459b5e0>
gpu_memory_frac = 0.1, engine = 'csv-no-header', dump = False, replace = False

@pytest.mark.parametrize("gpu_memory_frac", [0.01, 0.1])
@pytest.mark.parametrize("engine", ["parquet", "csv", "csv-no-header"])
@pytest.mark.parametrize("dump", [True, False])
@pytest.mark.parametrize("replace", [True, False])
def test_gpu_workflow_config(tmpdir, client, df, dataset, gpu_memory_frac, engine, dump, replace):
    cat_names = ["name-cat", "name-string"] if engine == "parquet" else ["name-string"]
    cont_names = ["x", "y", "id"]
    label_name = ["label"]

    norms = ops.Normalize()
    cat_features = cat_names >> ops.Categorify()
    if replace:
        cont_features = cont_names >> ops.FillMissing() >> ops.LogOp >> norms
    else:
        fillmissing_logop = (
            cont_names
            >> ops.FillMissing()
            >> ops.LogOp
            >> ops.Rename(postfix="_FillMissing_1_LogOp_1")
        )
        cont_features = cont_names + fillmissing_logop >> norms

    set_dask_client(client=client)
    workflow = Workflow(cat_features + cont_features + label_name)
  workflow.fit(dataset)

tests/unit/workflow/test_workflow.py:284:


nvtabular/workflow/workflow.py:198: in fit
self.executor.fit(ddf, current_phase)
.tox/test-gpu/lib/python3.8/site-packages/merlin/dag/executors.py:334: in fit
results = [r.result() for r in dask_client.compute(stats)]
.tox/test-gpu/lib/python3.8/site-packages/merlin/dag/executors.py:334: in
results = [r.result() for r in dask_client.compute(stats)]
../../../.local/lib/python3.8/site-packages/distributed/client.py:279: in result
raise exc.with_traceback(tb)
nvtabular/ops/moments.py:87: in _tree_node_moments
out[val] = _concat(df_list, ignore_index=True).sum().to_frame().transpose()
/usr/local/lib/python3.8/dist-packages/nvtx/nvtx.py:101: in inner
result = func(*args, **kwargs)
/usr/local/lib/python3.8/dist-packages/cudf/core/dataframe.py:3313: in transpose
result_columns = libcudf.transpose.transpose(source_columns)


???
E RuntimeError: parallel_for failed: cudaErrorMemoryAllocation: out of memory

cudf/_lib/transpose.pyx:21: RuntimeError
----------------------------- Captured stderr call -----------------------------
2022-12-01 17:43:35,288 - distributed.worker - WARNING - Compute Failed
Key: ('chunkwise-moments-203dd45132e2d4b90511f6dbb9e9ad42', 0, 1)
Function: _tree_node_moments
args: ([{'count': x_FillMissing_1_LogOp_1 y_FillMissing_1_LogOp_1 ... y id
0 2160 2160 ... 2160 2160

[1 rows x 6 columns], 'sum': x_FillMissing_1_LogOp_1 y_FillMissing_1_LogOp_1 ... y id
0 -729.951294 -563.958984 ... 55.893506 2159119.0

[1 rows x 6 columns], 'squaredsum': x_FillMissing_1_LogOp_1 y_FillMissing_1_LogOp_1 ... y id
0 2541.541673 2091.077221 ... 726.64947 2.160456e+09

[1 rows x 6 columns]}, {'count': x_FillMissing_1_LogOp_1 y_FillMissing_1_LogOp_1 ... y id
0 2161 2161 ... 2161 2161

[1 rows x 6 columns], 'sum': x_FillMissing_1_LogOp_1 y_FillMissing_1_LogOp_1 ... y id
0 -662.805664 -590.724854 ... 34.551734 2159847.0

[1 rows x 6 columns], 'squaredsum': x_FillMissing_1_LogOp_1 y_FillMissing_1_LogOp_1 ...
kwargs: {}
Exception: "RuntimeError('parallel_for failed: cudaErrorMemoryAllocation: out of memory')"

______________________ test_workflow_transform_ddf_dtypes ______________________

@pytest.mark.skipif(not cudf, reason="needs cudf")
def test_workflow_transform_ddf_dtypes():
    # Initial Dataset
    dtypes = {"name": str, "id": int, "x": float, "y": float}
    df = cudf.datasets.timeseries(dtypes=dtypes).reset_index()
    ddf = dask_cudf.from_cudf(df, npartitions=2)

    dataset = Dataset(ddf)

    # Create and Execute Workflow
    cols = ["name", "x", "y", "timestamp"]
    cat_cols = ["id"] >> ops.Normalize()
    workflow = Workflow(cols + cat_cols)
    workflow.fit(dataset)
    transformed_ddf = workflow.transform(dataset).to_ddf()

    # no transforms on the pass through cols, should have original dtypes
    for col in cols:
        assert_eq(ddf.dtypes[col], transformed_ddf.dtypes[col])

    # Followup dask-cudf sorting used to throw an exception because of dtype issues,
    # check that it works now
  transformed_ddf.sort_values(["id", "timestamp"]).compute()

tests/unit/workflow/test_workflow.py:631:


../../../.local/lib/python3.8/site-packages/dask/base.py:292: in compute
(result,) = compute(self, traverse=False, **kwargs)
../../../.local/lib/python3.8/site-packages/dask/base.py:575: in compute
results = schedule(dsk, keys, **kwargs)
../../../.local/lib/python3.8/site-packages/distributed/client.py:3015: in get
results = self.gather(packed, asynchronous=asynchronous, direct=direct)
../../../.local/lib/python3.8/site-packages/distributed/client.py:2167: in gather
return self.sync(
../../../.local/lib/python3.8/site-packages/distributed/utils.py:309: in sync
return sync(
../../../.local/lib/python3.8/site-packages/distributed/utils.py:376: in sync
raise exc.with_traceback(tb)
../../../.local/lib/python3.8/site-packages/distributed/utils.py:349: in f
result = yield future
../../../.local/lib/python3.8/site-packages/tornado-6.1-py3.8-linux-x86_64.egg/tornado/gen.py:762: in run
value = future.result()
/usr/lib/python3.8/asyncio/futures.py:178: in result
raise self._exception
/usr/lib/python3.8/asyncio/tasks.py:282: in __step
result = coro.throw(exc)
../../../.local/lib/python3.8/site-packages/distributed/client.py:2030: in _gather
raise exception.with_traceback(traceback)
../../../.local/lib/python3.8/site-packages/dask/optimization.py:990: in call
return core.get(self.dsk, self.outkey, dict(zip(self.inkeys, args)))
../../../.local/lib/python3.8/site-packages/dask/core.py:149: in get
result = _execute_task(task, cache)
../../../.local/lib/python3.8/site-packages/dask/core.py:119: in _execute_task
return func((_execute_task(a, cache) for a in args))
../../../.local/lib/python3.8/site-packages/dask/core.py:119: in
return func(
(_execute_task(a, cache) for a in args))
../../../.local/lib/python3.8/site-packages/dask/core.py:119: in _execute_task
return func(*(_execute_task(a, cache) for a in args))
../../../.local/lib/python3.8/site-packages/dask/utils.py:39: in apply
return func(*args, **kwargs)
../../../.local/lib/python3.8/site-packages/dask/dataframe/core.py:6330: in apply_and_enforce
df = func(*args, **kwargs)
/usr/local/lib/python3.8/dist-packages/nvtx/nvtx.py:101: in inner
result = func(*args, **kwargs)
/usr/local/lib/python3.8/dist-packages/dask_cudf/sorting.py:39: in _set_partitions_pre
partitions[s._columns[0].isnull().values] = (
/usr/local/lib/python3.8/dist-packages/cudf/core/column/column.py:622: in isnull
result = result | libcudf.unary.is_nan(self)
/usr/local/lib/python3.8/dist-packages/cudf/core/mixins/mixin_factory.py:11: in wrapper
return method(self, *args1, *args2, **kwargs1, **kwargs2)
/usr/local/lib/python3.8/dist-packages/cudf/core/column/numerical.py:223: in _binaryop
return libcudf.binaryop.binaryop(lhs, rhs, op, out_dtype)
cudf/_lib/binaryop.pyx:197: in cudf._lib.binaryop.binaryop
???


???
E RuntimeError: CUDA error encountered at: ../src/binaryop/compiled/binary_ops.cuh:269: 98 cudaErrorInvalidDeviceFunction invalid device function

cudf/_lib/binaryop.pyx:109: RuntimeError
----------------------------- Captured stderr call -----------------------------
2022-12-01 17:44:09,288 - distributed.worker - WARNING - Compute Failed
Key: ('assign-5fc754d9c541eb8e61051eab993ac742', 0)
Function: subgraph_callable-403ef430-da1e-4595-95be-eca178d0
args: ( timestamp id name x y
0 2000-01-01 00:00:00 971 Ray -0.641726 0.149732
1 2000-01-01 00:00:01 960 Laura -0.369516 0.220369
2 2000-01-01 00:00:02 973 Quinn -0.443863 0.570721
3 2000-01-01 00:00:03 947 Laura -0.269333 -0.232744
4 2000-01-01 00:00:04 982 Sarah 0.151231 0.744703
... ... ... ... ... ...
1295996 2000-01-15 23:59:56 970 Wendy 0.168838 0.941327
1295997 2000-01-15 23:59:57 1034 Edith -0.139440 -0.795906
1295998 2000-01-15 23:59:58 1015 Alice -0.567523 -0.571742
1295999 2000-01-15 23:59:59 982 Alice -0.835511 0.195511
1296000 2000-01-16 00:00:00 972 Xavier 0.093860 0.295664

[1296001 rows x 5 columns])
kwargs: {}
Exception: "RuntimeError('CUDA error encountered at: ../src/binaryop/compiled/binary_ops.cuh:269: 98 cudaErrorInvalidDeviceFunction invalid device function')"

=============================== warnings summary ===============================
../../../../../usr/local/lib/python3.8/dist-packages/dask_cudf/core.py:33
/usr/local/lib/python3.8/dist-packages/dask_cudf/core.py:33: DeprecationWarning: distutils Version classes are deprecated. Use packaging.version instead.
DASK_VERSION = LooseVersion(dask.version)

.tox/test-gpu/lib/python3.8/site-packages/setuptools/_distutils/version.py:346: 34 warnings
/var/jenkins_home/workspace/nvtabular_tests/nvtabular/.tox/test-gpu/lib/python3.8/site-packages/setuptools/_distutils/version.py:346: DeprecationWarning: distutils Version classes are deprecated. Use packaging.version instead.
other = LooseVersion(other)

tests/unit/test_dask_nvt.py: 6 warnings
tests/unit/workflow/test_workflow.py: 34 warnings
/var/jenkins_home/.local/lib/python3.8/site-packages/dask/base.py:1282: UserWarning: Running on a single-machine scheduler when a distributed client is active might lead to unexpected results.
warnings.warn(

tests/unit/test_dask_nvt.py::test_merlin_core_execution_managers
/var/jenkins_home/workspace/nvtabular_tests/nvtabular/.tox/test-gpu/lib/python3.8/site-packages/merlin/core/utils.py:431: UserWarning: Existing Dask-client object detected in the current context. New cuda cluster will not be deployed. Set force_new to True to ignore running clusters.
warnings.warn(

tests/unit/ops/test_fill.py::test_fill_missing[True-True-parquet]
tests/unit/ops/test_fill.py::test_fill_missing[True-False-parquet]
tests/unit/ops/test_ops.py::test_filter[parquet-0.1-True]
/var/jenkins_home/.local/lib/python3.8/site-packages/pandas/core/indexing.py:1732: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
self._setitem_single_block(indexer, value, name)

tests/unit/ops/test_ops_schema.py: 12 warnings
/var/jenkins_home/workspace/nvtabular_tests/nvtabular/.tox/test-gpu/lib/python3.8/site-packages/merlin/schema/tags.py:148: UserWarning: Compound tags like Tags.USER_ID have been deprecated and will be removed in a future version. Please use the atomic versions of these tags, like [<Tags.USER: 'user'>, <Tags.ID: 'id'>].
warnings.warn(

tests/unit/ops/test_ops_schema.py: 12 warnings
/var/jenkins_home/workspace/nvtabular_tests/nvtabular/.tox/test-gpu/lib/python3.8/site-packages/merlin/schema/tags.py:148: UserWarning: Compound tags like Tags.ITEM_ID have been deprecated and will be removed in a future version. Please use the atomic versions of these tags, like [<Tags.ITEM: 'item'>, <Tags.ID: 'id'>].
warnings.warn(

-- Docs: https://docs.pytest.org/en/stable/how-to/capture-warnings.html

---------- coverage: platform linux, python 3.8.10-final-0 -----------
Name Stmts Miss Cover

merlin/transforms/init.py 1 1 0%
merlin/transforms/ops/init.py 1 1 0%

TOTAL 2 2 0%

=========================== short test summary info ============================
SKIPPED [1] ../../../../../usr/local/lib/python3.8/dist-packages/dask_cudf/io/tests/test_s3.py:14: could not import 'moto': No module named 'moto'
SKIPPED [1] tests/unit/loader/test_tf_dataloader.py:529: not working correctly in ci environment
= 26 failed, 1392 passed, 2 skipped, 103 warnings, 20 errors in 1079.00s (0:17:59) =
/usr/local/lib/python3.8/dist-packages/coverage/control.py:801: CoverageWarning: No data was collected. (no-data-collected)
self._warn("No data was collected.", slug="no-data-collected")
ERROR: InvocationError for command /var/jenkins_home/workspace/nvtabular_tests/nvtabular/.tox/test-gpu/bin/python -m pytest --cov-report term --cov merlin -rxs tests/unit (exited with code 1)
___________________________________ summary ____________________________________
ERROR: test-gpu: commands failed
Build step 'Execute shell' marked build as failure
Performing Post build task...
Match found for : : True
Logical operation result is TRUE
Running script : #!/bin/bash
cd /var/jenkins_home/
CUDA_VISIBLE_DEVICES=1 python test_res_push.py "https://api.GitHub.com/repos/NVIDIA-Merlin/NVTabular/issues/$ghprbPullId/comments" "/var/jenkins_home/jobs/$JOB_NAME/builds/$BUILD_NUMBER/log"
[workspace] $ /bin/bash /tmp/jenkins9758627793138683739.sh

@mikemckiernan
Copy link
Member Author

rerun tests

@nvidia-merlin-bot
Copy link
Contributor

Click to view CI Results
GitHub pull request #1719 of commit 05c2b8c3737512cff6262a6a952ebfb2ec99f860, no merge conflicts.
GitHub pull request #1719 of commit 05c2b8c3737512cff6262a6a952ebfb2ec99f860, no merge conflicts.
Running as SYSTEM
Setting status of 05c2b8c3737512cff6262a6a952ebfb2ec99f860 to PENDING with url http://merlin-infra1.nvidia.com:8080/job/nvtabular_tests/4943/ and message: 'Build started for merge commit.'
Using context: Jenkins Unit Test Run
Building on the built-in node in workspace /var/jenkins_home/jobs/nvtabular_tests/workspace
using credential nvidia-merlin-bot
 > git rev-parse --is-inside-work-tree # timeout=10
Fetching changes from the remote Git repository
 > git config remote.origin.url https://github.com/NVIDIA-Merlin/NVTabular.git # timeout=10
Fetching upstream changes from https://github.com/NVIDIA-Merlin/NVTabular.git
 > git --version # timeout=10
using GIT_ASKPASS to set credentials This is the bot credentials for our CI/CD
 > git fetch --tags --force --progress -- https://github.com/NVIDIA-Merlin/NVTabular.git +refs/pull/1719/*:refs/remotes/origin/pr/1719/* # timeout=10
 > git rev-parse 05c2b8c3737512cff6262a6a952ebfb2ec99f860^{commit} # timeout=10
Checking out Revision 05c2b8c3737512cff6262a6a952ebfb2ec99f860 (detached)
 > git config core.sparsecheckout # timeout=10
 > git checkout -f 05c2b8c3737512cff6262a6a952ebfb2ec99f860 # timeout=10
Commit message: "Merge branch 'main' into dev-doc-link-testing"
 > git rev-list --no-walk 05c2b8c3737512cff6262a6a952ebfb2ec99f860 # timeout=10
[workspace] $ /bin/bash /tmp/jenkins9462019059306658499.sh
GLOB sdist-make: /var/jenkins_home/workspace/nvtabular_tests/nvtabular/setup.py
test-gpu recreate: /var/jenkins_home/workspace/nvtabular_tests/nvtabular/.tox/test-gpu
test-gpu installdeps: pytest, pytest-cov
WARNING: Discarding $PYTHONPATH from environment, to override specify PYTHONPATH in 'passenv' in your configuration.
test-gpu inst: /var/jenkins_home/workspace/nvtabular_tests/nvtabular/.tox/.tmp/package/1/nvtabular-1.6.0+14.g05c2b8c3.zip
WARNING: Discarding $PYTHONPATH from environment, to override specify PYTHONPATH in 'passenv' in your configuration.
test-gpu installed: absl-py==1.2.0,aiohttp==3.8.1,aiosignal==1.2.0,alabaster==0.7.12,alembic==1.8.1,anyio==3.6.1,argon2-cffi==21.3.0,argon2-cffi-bindings==21.2.0,astroid==2.5.6,asttokens==2.0.8,astunparse==1.6.3,asv==0.5.1,asvdb==0.4.2,async-timeout==4.0.2,attrs==22.1.0,autopage==0.5.1,awscli==1.27.20,Babel==2.10.3,backcall==0.2.0,beautifulsoup4==4.11.1,betterproto==1.2.5,black==22.6.0,bleach==5.0.1,boto3==1.24.75,botocore==1.29.20,Brotli==1.0.9,cachetools==5.2.0,certifi==2019.11.28,cffi==1.15.1,chardet==3.0.4,charset-normalizer==2.1.1,clang==5.0,click==8.1.3,cliff==4.1.0,cloudpickle==2.2.0,cmaes==0.9.0,cmake==3.24.1.1,cmd2==2.4.2,colorama==0.4.4,colorlog==6.7.0,contourpy==1.0.5,coverage==6.5.0,cuda-python==11.7.1,cupy-cuda117==10.6.0,cycler==0.11.0,Cython==0.29.32,dask==2022.1.1,dbus-python==1.2.16,debugpy==1.6.3,decorator==5.1.1,defusedxml==0.7.1,dill==0.3.5.1,distlib==0.3.6,distributed==2022.5.1,distro==1.7.0,dm-tree==0.1.6,docker-pycreds==0.4.0,docutils==0.16,emoji==1.7.0,entrypoints==0.4,execnet==1.9.0,executing==1.0.0,faiss==1.7.2,faiss-gpu==1.7.2,fastai==2.7.9,fastapi==0.85.0,fastavro==1.6.1,fastcore==1.5.27,fastdownload==0.0.7,fastjsonschema==2.16.1,fastprogress==1.0.3,fastrlock==0.8,feast==0.19.4,fiddle==0.2.2,filelock==3.8.0,flatbuffers==1.12,fonttools==4.37.3,frozenlist==1.3.1,fsspec==2022.5.0,gast==0.4.0,gevent==21.12.0,geventhttpclient==2.0.2,gitdb==4.0.9,GitPython==3.1.27,google==3.0.0,google-api-core==2.10.1,google-auth==2.11.1,google-auth-oauthlib==0.4.6,google-pasta==0.2.0,googleapis-common-protos==1.52.0,graphviz==0.20.1,greenlet==1.1.3,grpcio==1.41.0,grpcio-channelz==1.49.0,grpcio-reflection==1.48.1,grpclib==0.4.3,h11==0.13.0,h2==4.1.0,h5py==3.7.0,HeapDict==1.0.1,horovod==0.26.1,hpack==4.0.0,httptools==0.5.0,hugectr2onnx==0.0.0,huggingface-hub==0.9.1,hyperframe==6.0.1,idna==2.8,imagesize==1.4.1,implicit==0.6.1,importlib-metadata==4.12.0,importlib-resources==5.9.0,iniconfig==1.1.1,ipykernel==6.15.3,ipython==8.5.0,ipython-genutils==0.2.0,ipywidgets==7.7.0,jedi==0.18.1,Jinja2==3.1.2,jmespath==1.0.1,joblib==1.2.0,json5==0.9.10,jsonschema==4.16.0,jupyter-cache==0.4.3,jupyter-core==4.11.1,jupyter-server==1.18.1,jupyter-server-mathjax==0.2.5,jupyter-sphinx==0.3.2,jupyter_client==7.3.5,jupyterlab==3.4.7,jupyterlab-pygments==0.2.2,jupyterlab-widgets==1.1.0,jupyterlab_server==2.15.1,keras==2.9.0,Keras-Preprocessing==1.1.2,kiwisolver==1.4.4,lazy-object-proxy==1.8.0,libclang==14.0.6,libcst==0.4.7,lightfm==1.16,lightgbm==3.3.2,linkify-it-py==1.0.3,llvmlite==0.39.1,locket==1.0.0,lxml==4.9.1,Mako==1.2.4,Markdown==3.4.1,markdown-it-py==1.1.0,MarkupSafe==2.1.1,matplotlib==3.6.0,matplotlib-inline==0.1.6,mdit-py-plugins==0.2.8,merlin-core==0.6.0+1.g5926fcf,merlin-dataloader==0.0.3,merlin-models==0.7.0+11.g280956aa4,merlin-systems==0.5.0+4.g15074ad,mistune==2.0.4,mmh3==3.0.0,mpi4py==3.1.3,msgpack==1.0.4,multidict==6.0.2,mypy-extensions==0.4.3,myst-nb==0.13.2,myst-parser==0.15.2,natsort==8.1.0,nbclassic==0.4.3,nbclient==0.6.8,nbconvert==7.0.0,nbdime==3.1.1,nbformat==5.5.0,nest-asyncio==1.5.5,ninja==1.10.2.3,notebook==6.4.12,notebook-shim==0.1.0,numba==0.56.2,numpy==1.22.4,nvidia-pyindex==1.0.9,-e git+https://github.com/NVIDIA-Merlin/NVTabular.git@05c2b8c3737512cff6262a6a952ebfb2ec99f860#egg=nvtabular,nvtx==0.2.5,oauthlib==3.2.1,oldest-supported-numpy==2022.8.16,onnx==1.12.0,onnxruntime==1.11.1,opt-einsum==3.3.0,optuna==3.0.4,packaging==21.3,pandas==1.3.5,pandavro==1.5.2,pandocfilters==1.5.0,parso==0.8.3,partd==1.3.0,pathtools==0.1.2,pbr==5.11.0,pexpect==4.8.0,pickleshare==0.7.5,Pillow==9.2.0,pkgutil_resolve_name==1.3.10,platformdirs==2.5.2,plotly==5.11.0,pluggy==1.0.0,prettytable==3.5.0,prometheus-client==0.14.1,promise==2.3,prompt-toolkit==3.0.31,proto-plus==1.19.6,protobuf==3.19.5,psutil==5.9.2,ptyprocess==0.7.0,pure-eval==0.2.2,py==1.11.0,pyarrow==7.0.0,pyasn1==0.4.8,pyasn1-modules==0.2.8,pybind11==2.10.0,pycparser==2.21,pydantic==1.10.2,pydot==1.4.2,Pygments==2.13.0,PyGObject==3.36.0,pynvml==11.4.1,pyparsing==3.0.9,pyperclip==1.8.2,pyrsistent==0.18.1,pytest==7.1.3,pytest-cov==4.0.0,pytest-xdist==3.0.2,python-apt==2.0.0+ubuntu0.20.4.8,python-dateutil==2.8.2,python-dotenv==0.21.0,python-rapidjson==1.8,pytz==2022.2.1,PyYAML==5.4.1,pyzmq==24.0.0,regex==2022.9.13,requests==2.22.0,requests-oauthlib==1.3.1,requests-unixsocket==0.2.0,rsa==4.7.2,s3fs==2022.2.0,s3transfer==0.6.0,sacremoses==0.0.53,scikit-build==0.15.0,scikit-learn==1.1.2,scipy==1.8.1,seedir==0.3.0,Send2Trash==1.8.0,sentry-sdk==1.9.8,setproctitle==1.3.2,setuptools-scm==7.0.5,shortuuid==1.0.9,six==1.15.0,sklearn==0.0,smmap==5.0.0,sniffio==1.3.0,snowballstemmer==2.2.0,sortedcontainers==2.4.0,soupsieve==2.3.2.post1,Sphinx==5.3.0,sphinx-multiversion==0.2.4,sphinx-togglebutton==0.3.1,sphinx_external_toc==0.3.0,sphinxcontrib-applehelp==1.0.2,sphinxcontrib-copydirs @ git+https://github.com/mikemckiernan/sphinxcontrib-copydirs.git@bd8c5d79b3f91cf5f1bb0d6995aeca3fe84b670e,sphinxcontrib-devhelp==1.0.2,sphinxcontrib-htmlhelp==2.0.0,sphinxcontrib-jsmath==1.0.1,sphinxcontrib-qthelp==1.0.3,sphinxcontrib-serializinghtml==1.1.5,SQLAlchemy==1.4.44,stack-data==0.5.0,starlette==0.20.4,stevedore==4.1.1,stringcase==1.2.0,supervisor==4.1.0,tabulate==0.8.10,tblib==1.7.0,tdqm==0.0.1,tenacity==8.0.1,tensorboard==2.9.1,tensorboard-data-server==0.6.1,tensorboard-plugin-wit==1.8.1,tensorflow==2.9.2,tensorflow-estimator==2.9.0,tensorflow-gpu==2.9.2,tensorflow-io-gcs-filesystem==0.27.0,tensorflow-metadata==1.10.0,termcolor==2.0.1,terminado==0.15.0,testbook==0.4.2,threadpoolctl==3.1.0,tinycss2==1.1.1,tokenizers==0.10.3,toml==0.10.2,tomli==2.0.1,toolz==0.12.0,torch==1.12.1+cu113,torchmetrics==0.3.2,tornado==6.2,tox==3.26.0,tqdm==4.64.1,traitlets==5.4.0,transformers==4.12.0,transformers4rec==0.1.12+2.gbcc939255,treelite==2.3.0,treelite-runtime==2.3.0,tritonclient==2.25.0,typing-inspect==0.8.0,typing_extensions==4.3.0,uc-micro-py==1.0.1,urllib3==1.26.12,uvicorn==0.18.3,uvloop==0.17.0,versioneer==0.20,virtualenv==20.16.5,wandb==0.13.3,watchfiles==0.17.0,wcwidth==0.2.5,webencodings==0.5.1,websocket-client==1.4.1,websockets==10.3,Werkzeug==2.2.2,widgetsnbextension==3.6.0,wrapt==1.12.1,xgboost==1.6.2,yarl==1.8.1,zict==2.2.0,zipp==3.8.1,zope.event==4.5.0,zope.interface==5.4.0
test-gpu run-test-pre: PYTHONHASHSEED='1233574437'
test-gpu run-test: commands[0] | python -m pip install --upgrade git+https://github.com/NVIDIA-Merlin/core.git
Looking in indexes: https://pypi.org/simple, https://pypi.ngc.nvidia.com
Collecting git+https://github.com/NVIDIA-Merlin/core.git
  Cloning https://github.com/NVIDIA-Merlin/core.git to /tmp/pip-req-build-zz254e0n
  Running command git clone --filter=blob:none --quiet https://github.com/NVIDIA-Merlin/core.git /tmp/pip-req-build-zz254e0n
  Resolved https://github.com/NVIDIA-Merlin/core.git to commit 4f73ff5bd4121c1acaabdc01a123af4f986ffc78
  Installing build dependencies: started
  Installing build dependencies: finished with status 'done'
  Getting requirements to build wheel: started
  Getting requirements to build wheel: finished with status 'done'
  Preparing metadata (pyproject.toml): started
  Preparing metadata (pyproject.toml): finished with status 'done'
Requirement already satisfied: distributed>=2022.3.0 in /var/jenkins_home/.local/lib/python3.8/site-packages (from merlin-core==0.9.0+14.g4f73ff5) (2022.3.0)
Requirement already satisfied: pyarrow>=5.0.0 in /usr/local/lib/python3.8/dist-packages (from merlin-core==0.9.0+14.g4f73ff5) (7.0.0)
Requirement already satisfied: betterproto<2.0.0 in /usr/local/lib/python3.8/dist-packages (from merlin-core==0.9.0+14.g4f73ff5) (1.2.5)
Requirement already satisfied: tqdm>=4.0 in /usr/local/lib/python3.8/dist-packages (from merlin-core==0.9.0+14.g4f73ff5) (4.64.1)
Requirement already satisfied: pandas<1.4.0dev0,>=1.2.0 in /var/jenkins_home/.local/lib/python3.8/site-packages (from merlin-core==0.9.0+14.g4f73ff5) (1.3.5)
Requirement already satisfied: protobuf>=3.0.0 in /usr/local/lib/python3.8/dist-packages (from merlin-core==0.9.0+14.g4f73ff5) (3.19.5)
Requirement already satisfied: numba>=0.54 in /var/jenkins_home/.local/lib/python3.8/site-packages (from merlin-core==0.9.0+14.g4f73ff5) (0.55.1)
Requirement already satisfied: dask>=2022.3.0 in /var/jenkins_home/.local/lib/python3.8/site-packages (from merlin-core==0.9.0+14.g4f73ff5) (2022.3.0)
Requirement already satisfied: packaging in /usr/local/lib/python3.8/dist-packages (from merlin-core==0.9.0+14.g4f73ff5) (21.3)
Requirement already satisfied: tensorflow-metadata>=1.2.0 in /usr/local/lib/python3.8/dist-packages (from merlin-core==0.9.0+14.g4f73ff5) (1.10.0)
Requirement already satisfied: fsspec==2022.5.0 in /var/jenkins_home/.local/lib/python3.8/site-packages (from merlin-core==0.9.0+14.g4f73ff5) (2022.5.0)
Requirement already satisfied: grpclib in /usr/local/lib/python3.8/dist-packages (from betterproto<2.0.0->merlin-core==0.9.0+14.g4f73ff5) (0.4.3)
Requirement already satisfied: stringcase in /usr/local/lib/python3.8/dist-packages (from betterproto<2.0.0->merlin-core==0.9.0+14.g4f73ff5) (1.2.0)
Requirement already satisfied: toolz>=0.8.2 in /usr/local/lib/python3.8/dist-packages (from dask>=2022.3.0->merlin-core==0.9.0+14.g4f73ff5) (0.12.0)
Requirement already satisfied: pyyaml>=5.3.1 in /var/jenkins_home/.local/lib/python3.8/site-packages/PyYAML-5.4.1-py3.8-linux-x86_64.egg (from dask>=2022.3.0->merlin-core==0.9.0+14.g4f73ff5) (5.4.1)
Requirement already satisfied: cloudpickle>=1.1.1 in /usr/local/lib/python3.8/dist-packages (from dask>=2022.3.0->merlin-core==0.9.0+14.g4f73ff5) (2.2.0)
Requirement already satisfied: partd>=0.3.10 in /var/jenkins_home/.local/lib/python3.8/site-packages/partd-1.2.0-py3.8.egg (from dask>=2022.3.0->merlin-core==0.9.0+14.g4f73ff5) (1.2.0)
Requirement already satisfied: psutil>=5.0 in /var/jenkins_home/.local/lib/python3.8/site-packages/psutil-5.8.0-py3.8-linux-x86_64.egg (from distributed>=2022.3.0->merlin-core==0.9.0+14.g4f73ff5) (5.8.0)
Requirement already satisfied: zict>=0.1.3 in /var/jenkins_home/.local/lib/python3.8/site-packages/zict-2.0.0-py3.8.egg (from distributed>=2022.3.0->merlin-core==0.9.0+14.g4f73ff5) (2.0.0)
Requirement already satisfied: sortedcontainers!=2.0.0,!=2.0.1 in /var/jenkins_home/.local/lib/python3.8/site-packages/sortedcontainers-2.4.0-py3.8.egg (from distributed>=2022.3.0->merlin-core==0.9.0+14.g4f73ff5) (2.4.0)
Requirement already satisfied: msgpack>=0.6.0 in /usr/local/lib/python3.8/dist-packages (from distributed>=2022.3.0->merlin-core==0.9.0+14.g4f73ff5) (1.0.4)
Requirement already satisfied: jinja2 in /usr/local/lib/python3.8/dist-packages (from distributed>=2022.3.0->merlin-core==0.9.0+14.g4f73ff5) (3.1.2)
Requirement already satisfied: click>=6.6 in /usr/local/lib/python3.8/dist-packages (from distributed>=2022.3.0->merlin-core==0.9.0+14.g4f73ff5) (8.1.3)
Requirement already satisfied: tblib>=1.6.0 in /var/jenkins_home/.local/lib/python3.8/site-packages/tblib-1.7.0-py3.8.egg (from distributed>=2022.3.0->merlin-core==0.9.0+14.g4f73ff5) (1.7.0)
Requirement already satisfied: tornado>=6.0.3 in /var/jenkins_home/.local/lib/python3.8/site-packages/tornado-6.1-py3.8-linux-x86_64.egg (from distributed>=2022.3.0->merlin-core==0.9.0+14.g4f73ff5) (6.1)
Requirement already satisfied: setuptools in ./.tox/test-gpu/lib/python3.8/site-packages (from numba>=0.54->merlin-core==0.9.0+14.g4f73ff5) (65.5.1)
Requirement already satisfied: llvmlite<0.39,>=0.38.0rc1 in ./.tox/test-gpu/lib/python3.8/site-packages (from numba>=0.54->merlin-core==0.9.0+14.g4f73ff5) (0.38.1)
Requirement already satisfied: numpy<1.22,>=1.18 in /var/jenkins_home/.local/lib/python3.8/site-packages (from numba>=0.54->merlin-core==0.9.0+14.g4f73ff5) (1.20.3)
Requirement already satisfied: pyparsing!=3.0.5,>=2.0.2 in /usr/local/lib/python3.8/dist-packages (from packaging->merlin-core==0.9.0+14.g4f73ff5) (3.0.9)
Requirement already satisfied: python-dateutil>=2.7.3 in /usr/local/lib/python3.8/dist-packages (from pandas<1.4.0dev0,>=1.2.0->merlin-core==0.9.0+14.g4f73ff5) (2.8.2)
Requirement already satisfied: pytz>=2017.3 in /usr/local/lib/python3.8/dist-packages (from pandas<1.4.0dev0,>=1.2.0->merlin-core==0.9.0+14.g4f73ff5) (2022.2.1)
Requirement already satisfied: absl-py<2.0.0,>=0.9 in /usr/local/lib/python3.8/dist-packages (from tensorflow-metadata>=1.2.0->merlin-core==0.9.0+14.g4f73ff5) (1.2.0)
Requirement already satisfied: googleapis-common-protos<2,>=1.52.0 in /usr/local/lib/python3.8/dist-packages (from tensorflow-metadata>=1.2.0->merlin-core==0.9.0+14.g4f73ff5) (1.52.0)
Requirement already satisfied: locket in /var/jenkins_home/.local/lib/python3.8/site-packages/locket-0.2.1-py3.8.egg (from partd>=0.3.10->dask>=2022.3.0->merlin-core==0.9.0+14.g4f73ff5) (0.2.1)
Requirement already satisfied: six>=1.5 in /var/jenkins_home/.local/lib/python3.8/site-packages (from python-dateutil>=2.7.3->pandas<1.4.0dev0,>=1.2.0->merlin-core==0.9.0+14.g4f73ff5) (1.15.0)
Requirement already satisfied: heapdict in /var/jenkins_home/.local/lib/python3.8/site-packages/HeapDict-1.0.1-py3.8.egg (from zict>=0.1.3->distributed>=2022.3.0->merlin-core==0.9.0+14.g4f73ff5) (1.0.1)
Requirement already satisfied: multidict in /usr/local/lib/python3.8/dist-packages (from grpclib->betterproto<2.0.0->merlin-core==0.9.0+14.g4f73ff5) (6.0.2)
Requirement already satisfied: h2<5,>=3.1.0 in /usr/local/lib/python3.8/dist-packages (from grpclib->betterproto<2.0.0->merlin-core==0.9.0+14.g4f73ff5) (4.1.0)
Requirement already satisfied: MarkupSafe>=2.0 in /usr/local/lib/python3.8/dist-packages (from jinja2->distributed>=2022.3.0->merlin-core==0.9.0+14.g4f73ff5) (2.1.1)
Requirement already satisfied: hpack<5,>=4.0 in /usr/local/lib/python3.8/dist-packages (from h2<5,>=3.1.0->grpclib->betterproto<2.0.0->merlin-core==0.9.0+14.g4f73ff5) (4.0.0)
Requirement already satisfied: hyperframe<7,>=6.0 in /usr/local/lib/python3.8/dist-packages (from h2<5,>=3.1.0->grpclib->betterproto<2.0.0->merlin-core==0.9.0+14.g4f73ff5) (6.0.1)
Building wheels for collected packages: merlin-core
  Building wheel for merlin-core (pyproject.toml): started
  Building wheel for merlin-core (pyproject.toml): finished with status 'done'
  Created wheel for merlin-core: filename=merlin_core-0.9.0+14.g4f73ff5-py3-none-any.whl size=119010 sha256=6cad626a63eafb4a98704f7067bd3552895df84de7dc04c24c17707d2a56ff07
  Stored in directory: /tmp/pip-ephem-wheel-cache-73baxvc4/wheels/c8/38/16/a6968787eafcec5fa772148af8408b089562f71af0752e8e84
Successfully built merlin-core
Installing collected packages: merlin-core
  Attempting uninstall: merlin-core
    Found existing installation: merlin-core 0.3.0+12.g78ecddd
    Not uninstalling merlin-core at /var/jenkins_home/.local/lib/python3.8/site-packages, outside environment /var/jenkins_home/workspace/nvtabular_tests/nvtabular/.tox/test-gpu
    Can't uninstall 'merlin-core'. No files were found to uninstall.
Successfully installed merlin-core-0.9.0+14.g4f73ff5
test-gpu run-test: commands[1] | python -m pip install --upgrade git+https://github.com/NVIDIA-Merlin/dataloader.git
Looking in indexes: https://pypi.org/simple, https://pypi.ngc.nvidia.com
Collecting git+https://github.com/NVIDIA-Merlin/dataloader.git
  Cloning https://github.com/NVIDIA-Merlin/dataloader.git to /tmp/pip-req-build-2j9v4k6u
  Running command git clone --filter=blob:none --quiet https://github.com/NVIDIA-Merlin/dataloader.git /tmp/pip-req-build-2j9v4k6u
  Resolved https://github.com/NVIDIA-Merlin/dataloader.git to commit 498543d54629216dc09a5854dca4dbeeabcab356
  Installing build dependencies: started
  Installing build dependencies: finished with status 'done'
  Getting requirements to build wheel: started
  Getting requirements to build wheel: finished with status 'done'
  Preparing metadata (pyproject.toml): started
  Preparing metadata (pyproject.toml): finished with status 'done'
Requirement already satisfied: merlin-core>=0.8.0 in ./.tox/test-gpu/lib/python3.8/site-packages (from merlin-dataloader==0.0.2+22.g498543d) (0.9.0+14.g4f73ff5)
Requirement already satisfied: distributed>=2022.3.0 in /var/jenkins_home/.local/lib/python3.8/site-packages (from merlin-core>=0.8.0->merlin-dataloader==0.0.2+22.g498543d) (2022.3.0)
Requirement already satisfied: pyarrow>=5.0.0 in /usr/local/lib/python3.8/dist-packages (from merlin-core>=0.8.0->merlin-dataloader==0.0.2+22.g498543d) (7.0.0)
Requirement already satisfied: betterproto<2.0.0 in /usr/local/lib/python3.8/dist-packages (from merlin-core>=0.8.0->merlin-dataloader==0.0.2+22.g498543d) (1.2.5)
Requirement already satisfied: tqdm>=4.0 in /usr/local/lib/python3.8/dist-packages (from merlin-core>=0.8.0->merlin-dataloader==0.0.2+22.g498543d) (4.64.1)
Requirement already satisfied: pandas<1.4.0dev0,>=1.2.0 in /var/jenkins_home/.local/lib/python3.8/site-packages (from merlin-core>=0.8.0->merlin-dataloader==0.0.2+22.g498543d) (1.3.5)
Requirement already satisfied: protobuf>=3.0.0 in /usr/local/lib/python3.8/dist-packages (from merlin-core>=0.8.0->merlin-dataloader==0.0.2+22.g498543d) (3.19.5)
Requirement already satisfied: numba>=0.54 in /var/jenkins_home/.local/lib/python3.8/site-packages (from merlin-core>=0.8.0->merlin-dataloader==0.0.2+22.g498543d) (0.55.1)
Requirement already satisfied: dask>=2022.3.0 in /var/jenkins_home/.local/lib/python3.8/site-packages (from merlin-core>=0.8.0->merlin-dataloader==0.0.2+22.g498543d) (2022.3.0)
Requirement already satisfied: packaging in /usr/local/lib/python3.8/dist-packages (from merlin-core>=0.8.0->merlin-dataloader==0.0.2+22.g498543d) (21.3)
Requirement already satisfied: tensorflow-metadata>=1.2.0 in /usr/local/lib/python3.8/dist-packages (from merlin-core>=0.8.0->merlin-dataloader==0.0.2+22.g498543d) (1.10.0)
Requirement already satisfied: fsspec==2022.5.0 in /var/jenkins_home/.local/lib/python3.8/site-packages (from merlin-core>=0.8.0->merlin-dataloader==0.0.2+22.g498543d) (2022.5.0)
Requirement already satisfied: grpclib in /usr/local/lib/python3.8/dist-packages (from betterproto<2.0.0->merlin-core>=0.8.0->merlin-dataloader==0.0.2+22.g498543d) (0.4.3)
Requirement already satisfied: stringcase in /usr/local/lib/python3.8/dist-packages (from betterproto<2.0.0->merlin-core>=0.8.0->merlin-dataloader==0.0.2+22.g498543d) (1.2.0)
Requirement already satisfied: toolz>=0.8.2 in /usr/local/lib/python3.8/dist-packages (from dask>=2022.3.0->merlin-core>=0.8.0->merlin-dataloader==0.0.2+22.g498543d) (0.12.0)
Requirement already satisfied: pyyaml>=5.3.1 in /var/jenkins_home/.local/lib/python3.8/site-packages/PyYAML-5.4.1-py3.8-linux-x86_64.egg (from dask>=2022.3.0->merlin-core>=0.8.0->merlin-dataloader==0.0.2+22.g498543d) (5.4.1)
Requirement already satisfied: cloudpickle>=1.1.1 in /usr/local/lib/python3.8/dist-packages (from dask>=2022.3.0->merlin-core>=0.8.0->merlin-dataloader==0.0.2+22.g498543d) (2.2.0)
Requirement already satisfied: partd>=0.3.10 in /var/jenkins_home/.local/lib/python3.8/site-packages/partd-1.2.0-py3.8.egg (from dask>=2022.3.0->merlin-core>=0.8.0->merlin-dataloader==0.0.2+22.g498543d) (1.2.0)
Requirement already satisfied: psutil>=5.0 in /var/jenkins_home/.local/lib/python3.8/site-packages/psutil-5.8.0-py3.8-linux-x86_64.egg (from distributed>=2022.3.0->merlin-core>=0.8.0->merlin-dataloader==0.0.2+22.g498543d) (5.8.0)
Requirement already satisfied: zict>=0.1.3 in /var/jenkins_home/.local/lib/python3.8/site-packages/zict-2.0.0-py3.8.egg (from distributed>=2022.3.0->merlin-core>=0.8.0->merlin-dataloader==0.0.2+22.g498543d) (2.0.0)
Requirement already satisfied: sortedcontainers!=2.0.0,!=2.0.1 in /var/jenkins_home/.local/lib/python3.8/site-packages/sortedcontainers-2.4.0-py3.8.egg (from distributed>=2022.3.0->merlin-core>=0.8.0->merlin-dataloader==0.0.2+22.g498543d) (2.4.0)
Requirement already satisfied: msgpack>=0.6.0 in /usr/local/lib/python3.8/dist-packages (from distributed>=2022.3.0->merlin-core>=0.8.0->merlin-dataloader==0.0.2+22.g498543d) (1.0.4)
Requirement already satisfied: jinja2 in /usr/local/lib/python3.8/dist-packages (from distributed>=2022.3.0->merlin-core>=0.8.0->merlin-dataloader==0.0.2+22.g498543d) (3.1.2)
Requirement already satisfied: click>=6.6 in /usr/local/lib/python3.8/dist-packages (from distributed>=2022.3.0->merlin-core>=0.8.0->merlin-dataloader==0.0.2+22.g498543d) (8.1.3)
Requirement already satisfied: tblib>=1.6.0 in /var/jenkins_home/.local/lib/python3.8/site-packages/tblib-1.7.0-py3.8.egg (from distributed>=2022.3.0->merlin-core>=0.8.0->merlin-dataloader==0.0.2+22.g498543d) (1.7.0)
Requirement already satisfied: tornado>=6.0.3 in /var/jenkins_home/.local/lib/python3.8/site-packages/tornado-6.1-py3.8-linux-x86_64.egg (from distributed>=2022.3.0->merlin-core>=0.8.0->merlin-dataloader==0.0.2+22.g498543d) (6.1)
Requirement already satisfied: setuptools in ./.tox/test-gpu/lib/python3.8/site-packages (from numba>=0.54->merlin-core>=0.8.0->merlin-dataloader==0.0.2+22.g498543d) (65.5.1)
Requirement already satisfied: llvmlite<0.39,>=0.38.0rc1 in ./.tox/test-gpu/lib/python3.8/site-packages (from numba>=0.54->merlin-core>=0.8.0->merlin-dataloader==0.0.2+22.g498543d) (0.38.1)
Requirement already satisfied: numpy<1.22,>=1.18 in /var/jenkins_home/.local/lib/python3.8/site-packages (from numba>=0.54->merlin-core>=0.8.0->merlin-dataloader==0.0.2+22.g498543d) (1.20.3)
Requirement already satisfied: pyparsing!=3.0.5,>=2.0.2 in /usr/local/lib/python3.8/dist-packages (from packaging->merlin-core>=0.8.0->merlin-dataloader==0.0.2+22.g498543d) (3.0.9)
Requirement already satisfied: python-dateutil>=2.7.3 in /usr/local/lib/python3.8/dist-packages (from pandas<1.4.0dev0,>=1.2.0->merlin-core>=0.8.0->merlin-dataloader==0.0.2+22.g498543d) (2.8.2)
Requirement already satisfied: pytz>=2017.3 in /usr/local/lib/python3.8/dist-packages (from pandas<1.4.0dev0,>=1.2.0->merlin-core>=0.8.0->merlin-dataloader==0.0.2+22.g498543d) (2022.2.1)
Requirement already satisfied: absl-py<2.0.0,>=0.9 in /usr/local/lib/python3.8/dist-packages (from tensorflow-metadata>=1.2.0->merlin-core>=0.8.0->merlin-dataloader==0.0.2+22.g498543d) (1.2.0)
Requirement already satisfied: googleapis-common-protos<2,>=1.52.0 in /usr/local/lib/python3.8/dist-packages (from tensorflow-metadata>=1.2.0->merlin-core>=0.8.0->merlin-dataloader==0.0.2+22.g498543d) (1.52.0)
Requirement already satisfied: locket in /var/jenkins_home/.local/lib/python3.8/site-packages/locket-0.2.1-py3.8.egg (from partd>=0.3.10->dask>=2022.3.0->merlin-core>=0.8.0->merlin-dataloader==0.0.2+22.g498543d) (0.2.1)
Requirement already satisfied: six>=1.5 in /var/jenkins_home/.local/lib/python3.8/site-packages (from python-dateutil>=2.7.3->pandas<1.4.0dev0,>=1.2.0->merlin-core>=0.8.0->merlin-dataloader==0.0.2+22.g498543d) (1.15.0)
Requirement already satisfied: heapdict in /var/jenkins_home/.local/lib/python3.8/site-packages/HeapDict-1.0.1-py3.8.egg (from zict>=0.1.3->distributed>=2022.3.0->merlin-core>=0.8.0->merlin-dataloader==0.0.2+22.g498543d) (1.0.1)
Requirement already satisfied: multidict in /usr/local/lib/python3.8/dist-packages (from grpclib->betterproto<2.0.0->merlin-core>=0.8.0->merlin-dataloader==0.0.2+22.g498543d) (6.0.2)
Requirement already satisfied: h2<5,>=3.1.0 in /usr/local/lib/python3.8/dist-packages (from grpclib->betterproto<2.0.0->merlin-core>=0.8.0->merlin-dataloader==0.0.2+22.g498543d) (4.1.0)
Requirement already satisfied: MarkupSafe>=2.0 in /usr/local/lib/python3.8/dist-packages (from jinja2->distributed>=2022.3.0->merlin-core>=0.8.0->merlin-dataloader==0.0.2+22.g498543d) (2.1.1)
Requirement already satisfied: hpack<5,>=4.0 in /usr/local/lib/python3.8/dist-packages (from h2<5,>=3.1.0->grpclib->betterproto<2.0.0->merlin-core>=0.8.0->merlin-dataloader==0.0.2+22.g498543d) (4.0.0)
Requirement already satisfied: hyperframe<7,>=6.0 in /usr/local/lib/python3.8/dist-packages (from h2<5,>=3.1.0->grpclib->betterproto<2.0.0->merlin-core>=0.8.0->merlin-dataloader==0.0.2+22.g498543d) (6.0.1)
Building wheels for collected packages: merlin-dataloader
  Building wheel for merlin-dataloader (pyproject.toml): started
  Building wheel for merlin-dataloader (pyproject.toml): finished with status 'done'
  Created wheel for merlin-dataloader: filename=merlin_dataloader-0.0.2+22.g498543d-py3-none-any.whl size=40350 sha256=342ff7198876fe2f910254191a2a89a4532f08471dbaeb3004da25eedf4bef0d
  Stored in directory: /tmp/pip-ephem-wheel-cache-6ez6s_ak/wheels/de/f5/d9/251909f4627d2920fb15548f5ffd6daf1bf24c3c56bb4977b1
Successfully built merlin-dataloader
Installing collected packages: merlin-dataloader
  Attempting uninstall: merlin-dataloader
    Found existing installation: merlin-dataloader 0.0.3
    Uninstalling merlin-dataloader-0.0.3:
      Successfully uninstalled merlin-dataloader-0.0.3
Successfully installed merlin-dataloader-0.0.2+22.g498543d
test-gpu run-test: commands[2] | python -m pip install --upgrade git+https://github.com/NVIDIA-Merlin/models.git
Looking in indexes: https://pypi.org/simple, https://pypi.ngc.nvidia.com
Collecting git+https://github.com/NVIDIA-Merlin/models.git
  Cloning https://github.com/NVIDIA-Merlin/models.git to /tmp/pip-req-build-wo_wa04s
  Running command git clone --filter=blob:none --quiet https://github.com/NVIDIA-Merlin/models.git /tmp/pip-req-build-wo_wa04s
  Resolved https://github.com/NVIDIA-Merlin/models.git to commit e08a72c9c59416a9000e62d25548eb08367fc3fa
  Installing build dependencies: started
  Installing build dependencies: finished with status 'done'
  Getting requirements to build wheel: started
  Getting requirements to build wheel: finished with status 'done'
  Preparing metadata (pyproject.toml): started
  Preparing metadata (pyproject.toml): finished with status 'done'
Requirement already satisfied: merlin-core>=0.2.0 in ./.tox/test-gpu/lib/python3.8/site-packages (from merlin-models==0.9.0+61.ge08a72c9) (0.9.0+14.g4f73ff5)
Requirement already satisfied: distributed>=2022.3.0 in /var/jenkins_home/.local/lib/python3.8/site-packages (from merlin-core>=0.2.0->merlin-models==0.9.0+61.ge08a72c9) (2022.3.0)
Requirement already satisfied: pyarrow>=5.0.0 in /usr/local/lib/python3.8/dist-packages (from merlin-core>=0.2.0->merlin-models==0.9.0+61.ge08a72c9) (7.0.0)
Requirement already satisfied: betterproto<2.0.0 in /usr/local/lib/python3.8/dist-packages (from merlin-core>=0.2.0->merlin-models==0.9.0+61.ge08a72c9) (1.2.5)
Requirement already satisfied: tqdm>=4.0 in /usr/local/lib/python3.8/dist-packages (from merlin-core>=0.2.0->merlin-models==0.9.0+61.ge08a72c9) (4.64.1)
Requirement already satisfied: pandas<1.4.0dev0,>=1.2.0 in /var/jenkins_home/.local/lib/python3.8/site-packages (from merlin-core>=0.2.0->merlin-models==0.9.0+61.ge08a72c9) (1.3.5)
Requirement already satisfied: protobuf>=3.0.0 in /usr/local/lib/python3.8/dist-packages (from merlin-core>=0.2.0->merlin-models==0.9.0+61.ge08a72c9) (3.19.5)
Requirement already satisfied: numba>=0.54 in /var/jenkins_home/.local/lib/python3.8/site-packages (from merlin-core>=0.2.0->merlin-models==0.9.0+61.ge08a72c9) (0.55.1)
Requirement already satisfied: dask>=2022.3.0 in /var/jenkins_home/.local/lib/python3.8/site-packages (from merlin-core>=0.2.0->merlin-models==0.9.0+61.ge08a72c9) (2022.3.0)
Requirement already satisfied: packaging in /usr/local/lib/python3.8/dist-packages (from merlin-core>=0.2.0->merlin-models==0.9.0+61.ge08a72c9) (21.3)
Requirement already satisfied: tensorflow-metadata>=1.2.0 in /usr/local/lib/python3.8/dist-packages (from merlin-core>=0.2.0->merlin-models==0.9.0+61.ge08a72c9) (1.10.0)
Requirement already satisfied: fsspec==2022.5.0 in /var/jenkins_home/.local/lib/python3.8/site-packages (from merlin-core>=0.2.0->merlin-models==0.9.0+61.ge08a72c9) (2022.5.0)
Requirement already satisfied: grpclib in /usr/local/lib/python3.8/dist-packages (from betterproto<2.0.0->merlin-core>=0.2.0->merlin-models==0.9.0+61.ge08a72c9) (0.4.3)
Requirement already satisfied: stringcase in /usr/local/lib/python3.8/dist-packages (from betterproto<2.0.0->merlin-core>=0.2.0->merlin-models==0.9.0+61.ge08a72c9) (1.2.0)
Requirement already satisfied: toolz>=0.8.2 in /usr/local/lib/python3.8/dist-packages (from dask>=2022.3.0->merlin-core>=0.2.0->merlin-models==0.9.0+61.ge08a72c9) (0.12.0)
Requirement already satisfied: pyyaml>=5.3.1 in /var/jenkins_home/.local/lib/python3.8/site-packages/PyYAML-5.4.1-py3.8-linux-x86_64.egg (from dask>=2022.3.0->merlin-core>=0.2.0->merlin-models==0.9.0+61.ge08a72c9) (5.4.1)
Requirement already satisfied: cloudpickle>=1.1.1 in /usr/local/lib/python3.8/dist-packages (from dask>=2022.3.0->merlin-core>=0.2.0->merlin-models==0.9.0+61.ge08a72c9) (2.2.0)
Requirement already satisfied: partd>=0.3.10 in /var/jenkins_home/.local/lib/python3.8/site-packages/partd-1.2.0-py3.8.egg (from dask>=2022.3.0->merlin-core>=0.2.0->merlin-models==0.9.0+61.ge08a72c9) (1.2.0)
Requirement already satisfied: psutil>=5.0 in /var/jenkins_home/.local/lib/python3.8/site-packages/psutil-5.8.0-py3.8-linux-x86_64.egg (from distributed>=2022.3.0->merlin-core>=0.2.0->merlin-models==0.9.0+61.ge08a72c9) (5.8.0)
Requirement already satisfied: zict>=0.1.3 in /var/jenkins_home/.local/lib/python3.8/site-packages/zict-2.0.0-py3.8.egg (from distributed>=2022.3.0->merlin-core>=0.2.0->merlin-models==0.9.0+61.ge08a72c9) (2.0.0)
Requirement already satisfied: sortedcontainers!=2.0.0,!=2.0.1 in /var/jenkins_home/.local/lib/python3.8/site-packages/sortedcontainers-2.4.0-py3.8.egg (from distributed>=2022.3.0->merlin-core>=0.2.0->merlin-models==0.9.0+61.ge08a72c9) (2.4.0)
Requirement already satisfied: msgpack>=0.6.0 in /usr/local/lib/python3.8/dist-packages (from distributed>=2022.3.0->merlin-core>=0.2.0->merlin-models==0.9.0+61.ge08a72c9) (1.0.4)
Requirement already satisfied: jinja2 in /usr/local/lib/python3.8/dist-packages (from distributed>=2022.3.0->merlin-core>=0.2.0->merlin-models==0.9.0+61.ge08a72c9) (3.1.2)
Requirement already satisfied: click>=6.6 in /usr/local/lib/python3.8/dist-packages (from distributed>=2022.3.0->merlin-core>=0.2.0->merlin-models==0.9.0+61.ge08a72c9) (8.1.3)
Requirement already satisfied: tblib>=1.6.0 in /var/jenkins_home/.local/lib/python3.8/site-packages/tblib-1.7.0-py3.8.egg (from distributed>=2022.3.0->merlin-core>=0.2.0->merlin-models==0.9.0+61.ge08a72c9) (1.7.0)
Requirement already satisfied: tornado>=6.0.3 in /var/jenkins_home/.local/lib/python3.8/site-packages/tornado-6.1-py3.8-linux-x86_64.egg (from distributed>=2022.3.0->merlin-core>=0.2.0->merlin-models==0.9.0+61.ge08a72c9) (6.1)
Requirement already satisfied: setuptools in ./.tox/test-gpu/lib/python3.8/site-packages (from numba>=0.54->merlin-core>=0.2.0->merlin-models==0.9.0+61.ge08a72c9) (65.5.1)
Requirement already satisfied: llvmlite<0.39,>=0.38.0rc1 in ./.tox/test-gpu/lib/python3.8/site-packages (from numba>=0.54->merlin-core>=0.2.0->merlin-models==0.9.0+61.ge08a72c9) (0.38.1)
Requirement already satisfied: numpy<1.22,>=1.18 in /var/jenkins_home/.local/lib/python3.8/site-packages (from numba>=0.54->merlin-core>=0.2.0->merlin-models==0.9.0+61.ge08a72c9) (1.20.3)
Requirement already satisfied: pyparsing!=3.0.5,>=2.0.2 in /usr/local/lib/python3.8/dist-packages (from packaging->merlin-core>=0.2.0->merlin-models==0.9.0+61.ge08a72c9) (3.0.9)
Requirement already satisfied: python-dateutil>=2.7.3 in /usr/local/lib/python3.8/dist-packages (from pandas<1.4.0dev0,>=1.2.0->merlin-core>=0.2.0->merlin-models==0.9.0+61.ge08a72c9) (2.8.2)
Requirement already satisfied: pytz>=2017.3 in /usr/local/lib/python3.8/dist-packages (from pandas<1.4.0dev0,>=1.2.0->merlin-core>=0.2.0->merlin-models==0.9.0+61.ge08a72c9) (2022.2.1)
Requirement already satisfied: absl-py<2.0.0,>=0.9 in /usr/local/lib/python3.8/dist-packages (from tensorflow-metadata>=1.2.0->merlin-core>=0.2.0->merlin-models==0.9.0+61.ge08a72c9) (1.2.0)
Requirement already satisfied: googleapis-common-protos<2,>=1.52.0 in /usr/local/lib/python3.8/dist-packages (from tensorflow-metadata>=1.2.0->merlin-core>=0.2.0->merlin-models==0.9.0+61.ge08a72c9) (1.52.0)
Requirement already satisfied: locket in /var/jenkins_home/.local/lib/python3.8/site-packages/locket-0.2.1-py3.8.egg (from partd>=0.3.10->dask>=2022.3.0->merlin-core>=0.2.0->merlin-models==0.9.0+61.ge08a72c9) (0.2.1)
Requirement already satisfied: six>=1.5 in /var/jenkins_home/.local/lib/python3.8/site-packages (from python-dateutil>=2.7.3->pandas<1.4.0dev0,>=1.2.0->merlin-core>=0.2.0->merlin-models==0.9.0+61.ge08a72c9) (1.15.0)
Requirement already satisfied: heapdict in /var/jenkins_home/.local/lib/python3.8/site-packages/HeapDict-1.0.1-py3.8.egg (from zict>=0.1.3->distributed>=2022.3.0->merlin-core>=0.2.0->merlin-models==0.9.0+61.ge08a72c9) (1.0.1)
Requirement already satisfied: multidict in /usr/local/lib/python3.8/dist-packages (from grpclib->betterproto<2.0.0->merlin-core>=0.2.0->merlin-models==0.9.0+61.ge08a72c9) (6.0.2)
Requirement already satisfied: h2<5,>=3.1.0 in /usr/local/lib/python3.8/dist-packages (from grpclib->betterproto<2.0.0->merlin-core>=0.2.0->merlin-models==0.9.0+61.ge08a72c9) (4.1.0)
Requirement already satisfied: MarkupSafe>=2.0 in /usr/local/lib/python3.8/dist-packages (from jinja2->distributed>=2022.3.0->merlin-core>=0.2.0->merlin-models==0.9.0+61.ge08a72c9) (2.1.1)
Requirement already satisfied: hpack<5,>=4.0 in /usr/local/lib/python3.8/dist-packages (from h2<5,>=3.1.0->grpclib->betterproto<2.0.0->merlin-core>=0.2.0->merlin-models==0.9.0+61.ge08a72c9) (4.0.0)
Requirement already satisfied: hyperframe<7,>=6.0 in /usr/local/lib/python3.8/dist-packages (from h2<5,>=3.1.0->grpclib->betterproto<2.0.0->merlin-core>=0.2.0->merlin-models==0.9.0+61.ge08a72c9) (6.0.1)
Building wheels for collected packages: merlin-models
  Building wheel for merlin-models (pyproject.toml): started
  Building wheel for merlin-models (pyproject.toml): finished with status 'done'
  Created wheel for merlin-models: filename=merlin_models-0.9.0+61.ge08a72c9-py3-none-any.whl size=367208 sha256=ccdbe2376054f7dda33385993eaccfa4a9372ca81b60dab8220e418fd95ce849
  Stored in directory: /tmp/pip-ephem-wheel-cache-wvl4yjyw/wheels/5a/43/99/d50fe2c33b4f4686db73207ce3865e0d6be6609ffb03abade5
Successfully built merlin-models
Installing collected packages: merlin-models
  Attempting uninstall: merlin-models
    Found existing installation: merlin-models 0.7.0+11.g280956aa4
    Not uninstalling merlin-models at /usr/local/lib/python3.8/dist-packages, outside environment /var/jenkins_home/workspace/nvtabular_tests/nvtabular/.tox/test-gpu
    Can't uninstall 'merlin-models'. No files were found to uninstall.
Successfully installed merlin-models-0.9.0+61.ge08a72c9
test-gpu run-test: commands[3] | python -m pytest --cov-report term --cov merlin -rxs tests/unit
============================= test session starts ==============================
platform linux -- Python 3.8.10, pytest-7.1.3, pluggy-1.0.0
cachedir: .tox/test-gpu/.pytest_cache
rootdir: /var/jenkins_home/workspace/nvtabular_tests/nvtabular, configfile: pyproject.toml
plugins: anyio-3.5.0, xdist-3.0.2, cov-4.0.0
collected 1439 items / 1 skipped

tests/unit/test_dask_nvt.py ............................................ [ 3%]
........................................................................ [ 8%]
.... [ 8%]
tests/unit/test_notebooks.py .... [ 8%]
tests/unit/test_tf4rec.py . [ 8%]
tests/unit/test_tools.py ...................... [ 10%]
tests/unit/test_triton_inference.py ................................ [ 12%]
tests/unit/examples/test_01-Getting-started.py . [ 12%]
tests/unit/examples/test_02-Advanced-NVTabular-workflow.py . [ 12%]
tests/unit/examples/test_03-Running-on-multiple-GPUs-or-on-CPU.py F [ 12%]
tests/unit/framework_utils/test_tf_feature_columns.py . [ 12%]
tests/unit/framework_utils/test_tf_layers.py ........................... [ 14%]
................................................... [ 18%]
tests/unit/framework_utils/test_torch_layers.py . [ 18%]
tests/unit/loader/test_tf_dataloader.py ................................ [ 20%]
........................................s.. [ 23%]
tests/unit/loader/test_torch_dataloader.py ............................. [ 25%]
..................................................... [ 29%]
tests/unit/ops/test_categorify.py ...................................... [ 31%]
........................................................................ [ 36%]
..................................................... [ 40%]
tests/unit/ops/test_column_similarity.py ........................ [ 42%]
tests/unit/ops/test_drop_low_cardinality.py .. [ 42%]
tests/unit/ops/test_fill.py ............................................ [ 45%]
........ [ 45%]
tests/unit/ops/test_groupyby.py ....................... [ 47%]
tests/unit/ops/test_hash_bucket.py ......................... [ 49%]
tests/unit/ops/test_join.py ............................................ [ 52%]
........................................................................ [ 57%]
.................................. [ 59%]
tests/unit/ops/test_lambda.py .......... [ 60%]
tests/unit/ops/test_normalize.py ....................................... [ 63%]
.. [ 63%]
tests/unit/ops/test_ops.py ............................................. [ 66%]
.................... [ 67%]
tests/unit/ops/test_ops_schema.py ...................................... [ 70%]
........................................................................ [ 75%]
........................................................................ [ 80%]
........................................................................ [ 85%]
....................................... [ 88%]
tests/unit/ops/test_reduce_dtype_size.py .. [ 88%]
tests/unit/ops/test_target_encode.py ..................... [ 89%]
tests/unit/ops/test_value_count.py ... [ 89%]
tests/unit/workflow/test_cpu_workflow.py ...... [ 90%]
tests/unit/workflow/test_workflow.py ................................... [ 92%]
.......................................................... [ 96%]
tests/unit/workflow/test_workflow_chaining.py ... [ 96%]
tests/unit/workflow/test_workflow_node.py ........... [ 97%]
tests/unit/workflow/test_workflow_ops.py ... [ 97%]
tests/unit/workflow/test_workflow_schemas.py ........................... [ 99%]
... [100%]

=================================== FAILURES ===================================
_______________________________ test_example_03 ________________________________

def test_example_03():
    with testbook(
        REPO_ROOT / "examples" / "03-Running-on-multiple-GPUs-or-on-CPU.ipynb",
        execute=False,
        timeout=180,
    ) as tb:
        tb.inject(
            """
            import os
            from unittest.mock import patch
            from merlin.datasets.synthetic import generate_data
            mock_train, mock_valid = generate_data(
                input="movielens-1m",
                num_rows=1000,
                set_sizes=(0.8, 0.2)
            )
            input_path = os.environ.get(
                "INPUT_DATA_DIR",
                os.path.expanduser("~/merlin-framework/movielens/")
            )
            from pathlib import Path
            Path(f'{input_path}ml-1m').mkdir(parents=True, exist_ok=True)
            mock_train.compute().to_parquet(f'{input_path}ml-1m/train.parquet')
            mock_train.compute().to_parquet(f'{input_path}ml-1m/valid.parquet')

            p1 = patch(
                "merlin.datasets.entertainment.get_movielens",
                return_value=[mock_train, mock_valid]
            )
            p1.start()

            """
        )
      tb.execute()

tests/unit/examples/test_03-Running-on-multiple-GPUs-or-on-CPU.py:59:


../../../.local/lib/python3.8/site-packages/testbook/client.py:147: in execute
super().execute_cell(cell, index)
../../../.local/lib/python3.8/site-packages/nbclient/util.py:84: in wrapped
return just_run(coro(*args, **kwargs))
../../../.local/lib/python3.8/site-packages/nbclient/util.py:62: in just_run
return loop.run_until_complete(coro)
/usr/local/lib/python3.8/dist-packages/nest_asyncio.py:89: in run_until_complete
return f.result()
/usr/lib/python3.8/asyncio/futures.py:178: in result
raise self._exception
/usr/lib/python3.8/asyncio/tasks.py:280: in __step
result = coro.send(None)
../../../.local/lib/python3.8/site-packages/nbclient/client.py:965: in async_execute_cell
await self._check_raise_for_error(cell, cell_index, exec_reply)


self = <testbook.client.TestbookNotebookClient object at 0x7fc6968e2e80>
cell = {'cell_type': 'code', 'execution_count': 6, 'id': 'e02409ee', 'metadata': {'execution': {'iopub.status.busy': '2022-12...rkdir,\n dashboard_address=":" + dashboard_port,\n rmm_pool_size=(device_pool_size // 256) * 256\n )'}
cell_index = 11
exec_reply = {'buffers': [], 'content': {'ename': 'MemoryError', 'engine_info': {'engine_id': -1, 'engine_uuid': '1ed995bb-65b1-4a0...e, 'engine': '1ed995bb-65b1-4a09-a48f-207ddab09899', 'started': '2022-12-01T18:37:18.942615Z', 'status': 'error'}, ...}

async def _check_raise_for_error(
    self, cell: NotebookNode, cell_index: int, exec_reply: t.Optional[t.Dict]
) -> None:

    if exec_reply is None:
        return None

    exec_reply_content = exec_reply['content']
    if exec_reply_content['status'] != 'error':
        return None

    cell_allows_errors = (not self.force_raise_errors) and (
        self.allow_errors
        or exec_reply_content.get('ename') in self.allow_error_names
        or "raises-exception" in cell.metadata.get("tags", [])
    )
    await run_hook(self.on_cell_error, cell=cell, cell_index=cell_index)
    if not cell_allows_errors:
      raise CellExecutionError.from_cell_and_msg(cell, exec_reply_content)

E nbclient.exceptions.CellExecutionError: An error occurred while executing the following cell:
E ------------------
E if cluster is None:
E cluster = LocalCUDACluster(
E protocol=protocol,
E n_workers=len(visible_devices.split(",")),
E CUDA_VISIBLE_DEVICES=visible_devices,
E device_memory_limit=device_limit,
E local_directory=dask_workdir,
E dashboard_address=":" + dashboard_port,
E rmm_pool_size=(device_pool_size // 256) * 256
E )
E ------------------
E
E �[0;31m---------------------------------------------------------------------------�[0m
E �[0;31mMemoryError�[0m Traceback (most recent call last)
E Cell �[0;32mIn [6], line 2�[0m
E �[1;32m 1�[0m �[38;5;28;01mif�[39;00m cluster �[38;5;129;01mis�[39;00m �[38;5;28;01mNone�[39;00m:
E �[0;32m----> 2�[0m cluster �[38;5;241m=�[39m �[43mLocalCUDACluster�[49m�[43m(�[49m
E �[1;32m 3�[0m �[43m �[49m�[43mprotocol�[49m�[38;5;241;43m=�[39;49m�[43mprotocol�[49m�[43m,�[49m
E �[1;32m 4�[0m �[43m �[49m�[43mn_workers�[49m�[38;5;241;43m=�[39;49m�[38;5;28;43mlen�[39;49m�[43m(�[49m�[43mvisible_devices�[49m�[38;5;241;43m.�[39;49m�[43msplit�[49m�[43m(�[49m�[38;5;124;43m"�[39;49m�[38;5;124;43m,�[39;49m�[38;5;124;43m"�[39;49m�[43m)�[49m�[43m)�[49m�[43m,�[49m
E �[1;32m 5�[0m �[43m �[49m�[43mCUDA_VISIBLE_DEVICES�[49m�[38;5;241;43m=�[39;49m�[43mvisible_devices�[49m�[43m,�[49m
E �[1;32m 6�[0m �[43m �[49m�[43mdevice_memory_limit�[49m�[38;5;241;43m=�[39;49m�[43mdevice_limit�[49m�[43m,�[49m
E �[1;32m 7�[0m �[43m �[49m�[43mlocal_directory�[49m�[38;5;241;43m=�[39;49m�[43mdask_workdir�[49m�[43m,�[49m
E �[1;32m 8�[0m �[43m �[49m�[43mdashboard_address�[49m�[38;5;241;43m=�[39;49m�[38;5;124;43m"�[39;49m�[38;5;124;43m:�[39;49m�[38;5;124;43m"�[39;49m�[43m �[49m�[38;5;241;43m+�[39;49m�[43m �[49m�[43mdashboard_port�[49m�[43m,�[49m
E �[1;32m 9�[0m �[43m �[49m�[43mrmm_pool_size�[49m�[38;5;241;43m=�[39;49m�[43m(�[49m�[43mdevice_pool_size�[49m�[43m �[49m�[38;5;241;43m/�[39;49m�[38;5;241;43m/�[39;49m�[43m �[49m�[38;5;241;43m256�[39;49m�[43m)�[49m�[43m �[49m�[38;5;241;43m�[39;49m�[43m �[49m�[38;5;241;43m256�[39;49m
E �[1;32m 10�[0m �[43m �[49m�[43m)�[49m
E
E File �[0;32m/usr/local/lib/python3.8/dist-packages/dask_cuda/local_cuda_cluster.py:367�[0m, in �[0;36mLocalCUDACluster.__init__�[0;34m(self, CUDA_VISIBLE_DEVICES, n_workers, threads_per_worker, memory_limit, device_memory_limit, data, local_directory, shared_filesystem, protocol, enable_tcp_over_ucx, enable_infiniband, enable_nvlink, enable_rdmacm, rmm_pool_size, rmm_maximum_pool_size, rmm_managed_memory, rmm_async, rmm_log_directory, rmm_track_allocations, jit_unspill, log_spilling, worker_class, pre_import, **kwargs)�[0m
E �[1;32m 365�[0m �[38;5;28mself�[39m�[38;5;241m.�[39mcuda_visible_devices �[38;5;241m=�[39m CUDA_VISIBLE_DEVICES
E �[1;32m 366�[0m �[38;5;28mself�[39m�[38;5;241m.�[39mscale(n_workers)
E �[0;32m--> 367�[0m �[38;5;28;43mself�[39;49m�[38;5;241;43m.�[39;49m�[43msync�[49m�[43m(�[49m�[38;5;28;43mself�[39;49m�[38;5;241;43m.�[39;49m�[43m_correct_state�[49m�[43m)�[49m
E
E File �[0;32m~/.local/lib/python3.8/site-packages/distributed/utils.py:309�[0m, in �[0;36mSyncMethodMixin.sync�[0;34m(self, func, asynchronous, callback_timeout, args, **kwargs)�[0m
E �[1;32m 307�[0m �[38;5;28;01mreturn�[39;00m future
E �[1;32m 308�[0m �[38;5;28;01melse�[39;00m:
E �[0;32m--> 309�[0m �[38;5;28;01mreturn�[39;00m �[43msync�[49m�[43m(�[49m
E �[1;32m 310�[0m �[43m �[49m�[38;5;28;43mself�[39;49m�[38;5;241;43m.�[39;49m�[43mloop�[49m�[43m,�[49m�[43m �[49m�[43mfunc�[49m�[43m,�[49m�[43m �[49m�[38;5;241;43m
�[39;49m�[43margs�[49m�[43m,�[49m�[43m �[49m�[43mcallback_timeout�[49m�[38;5;241;43m=�[39;49m�[43mcallback_timeout�[49m�[43m,�[49m�[43m �[49m�[38;5;241;43m
�[39;49m�[38;5;241;43m*�[39;49m�[43mkwargs�[49m
E �[1;32m 311�[0m �[43m �[49m�[43m)�[49m
E
E File �[0;32m~/.local/lib/python3.8/site-packages/distributed/utils.py:376�[0m, in �[0;36msync�[0;34m(loop, func, callback_timeout, *args, **kwargs)�[0m
E �[1;32m 374�[0m �[38;5;28;01mif�[39;00m error:
E �[1;32m 375�[0m typ, exc, tb �[38;5;241m=�[39m error
E �[0;32m--> 376�[0m �[38;5;28;01mraise�[39;00m exc�[38;5;241m.�[39mwith_traceback(tb)
E �[1;32m 377�[0m �[38;5;28;01melse�[39;00m:
E �[1;32m 378�[0m �[38;5;28;01mreturn�[39;00m result
E
E File �[0;32m~/.local/lib/python3.8/site-packages/distributed/utils.py:349�[0m, in �[0;36msync..f�[0;34m()�[0m
E �[1;32m 347�[0m future �[38;5;241m=�[39m asyncio�[38;5;241m.�[39mwait_for(future, callback_timeout)
E �[1;32m 348�[0m future �[38;5;241m=�[39m asyncio�[38;5;241m.�[39mensure_future(future)
E �[0;32m--> 349�[0m result �[38;5;241m=�[39m �[38;5;28;01myield�[39;00m future
E �[1;32m 350�[0m �[38;5;28;01mexcept�[39;00m �[38;5;167;01mException�[39;00m:
E �[1;32m 351�[0m error �[38;5;241m=�[39m sys�[38;5;241m.�[39mexc_info()
E
E File �[0;32m~/.local/lib/python3.8/site-packages/tornado-6.1-py3.8-linux-x86_64.egg/tornado/gen.py:762�[0m, in �[0;36mRunner.run�[0;34m(self)�[0m
E �[1;32m 759�[0m exc_info �[38;5;241m=�[39m �[38;5;28;01mNone�[39;00m
E �[1;32m 761�[0m �[38;5;28;01mtry�[39;00m:
E �[0;32m--> 762�[0m value �[38;5;241m=�[39m �[43mfuture�[49m�[38;5;241;43m.�[39;49m�[43mresult�[49m�[43m(�[49m�[43m)�[49m
E �[1;32m 763�[0m �[38;5;28;01mexcept�[39;00m �[38;5;167;01mException�[39;00m:
E �[1;32m 764�[0m exc_info �[38;5;241m=�[39m sys�[38;5;241m.�[39mexc_info()
E
E File �[0;32m~/.local/lib/python3.8/site-packages/distributed/deploy/spec.py:352�[0m, in �[0;36mSpecCluster._correct_state_internal�[0;34m(self)�[0m
E �[1;32m 350�[0m �[38;5;28;01mfor�[39;00m w �[38;5;129;01min�[39;00m workers:
E �[1;32m 351�[0m w�[38;5;241m.�[39m_cluster �[38;5;241m=�[39m weakref�[38;5;241m.�[39mref(�[38;5;28mself�[39m)
E �[0;32m--> 352�[0m �[38;5;28;01mawait�[39;00m w �[38;5;66;03m# for tornado gen.coroutine support�[39;00m
E �[1;32m 353�[0m �[38;5;28mself�[39m�[38;5;241m.�[39mworkers�[38;5;241m.�[39mupdate(�[38;5;28mdict�[39m(�[38;5;28mzip�[39m(to_open, workers)))
E
E File �[0;32m~/.local/lib/python3.8/site-packages/distributed/core.py:299�[0m, in �[0;36mServer.await.._�[0;34m()�[0m
E �[1;32m 293�[0m �[38;5;28;01mraise�[39;00m �[38;5;167;01mTimeoutError�[39;00m(
E �[1;32m 294�[0m �[38;5;124m"�[39m�[38;5;132;01m{}�[39;00m�[38;5;124m failed to start in �[39m�[38;5;132;01m{}�[39;00m�[38;5;124m seconds�[39m�[38;5;124m"�[39m�[38;5;241m.�[39mformat(
E �[1;32m 295�[0m �[38;5;28mtype�[39m(�[38;5;28mself�[39m)�[38;5;241m.�[39m�[38;5;18m__name__�[39m, timeout
E �[1;32m 296�[0m )
E �[1;32m 297�[0m )
E �[1;32m 298�[0m �[38;5;28;01melse�[39;00m:
E �[0;32m--> 299�[0m �[38;5;28;01mawait�[39;00m �[38;5;28mself�[39m�[38;5;241m.�[39mstart()
E �[1;32m 300�[0m �[38;5;28mself�[39m�[38;5;241m.�[39mstatus �[38;5;241m=�[39m Status�[38;5;241m.�[39mrunning
E �[1;32m 301�[0m �[38;5;28;01mreturn�[39;00m �[38;5;28mself�[39m
E
E File �[0;32m~/.local/lib/python3.8/site-packages/distributed/nanny.py:347�[0m, in �[0;36mNanny.start�[0;34m(self)�[0m
E �[1;32m 344�[0m �[38;5;28;01mawait�[39;00m �[38;5;28mself�[39m�[38;5;241m.�[39mplugin_add(plugin�[38;5;241m=�[39mplugin, name�[38;5;241m=�[39mname)
E �[1;32m 346�[0m logger�[38;5;241m.�[39minfo(�[38;5;124m"�[39m�[38;5;124m Start Nanny at: �[39m�[38;5;132;01m%r�[39;00m�[38;5;124m"�[39m, �[38;5;28mself�[39m�[38;5;241m.�[39maddress)
E �[0;32m--> 347�[0m response �[38;5;241m=�[39m �[38;5;28;01mawait�[39;00m �[38;5;28mself�[39m�[38;5;241m.�[39minstantiate()
E �[1;32m 348�[0m �[38;5;28;01mif�[39;00m response �[38;5;241m==�[39m Status�[38;5;241m.�[39mrunning:
E �[1;32m 349�[0m �[38;5;28;01massert�[39;00m �[38;5;28mself�[39m�[38;5;241m.�[39mworker_address
E
E File �[0;32m~/.local/lib/python3.8/site-packages/distributed/nanny.py:430�[0m, in �[0;36mNanny.instantiate�[0;34m(self)�[0m
E �[1;32m 428�[0m �[38;5;28;01melse�[39;00m:
E �[1;32m 429�[0m �[38;5;28;01mtry�[39;00m:
E �[0;32m--> 430�[0m result �[38;5;241m=�[39m �[38;5;28;01mawait�[39;00m �[38;5;28mself�[39m�[38;5;241m.�[39mprocess�[38;5;241m.�[39mstart()
E �[1;32m 431�[0m �[38;5;28;01mexcept�[39;00m �[38;5;167;01mException�[39;00m:
E �[1;32m 432�[0m �[38;5;28;01mawait�[39;00m �[38;5;28mself�[39m�[38;5;241m.�[39mclose()
E
E File �[0;32m~/.local/lib/python3.8/site-packages/distributed/nanny.py:685�[0m, in �[0;36mWorkerProcess.start�[0;34m(self)�[0m
E �[1;32m 683�[0m �[38;5;28;01mreturn�[39;00m �[38;5;28mself�[39m�[38;5;241m.�[39mstatus
E �[1;32m 684�[0m �[38;5;28;01mtry�[39;00m:
E �[0;32m--> 685�[0m msg �[38;5;241m=�[39m �[38;5;28;01mawait�[39;00m �[38;5;28mself�[39m�[38;5;241m.�[39m_wait_until_connected(uid)
E �[1;32m 686�[0m �[38;5;28;01mexcept�[39;00m �[38;5;167;01mException�[39;00m:
E �[1;32m 687�[0m �[38;5;28mself�[39m�[38;5;241m.�[39mstatus �[38;5;241m=�[39m Status�[38;5;241m.�[39mfailed
E
E File �[0;32m~/.local/lib/python3.8/site-packages/distributed/nanny.py:803�[0m, in �[0;36mWorkerProcess._wait_until_connected�[0;34m(self, uid)�[0m
E �[1;32m 799�[0m �[38;5;28;01mif�[39;00m �[38;5;124m"�[39m�[38;5;124mexception�[39m�[38;5;124m"�[39m �[38;5;129;01min�[39;00m msg:
E �[1;32m 800�[0m logger�[38;5;241m.�[39merror(
E �[1;32m 801�[0m �[38;5;124m"�[39m�[38;5;124mFailed while trying to start worker process: �[39m�[38;5;132;01m%s�[39;00m�[38;5;124m"�[39m, msg[�[38;5;124m"�[39m�[38;5;124mexception�[39m�[38;5;124m"�[39m]
E �[1;32m 802�[0m )
E �[0;32m--> 803�[0m �[38;5;28;01mraise�[39;00m msg[�[38;5;124m"�[39m�[38;5;124mexception�[39m�[38;5;124m"�[39m]
E �[1;32m 804�[0m �[38;5;28;01melse�[39;00m:
E �[1;32m 805�[0m �[38;5;28;01mreturn�[39;00m msg
E
E File �[0;32m~/.local/lib/python3.8/site-packages/distributed/nanny.py:869�[0m, in �[0;36mrun�[0;34m()�[0m
E �[1;32m 865�[0m �[38;5;124;03m"""�[39;00m
E �[1;32m 866�[0m �[38;5;124;03mTry to start worker and inform parent of outcome.�[39;00m
E �[1;32m 867�[0m �[38;5;124;03m"""�[39;00m
E �[1;32m 868�[0m �[38;5;28;01mtry�[39;00m:
E �[0;32m--> 869�[0m �[38;5;28;01mawait�[39;00m worker
E �[1;32m 870�[0m �[38;5;28;01mexcept�[39;00m �[38;5;167;01mException�[39;00m �[38;5;28;01mas�[39;00m e:
E �[1;32m 871�[0m logger�[38;5;241m.�[39mexception(�[38;5;124m"�[39m�[38;5;124mFailed to start worker�[39m�[38;5;124m"�[39m)
E
E File �[0;32m~/.local/lib/python3.8/site-packages/distributed/core.py:299�[0m, in �[0;36m_�[0;34m()�[0m
E �[1;32m 293�[0m �[38;5;28;01mraise�[39;00m �[38;5;167;01mTimeoutError�[39;00m(
E �[1;32m 294�[0m �[38;5;124m"�[39m�[38;5;132;01m{}�[39;00m�[38;5;124m failed to start in �[39m�[38;5;132;01m{}�[39;00m�[38;5;124m seconds�[39m�[38;5;124m"�[39m�[38;5;241m.�[39mformat(
E �[1;32m 295�[0m �[38;5;28mtype�[39m(�[38;5;28mself�[39m)�[38;5;241m.�[39m�[38;5;18m__name__�[39m, timeout
E �[1;32m 296�[0m )
E �[1;32m 297�[0m )
E �[1;32m 298�[0m �[38;5;28;01melse�[39;00m:
E �[0;32m--> 299�[0m �[38;5;28;01mawait�[39;00m �[38;5;28mself�[39m�[38;5;241m.�[39mstart()
E �[1;32m 300�[0m �[38;5;28mself�[39m�[38;5;241m.�[39mstatus �[38;5;241m=�[39m Status�[38;5;241m.�[39mrunning
E �[1;32m 301�[0m �[38;5;28;01mreturn�[39;00m �[38;5;28mself�[39m
E
E File �[0;32m~/.local/lib/python3.8/site-packages/distributed/worker.py:1372�[0m, in �[0;36mstart�[0;34m()�[0m
E �[1;32m 1370�[0m �[38;5;28;01mfor�[39;00m exc �[38;5;129;01min�[39;00m plugins_exceptions:
E �[1;32m 1371�[0m logger�[38;5;241m.�[39merror(�[38;5;28mrepr�[39m(exc))
E �[0;32m-> 1372�[0m �[38;5;28;01mraise�[39;00m plugins_exceptions[�[38;5;241m0�[39m]
E �[1;32m 1374�[0m �[38;5;28mself�[39m�[38;5;241m.�[39m_pending_plugins �[38;5;241m=�[39m ()
E �[1;32m 1376�[0m �[38;5;28;01mawait�[39;00m �[38;5;28mself�[39m�[38;5;241m.�[39m_register_with_scheduler()
E
E File �[0;32m~/.local/lib/python3.8/site-packages/distributed/worker.py:3248�[0m, in �[0;36mplugin_add�[0;34m()�[0m
E �[1;32m 3246�[0m �[38;5;28;01mif�[39;00m �[38;5;28mhasattr�[39m(plugin, �[38;5;124m"�[39m�[38;5;124msetup�[39m�[38;5;124m"�[39m):
E �[1;32m 3247�[0m �[38;5;28;01mtry�[39;00m:
E �[0;32m-> 3248�[0m result �[38;5;241m=�[39m plugin�[38;5;241m.�[39msetup(worker�[38;5;241m=�[39m�[38;5;28mself�[39m)
E �[1;32m 3249�[0m �[38;5;28;01mif�[39;00m isawaitable(result):
E �[1;32m 3250�[0m result �[38;5;241m=�[39m �[38;5;28;01mawait�[39;00m result
E
E File �[0;32m/usr/local/lib/python3.8/dist-packages/dask_cuda/utils.py:78�[0m, in �[0;36msetup�[0;34m()�[0m
E �[1;32m 74�[0m �[38;5;28;01mimport�[39;00m �[38;5;21;01mrmm�[39;00m
E �[1;32m 76�[0m pool_allocator �[38;5;241m=�[39m �[38;5;28;01mFalse�[39;00m �[38;5;28;01mif�[39;00m �[38;5;28mself�[39m�[38;5;241m.�[39minitial_pool_size �[38;5;129;01mis�[39;00m �[38;5;28;01mNone�[39;00m �[38;5;28;01melse�[39;00m �[38;5;28;01mTrue�[39;00m
E �[0;32m---> 78�[0m rmm�[38;5;241m.�[39mreinitialize(
E �[1;32m 79�[0m pool_allocator�[38;5;241m=�[39mpool_allocator,
E �[1;32m 80�[0m managed_memory�[38;5;241m=�[39m�[38;5;28mself�[39m�[38;5;241m.�[39mmanaged_memory,
E �[1;32m 81�[0m initial_pool_size�[38;5;241m=�[39m�[38;5;28mself�[39m�[38;5;241m.�[39minitial_pool_size,
E �[1;32m 82�[0m maximum_pool_size�[38;5;241m=�[39m�[38;5;28mself�[39m�[38;5;241m.�[39mmaximum_pool_size,
E �[1;32m 83�[0m logging�[38;5;241m=�[39m�[38;5;28mself�[39m�[38;5;241m.�[39mlogging,
E �[1;32m 84�[0m log_file_name�[38;5;241m=�[39mget_rmm_log_file_name(
E �[1;32m 85�[0m worker, �[38;5;28mself�[39m�[38;5;241m.�[39mlogging, �[38;5;28mself�[39m�[38;5;241m.�[39mlog_directory
E �[1;32m 86�[0m ),
E �[1;32m 87�[0m )
E �[1;32m 88�[0m �[38;5;28;01mif�[39;00m �[38;5;28mself�[39m�[38;5;241m.�[39mrmm_track_allocations:
E �[1;32m 89�[0m �[38;5;28;01mimport�[39;00m �[38;5;21;01mrmm�[39;00m
E
E File �[0;32m/usr/local/lib/python3.8/dist-packages/rmm/rmm.py:85�[0m, in �[0;36mreinitialize�[0;34m()�[0m
E �[1;32m 32�[0m �[38;5;28;01mdef�[39;00m �[38;5;21mreinitialize�[39m(
E �[1;32m 33�[0m pool_allocator�[38;5;241m=�[39m�[38;5;28;01mFalse�[39;00m,
E �[1;32m 34�[0m managed_memory�[38;5;241m=�[39m�[38;5;28;01mFalse�[39;00m,
E �[0;32m (...)�[0m
E �[1;32m 39�[0m log_file_name�[38;5;241m=�[39m�[38;5;28;01mNone�[39;00m,
E �[1;32m 40�[0m ):
E �[1;32m 41�[0m �[38;5;124;03m"""�[39;00m
E �[1;32m 42�[0m �[38;5;124;03m Finalizes and then initializes RMM using the options passed. Using memory�[39;00m
E �[1;32m 43�[0m �[38;5;124;03m from a previous initialization of RMM is undefined behavior and should be�[39;00m
E �[0;32m (...)�[0m
E �[1;32m 83�[0m �[38;5;124;03m corresponding to each device.�[39;00m
E �[1;32m 84�[0m �[38;5;124;03m """�[39;00m
E �[0;32m---> 85�[0m rmm�[38;5;241m.�[39mmr�[38;5;241m.�[39m_initialize(
E �[1;32m 86�[0m pool_allocator�[38;5;241m=�[39mpool_allocator,
E �[1;32m 87�[0m managed_memory�[38;5;241m=�[39mmanaged_memory,
E �[1;32m 88�[0m initial_pool_size�[38;5;241m=�[39minitial_pool_size,
E �[1;32m 89�[0m maximum_pool_size�[38;5;241m=�[39mmaximum_pool_size,
E �[1;32m 90�[0m devices�[38;5;241m=�[39mdevices,
E �[1;32m 91�[0m logging�[38;5;241m=�[39mlogging,
E �[1;32m 92�[0m log_file_name�[38;5;241m=�[39mlog_file_name,
E �[1;32m 93�[0m )
E
E File �[0;32mmemory_resource.pyx:823�[0m, in �[0;36mrmm._lib.memory_resource._initialize�[0;34m()�[0m
E
E File �[0;32mmemory_resource.pyx:883�[0m, in �[0;36mrmm._lib.memory_resource._initialize�[0;34m()�[0m
E
E File �[0;32mmemory_resource.pyx:342�[0m, in �[0;36mrmm._lib.memory_resource.PoolMemoryResource.__cinit__�[0;34m()�[0m
E
E �[0;31mMemoryError�[0m: std::bad_alloc: out_of_memory: RMM failure at:/opt/rapids/rmm/include/rmm/mr/device/pool_memory_resource.hpp:192: Maximum pool size exceeded
E MemoryError: std::bad_alloc: out_of_memory: RMM failure at:/opt/rapids/rmm/include/rmm/mr/device/pool_memory_resource.hpp:192: Maximum pool size exceeded

../../../.local/lib/python3.8/site-packages/nbclient/client.py:862: CellExecutionError
----------------------------- Captured stderr call -----------------------------
2022-12-01 18:37:21,904 - distributed.preloading - INFO - Import preload module: dask_cuda.initialize
2022-12-01 18:37:21,906 - distributed.preloading - INFO - Import preload module: dask_cuda.initialize
2022-12-01 18:37:21,910 - distributed.preloading - INFO - Import preload module: dask_cuda.initialize
2022-12-01 18:37:21,923 - distributed.preloading - INFO - Import preload module: dask_cuda.initialize
2022-12-01 18:37:22,552 - distributed.utils - ERROR - std::bad_alloc: out_of_memory: RMM failure at:/opt/rapids/rmm/include/rmm/mr/device/pool_memory_resource.hpp:192: Maximum pool size exceeded
Traceback (most recent call last):
File "/var/jenkins_home/.local/lib/python3.8/site-packages/distributed/utils.py", line 693, in log_errors
yield
File "/var/jenkins_home/.local/lib/python3.8/site-packages/distributed/worker.py", line 3248, in plugin_add
result = plugin.setup(worker=self)
File "/usr/local/lib/python3.8/dist-packages/dask_cuda/utils.py", line 78, in setup
rmm.reinitialize(
File "/usr/local/lib/python3.8/dist-packages/rmm/rmm.py", line 85, in reinitialize
rmm.mr._initialize(
File "memory_resource.pyx", line 823, in rmm._lib.memory_resource._initialize
File "memory_resource.pyx", line 883, in rmm._lib.memory_resource._initialize
File "memory_resource.pyx", line 342, in rmm._lib.memory_resource.PoolMemoryResource.cinit
MemoryError: std::bad_alloc: out_of_memory: RMM failure at:/opt/rapids/rmm/include/rmm/mr/device/pool_memory_resource.hpp:192: Maximum pool size exceeded
2022-12-01 18:37:22,553 - distributed.nanny - ERROR - Failed to start worker
Traceback (most recent call last):
File "/var/jenkins_home/.local/lib/python3.8/site-packages/distributed/nanny.py", line 869, in run
await worker
File "/var/jenkins_home/.local/lib/python3.8/site-packages/distributed/core.py", line 299, in _
await self.start()
File "/var/jenkins_home/.local/lib/python3.8/site-packages/distributed/worker.py", line 1372, in start
raise plugins_exceptions[0]
File "/var/jenkins_home/.local/lib/python3.8/site-packages/distributed/worker.py", line 3248, in plugin_add
result = plugin.setup(worker=self)
File "/usr/local/lib/python3.8/dist-packages/dask_cuda/utils.py", line 78, in setup
rmm.reinitialize(
File "/usr/local/lib/python3.8/dist-packages/rmm/rmm.py", line 85, in reinitialize
rmm.mr._initialize(
File "memory_resource.pyx", line 823, in rmm._lib.memory_resource._initialize
File "memory_resource.pyx", line 883, in rmm._lib.memory_resource._initialize
File "memory_resource.pyx", line 342, in rmm._lib.memory_resource.PoolMemoryResource.cinit
MemoryError: std::bad_alloc: out_of_memory: RMM failure at:/opt/rapids/rmm/include/rmm/mr/device/pool_memory_resource.hpp:192: Maximum pool size exceeded
2022-12-01 18:37:25,147 - distributed.diskutils - INFO - Found stale lock file and directory '/var/jenkins_home/workspace/nvtabular_tests/nvtabular/test_dask/workdir/dask-worker-space/worker-snqrds8e', purging
2022-12-01 18:37:25,148 - distributed.preloading - INFO - Import preload module: dask_cuda.initialize
2022-12-01 18:37:25,418 - distributed.utils - ERROR - std::bad_alloc: out_of_memory: RMM failure at:/opt/rapids/rmm/include/rmm/mr/device/pool_memory_resource.hpp:192: Maximum pool size exceeded
Traceback (most recent call last):
File "/var/jenkins_home/.local/lib/python3.8/site-packages/distributed/utils.py", line 693, in log_errors
yield
File "/var/jenkins_home/.local/lib/python3.8/site-packages/distributed/worker.py", line 3248, in plugin_add
result = plugin.setup(worker=self)
File "/usr/local/lib/python3.8/dist-packages/dask_cuda/utils.py", line 78, in setup
rmm.reinitialize(
File "/usr/local/lib/python3.8/dist-packages/rmm/rmm.py", line 85, in reinitialize
rmm.mr._initialize(
File "memory_resource.pyx", line 823, in rmm._lib.memory_resource._initialize
File "memory_resource.pyx", line 883, in rmm._lib.memory_resource._initialize
File "memory_resource.pyx", line 342, in rmm._lib.memory_resource.PoolMemoryResource.cinit
MemoryError: std::bad_alloc: out_of_memory: RMM failure at:/opt/rapids/rmm/include/rmm/mr/device/pool_memory_resource.hpp:192: Maximum pool size exceeded
2022-12-01 18:37:25,419 - distributed.nanny - ERROR - Failed to start worker
Traceback (most recent call last):
File "/var/jenkins_home/.local/lib/python3.8/site-packages/distributed/nanny.py", line 869, in run
await worker
File "/var/jenkins_home/.local/lib/python3.8/site-packages/distributed/core.py", line 299, in _
await self.start()
File "/var/jenkins_home/.local/lib/python3.8/site-packages/distributed/worker.py", line 1372, in start
raise plugins_exceptions[0]
File "/var/jenkins_home/.local/lib/python3.8/site-packages/distributed/worker.py", line 3248, in plugin_add
result = plugin.setup(worker=self)
File "/usr/local/lib/python3.8/dist-packages/dask_cuda/utils.py", line 78, in setup
rmm.reinitialize(
File "/usr/local/lib/python3.8/dist-packages/rmm/rmm.py", line 85, in reinitialize
rmm.mr._initialize(
File "memory_resource.pyx", line 823, in rmm._lib.memory_resource._initialize
File "memory_resource.pyx", line 883, in rmm._lib.memory_resource._initialize
File "memory_resource.pyx", line 342, in rmm._lib.memory_resource.PoolMemoryResource.cinit
MemoryError: std::bad_alloc: out_of_memory: RMM failure at:/opt/rapids/rmm/include/rmm/mr/device/pool_memory_resource.hpp:192: Maximum pool size exceeded
2022-12-01 18:37:28,279 - distributed.diskutils - INFO - Found stale lock file and directory '/var/jenkins_home/workspace/nvtabular_tests/nvtabular/test_dask/workdir/dask-worker-space/worker-7bo4qk7c', purging
2022-12-01 18:37:28,280 - distributed.preloading - INFO - Import preload module: dask_cuda.initialize
2022-12-01 18:37:28,289 - distributed.preloading - INFO - Import preload module: dask_cuda.initialize
2022-12-01 18:37:28,320 - distributed.preloading - INFO - Import preload module: dask_cuda.initialize
2022-12-01 18:37:28,327 - distributed.preloading - INFO - Import preload module: dask_cuda.initialize
2022-12-01 18:37:28,819 - distributed.utils - ERROR - std::bad_alloc: out_of_memory: RMM failure at:/opt/rapids/rmm/include/rmm/mr/device/pool_memory_resource.hpp:192: Maximum pool size exceeded
Traceback (most recent call last):
File "/var/jenkins_home/.local/lib/python3.8/site-packages/distributed/utils.py", line 693, in log_errors
yield
File "/var/jenkins_home/.local/lib/python3.8/site-packages/distributed/worker.py", line 3248, in plugin_add
result = plugin.setup(worker=self)
File "/usr/local/lib/python3.8/dist-packages/dask_cuda/utils.py", line 78, in setup
rmm.reinitialize(
File "/usr/local/lib/python3.8/dist-packages/rmm/rmm.py", line 85, in reinitialize
rmm.mr._initialize(
File "memory_resource.pyx", line 823, in rmm._lib.memory_resource._initialize
File "memory_resource.pyx", line 883, in rmm._lib.memory_resource._initialize
File "memory_resource.pyx", line 342, in rmm._lib.memory_resource.PoolMemoryResource.cinit
MemoryError: std::bad_alloc: out_of_memory: RMM failure at:/opt/rapids/rmm/include/rmm/mr/device/pool_memory_resource.hpp:192: Maximum pool size exceeded
2022-12-01 18:37:28,820 - distributed.nanny - ERROR - Failed to start worker
Traceback (most recent call last):
File "/var/jenkins_home/.local/lib/python3.8/site-packages/distributed/nanny.py", line 869, in run
await worker
File "/var/jenkins_home/.local/lib/python3.8/site-packages/distributed/core.py", line 299, in _
await self.start()
File "/var/jenkins_home/.local/lib/python3.8/site-packages/distributed/worker.py", line 1372, in start
raise plugins_exceptions[0]
File "/var/jenkins_home/.local/lib/python3.8/site-packages/distributed/worker.py", line 3248, in plugin_add
result = plugin.setup(worker=self)
File "/usr/local/lib/python3.8/dist-packages/dask_cuda/utils.py", line 78, in setup
rmm.reinitialize(
File "/usr/local/lib/python3.8/dist-packages/rmm/rmm.py", line 85, in reinitialize
rmm.mr._initialize(
File "memory_resource.pyx", line 823, in rmm._lib.memory_resource._initialize
File "memory_resource.pyx", line 883, in rmm._lib.memory_resource._initialize
File "memory_resource.pyx", line 342, in rmm._lib.memory_resource.PoolMemoryResource.cinit
MemoryError: std::bad_alloc: out_of_memory: RMM failure at:/opt/rapids/rmm/include/rmm/mr/device/pool_memory_resource.hpp:192: Maximum pool size exceeded
2022-12-01 18:37:28,868 - distributed.utils - ERROR - std::bad_alloc: out_of_memory: RMM failure at:/opt/rapids/rmm/include/rmm/mr/device/pool_memory_resource.hpp:192: Maximum pool size exceeded
Traceback (most recent call last):
File "/var/jenkins_home/.local/lib/python3.8/site-packages/distributed/utils.py", line 693, in log_errors
yield
File "/var/jenkins_home/.local/lib/python3.8/site-packages/distributed/worker.py", line 3248, in plugin_add
result = plugin.setup(worker=self)
File "/usr/local/lib/python3.8/dist-packages/dask_cuda/utils.py", line 78, in setup
rmm.reinitialize(
File "/usr/local/lib/python3.8/dist-packages/rmm/rmm.py", line 85, in reinitialize
rmm.mr._initialize(
File "memory_resource.pyx", line 823, in rmm._lib.memory_resource._initialize
File "memory_resource.pyx", line 883, in rmm._lib.memory_resource._initialize
File "memory_resource.pyx", line 342, in rmm._lib.memory_resource.PoolMemoryResource.cinit
MemoryError: std::bad_alloc: out_of_memory: RMM failure at:/opt/rapids/rmm/include/rmm/mr/device/pool_memory_resource.hpp:192: Maximum pool size exceeded
2022-12-01 18:37:28,869 - distributed.nanny - ERROR - Failed to start worker
Traceback (most recent call last):
File "/var/jenkins_home/.local/lib/python3.8/site-packages/distributed/nanny.py", line 869, in run
await worker
File "/var/jenkins_home/.local/lib/python3.8/site-packages/distributed/core.py", line 299, in _
await self.start()
File "/var/jenkins_home/.local/lib/python3.8/site-packages/distributed/worker.py", line 1372, in start
raise plugins_exceptions[0]
File "/var/jenkins_home/.local/lib/python3.8/site-packages/distributed/worker.py", line 3248, in plugin_add
result = plugin.setup(worker=self)
File "/usr/local/lib/python3.8/dist-packages/dask_cuda/utils.py", line 78, in setup
rmm.reinitialize(
File "/usr/local/lib/python3.8/dist-packages/rmm/rmm.py", line 85, in reinitialize
rmm.mr._initialize(
File "memory_resource.pyx", line 823, in rmm._lib.memory_resource._initialize
File "memory_resource.pyx", line 883, in rmm._lib.memory_resource._initialize
File "memory_resource.pyx", line 342, in rmm._lib.memory_resource.PoolMemoryResource.cinit
MemoryError: std::bad_alloc: out_of_memory: RMM failure at:/opt/rapids/rmm/include/rmm/mr/device/pool_memory_resource.hpp:192: Maximum pool size exceeded
2022-12-01 18:37:28,955 - distributed.utils - ERROR - std::bad_alloc: out_of_memory: RMM failure at:/opt/rapids/rmm/include/rmm/mr/device/pool_memory_resource.hpp:192: Maximum pool size exceeded
Traceback (most recent call last):
File "/var/jenkins_home/.local/lib/python3.8/site-packages/distributed/utils.py", line 693, in log_errors
yield
File "/var/jenkins_home/.local/lib/python3.8/site-packages/distributed/worker.py", line 3248, in plugin_add
result = plugin.setup(worker=self)
File "/usr/local/lib/python3.8/dist-packages/dask_cuda/utils.py", line 78, in setup
rmm.reinitialize(
File "/usr/local/lib/python3.8/dist-packages/rmm/rmm.py", line 85, in reinitialize
rmm.mr._initialize(
File "memory_resource.pyx", line 823, in rmm._lib.memory_resource._initialize
File "memory_resource.pyx", line 883, in rmm._lib.memory_resource._initialize
File "memory_resource.pyx", line 342, in rmm._lib.memory_resource.PoolMemoryResource.cinit
MemoryError: std::bad_alloc: out_of_memory: RMM failure at:/opt/rapids/rmm/include/rmm/mr/device/pool_memory_resource.hpp:192: Maximum pool size exceeded
2022-12-01 18:37:28,956 - distributed.nanny - ERROR - Failed to start worker
Traceback (most recent call last):
File "/var/jenkins_home/.local/lib/python3.8/site-packages/distributed/nanny.py", line 869, in run
await worker
File "/var/jenkins_home/.local/lib/python3.8/site-packages/distributed/core.py", line 299, in _
await self.start()
File "/var/jenkins_home/.local/lib/python3.8/site-packages/distributed/worker.py", line 1372, in start
raise plugins_exceptions[0]
File "/var/jenkins_home/.local/lib/python3.8/site-packages/distributed/worker.py", line 3248, in plugin_add
result = plugin.setup(worker=self)
File "/usr/local/lib/python3.8/dist-packages/dask_cuda/utils.py", line 78, in setup
rmm.reinitialize(
File "/usr/local/lib/python3.8/dist-packages/rmm/rmm.py", line 85, in reinitialize
rmm.mr._initialize(
File "memory_resource.pyx", line 823, in rmm._lib.memory_resource._initialize
File "memory_resource.pyx", line 883, in rmm._lib.memory_resource._initialize
File "memory_resource.pyx", line 342, in rmm._lib.memory_resource.PoolMemoryResource.cinit
MemoryError: std::bad_alloc: out_of_memory: RMM failure at:/opt/rapids/rmm/include/rmm/mr/device/pool_memory_resource.hpp:192: Maximum pool size exceeded
2022-12-01 18:37:28,962 - distributed.utils - ERROR - std::bad_alloc: out_of_memory: RMM failure at:/opt/rapids/rmm/include/rmm/mr/device/pool_memory_resource.hpp:192: Maximum pool size exceeded
Traceback (most recent call last):
File "/var/jenkins_home/.local/lib/python3.8/site-packages/distributed/utils.py", line 693, in log_errors
yield
File "/var/jenkins_home/.local/lib/python3.8/site-packages/distributed/worker.py", line 3248, in plugin_add
result = plugin.setup(worker=self)
File "/usr/local/lib/python3.8/dist-packages/dask_cuda/utils.py", line 78, in setup
rmm.reinitialize(
File "/usr/local/lib/python3.8/dist-packages/rmm/rmm.py", line 85, in reinitialize
rmm.mr._initialize(
File "memory_resource.pyx", line 823, in rmm._lib.memory_resource._initialize
File "memory_resource.pyx", line 883, in rmm._lib.memory_resource._initialize
File "memory_resource.pyx", line 342, in rmm._lib.memory_resource.PoolMemoryResource.cinit
MemoryError: std::bad_alloc: out_of_memory: RMM failure at:/opt/rapids/rmm/include/rmm/mr/device/pool_memory_resource.hpp:192: Maximum pool size exceeded
2022-12-01 18:37:28,963 - distributed.nanny - ERROR - Failed to start worker
Traceback (most recent call last):
File "/var/jenkins_home/.local/lib/python3.8/site-packages/distributed/nanny.py", line 869, in run
await worker
File "/var/jenkins_home/.local/lib/python3.8/site-packages/distributed/core.py", line 299, in _
await self.start()
File "/var/jenkins_home/.local/lib/python3.8/site-packages/distributed/worker.py", line 1372, in start
raise plugins_exceptions[0]
File "/var/jenkins_home/.local/lib/python3.8/site-packages/distributed/worker.py", line 3248, in plugin_add
result = plugin.setup(worker=self)
File "/usr/local/lib/python3.8/dist-packages/dask_cuda/utils.py", line 78, in setup
rmm.reinitialize(
File "/usr/local/lib/python3.8/dist-packages/rmm/rmm.py", line 85, in reinitialize
rmm.mr._initialize(
File "memory_resource.pyx", line 823, in rmm._lib.memory_resource._initialize
File "memory_resource.pyx", line 883, in rmm._lib.memory_resource._initialize
File "memory_resource.pyx", line 342, in rmm._lib.memory_resource.PoolMemoryResource.cinit
MemoryError: std::bad_alloc: out_of_memory: RMM failure at:/opt/rapids/rmm/include/rmm/mr/device/pool_memory_resource.hpp:192: Maximum pool size exceeded
2022-12-01 18:37:31,620 - distributed.diskutils - INFO - Found stale lock file and directory '/var/jenkins_home/workspace/nvtabular_tests/nvtabular/test_dask/workdir/dask-worker-space/worker-b651i728', purging
2022-12-01 18:37:31,620 - distributed.diskutils - INFO - Found stale lock file and directory '/var/jenkins_home/workspace/nvtabular_tests/nvtabular/test_dask/workdir/dask-worker-space/worker-d36aiyeg', purging
2022-12-01 18:37:31,620 - distributed.diskutils - INFO - Found stale lock file and directory '/var/jenkins_home/workspace/nvtabular_tests/nvtabular/test_dask/workdir/dask-worker-space/worker-mja6qfpn', purging
2022-12-01 18:37:31,621 - distributed.diskutils - INFO - Found stale lock file and directory '/var/jenkins_home/workspace/nvtabular_tests/nvtabular/test_dask/workdir/dask-worker-space/worker-lm25ccr2', purging
2022-12-01 18:37:31,621 - distributed.preloading - INFO - Import preload module: dask_cuda.initialize
2022-12-01 18:37:31,892 - distributed.utils - ERROR - std::bad_alloc: out_of_memory: RMM failure at:/opt/rapids/rmm/include/rmm/mr/device/pool_memory_resource.hpp:192: Maximum pool size exceeded
Traceback (most recent call last):
File "/var/jenkins_home/.local/lib/python3.8/site-packages/distributed/utils.py", line 693, in log_errors
yield
File "/var/jenkins_home/.local/lib/python3.8/site-packages/distributed/worker.py", line 3248, in plugin_add
result = plugin.setup(worker=self)
File "/usr/local/lib/python3.8/dist-packages/dask_cuda/utils.py", line 78, in setup
rmm.reinitialize(
File "/usr/local/lib/python3.8/dist-packages/rmm/rmm.py", line 85, in reinitialize
rmm.mr._initialize(
File "memory_resource.pyx", line 823, in rmm._lib.memory_resource._initialize
File "memory_resource.pyx", line 883, in rmm._lib.memory_resource._initialize
File "memory_resource.pyx", line 342, in rmm._lib.memory_resource.PoolMemoryResource.cinit
MemoryError: std::bad_alloc: out_of_memory: RMM failure at:/opt/rapids/rmm/include/rmm/mr/device/pool_memory_resource.hpp:192: Maximum pool size exceeded
2022-12-01 18:37:31,893 - distributed.nanny - ERROR - Failed to start worker
Traceback (most recent call last):
File "/var/jenkins_home/.local/lib/python3.8/site-packages/distributed/nanny.py", line 869, in run
await worker
File "/var/jenkins_home/.local/lib/python3.8/site-packages/distributed/core.py", line 299, in _
await self.start()
File "/var/jenkins_home/.local/lib/python3.8/site-packages/distributed/worker.py", line 1372, in start
raise plugins_exceptions[0]
File "/var/jenkins_home/.local/lib/python3.8/site-packages/distributed/worker.py", line 3248, in plugin_add
result = plugin.setup(worker=self)
File "/usr/local/lib/python3.8/dist-packages/dask_cuda/utils.py", line 78, in setup
rmm.reinitialize(
File "/usr/local/lib/python3.8/dist-packages/rmm/rmm.py", line 85, in reinitialize
rmm.mr._initialize(
File "memory_resource.pyx", line 823, in rmm._lib.memory_resource._initialize
File "memory_resource.pyx", line 883, in rmm._lib.memory_resource._initialize
File "memory_resource.pyx", line 342, in rmm._lib.memory_resource.PoolMemoryResource.cinit
MemoryError: std::bad_alloc: out_of_memory: RMM failure at:/opt/rapids/rmm/include/rmm/mr/device/pool_memory_resource.hpp:192: Maximum pool size exceeded
/usr/lib/python3.8/multiprocessing/resource_tracker.py:216: UserWarning: resource_tracker: There appear to be 57 leaked semaphore objects to clean up at shutdown
warnings.warn('resource_tracker: There appear to be %d '
=============================== warnings summary ===============================
../../../../../usr/local/lib/python3.8/dist-packages/dask_cudf/core.py:33
/usr/local/lib/python3.8/dist-packages/dask_cudf/core.py:33: DeprecationWarning: distutils Version classes are deprecated. Use packaging.version instead.
DASK_VERSION = LooseVersion(dask.version)

.tox/test-gpu/lib/python3.8/site-packages/setuptools/_distutils/version.py:346: 34 warnings
/var/jenkins_home/workspace/nvtabular_tests/nvtabular/.tox/test-gpu/lib/python3.8/site-packages/setuptools/_distutils/version.py:346: DeprecationWarning: distutils Version classes are deprecated. Use packaging.version instead.
other = LooseVersion(other)

tests/unit/test_dask_nvt.py: 6 warnings
tests/unit/workflow/test_workflow.py: 78 warnings
/var/jenkins_home/.local/lib/python3.8/site-packages/dask/base.py:1282: UserWarning: Running on a single-machine scheduler when a distributed client is active might lead to unexpected results.
warnings.warn(

tests/unit/test_dask_nvt.py::test_merlin_core_execution_managers
/var/jenkins_home/workspace/nvtabular_tests/nvtabular/.tox/test-gpu/lib/python3.8/site-packages/merlin/core/utils.py:431: UserWarning: Existing Dask-client object detected in the current context. New cuda cluster will not be deployed. Set force_new to True to ignore running clusters.
warnings.warn(

tests/unit/ops/test_fill.py::test_fill_missing[True-True-parquet]
tests/unit/ops/test_fill.py::test_fill_missing[True-False-parquet]
tests/unit/ops/test_ops.py::test_filter[parquet-0.1-True]
/var/jenkins_home/.local/lib/python3.8/site-packages/pandas/core/indexing.py:1732: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
self._setitem_single_block(indexer, value, name)

tests/unit/ops/test_ops_schema.py: 12 warnings
/var/jenkins_home/workspace/nvtabular_tests/nvtabular/.tox/test-gpu/lib/python3.8/site-packages/merlin/schema/tags.py:148: UserWarning: Compound tags like Tags.USER_ID have been deprecated and will be removed in a future version. Please use the atomic versions of these tags, like [<Tags.USER: 'user'>, <Tags.ID: 'id'>].
warnings.warn(

tests/unit/ops/test_ops_schema.py: 12 warnings
/var/jenkins_home/workspace/nvtabular_tests/nvtabular/.tox/test-gpu/lib/python3.8/site-packages/merlin/schema/tags.py:148: UserWarning: Compound tags like Tags.ITEM_ID have been deprecated and will be removed in a future version. Please use the atomic versions of these tags, like [<Tags.ITEM: 'item'>, <Tags.ID: 'id'>].
warnings.warn(

-- Docs: https://docs.pytest.org/en/stable/how-to/capture-warnings.html

---------- coverage: platform linux, python 3.8.10-final-0 -----------
Name Stmts Miss Cover

merlin/transforms/init.py 1 1 0%
merlin/transforms/ops/init.py 1 1 0%

TOTAL 2 2 0%

=========================== short test summary info ============================
SKIPPED [1] ../../../../../usr/local/lib/python3.8/dist-packages/dask_cudf/io/tests/test_s3.py:14: could not import 'moto': No module named 'moto'
SKIPPED [1] tests/unit/loader/test_tf_dataloader.py:529: not working correctly in ci environment
===== 1 failed, 1437 passed, 2 skipped, 147 warnings in 1215.08s (0:20:15) =====
/usr/local/lib/python3.8/dist-packages/coverage/control.py:801: CoverageWarning: No data was collected. (no-data-collected)
self._warn("No data was collected.", slug="no-data-collected")
ERROR: InvocationError for command /var/jenkins_home/workspace/nvtabular_tests/nvtabular/.tox/test-gpu/bin/python -m pytest --cov-report term --cov merlin -rxs tests/unit (exited with code 1)
___________________________________ summary ____________________________________
ERROR: test-gpu: commands failed
Build step 'Execute shell' marked build as failure
Performing Post build task...
Match found for : : True
Logical operation result is TRUE
Running script : #!/bin/bash
cd /var/jenkins_home/
CUDA_VISIBLE_DEVICES=1 python test_res_push.py "https://api.GitHub.com/repos/NVIDIA-Merlin/NVTabular/issues/$ghprbPullId/comments" "/var/jenkins_home/jobs/$JOB_NAME/builds/$BUILD_NUMBER/log"
[workspace] $ /bin/bash /tmp/jenkins10351210953376478539.sh

@mikemckiernan
Copy link
Member Author

rerun tests

@nvidia-merlin-bot
Copy link
Contributor

Click to view CI Results
GitHub pull request #1719 of commit 05c2b8c3737512cff6262a6a952ebfb2ec99f860, no merge conflicts.
GitHub pull request #1719 of commit 05c2b8c3737512cff6262a6a952ebfb2ec99f860, no merge conflicts.
Running as SYSTEM
Setting status of 05c2b8c3737512cff6262a6a952ebfb2ec99f860 to PENDING with url http://merlin-infra1.nvidia.com:8080/job/nvtabular_tests/4945/ and message: 'Build started for merge commit.'
Using context: Jenkins Unit Test Run
Building on the built-in node in workspace /var/jenkins_home/jobs/nvtabular_tests/workspace
using credential nvidia-merlin-bot
 > git rev-parse --is-inside-work-tree # timeout=10
Fetching changes from the remote Git repository
 > git config remote.origin.url https://github.com/NVIDIA-Merlin/NVTabular.git # timeout=10
Fetching upstream changes from https://github.com/NVIDIA-Merlin/NVTabular.git
 > git --version # timeout=10
using GIT_ASKPASS to set credentials This is the bot credentials for our CI/CD
 > git fetch --tags --force --progress -- https://github.com/NVIDIA-Merlin/NVTabular.git +refs/pull/1719/*:refs/remotes/origin/pr/1719/* # timeout=10
 > git rev-parse 05c2b8c3737512cff6262a6a952ebfb2ec99f860^{commit} # timeout=10
Checking out Revision 05c2b8c3737512cff6262a6a952ebfb2ec99f860 (detached)
 > git config core.sparsecheckout # timeout=10
 > git checkout -f 05c2b8c3737512cff6262a6a952ebfb2ec99f860 # timeout=10
Commit message: "Merge branch 'main' into dev-doc-link-testing"
 > git rev-list --no-walk 1da6f6323fa07ffbf50b0b482340e4c2f4067346 # timeout=10
[workspace] $ /bin/bash /tmp/jenkins6989947506957112190.sh
GLOB sdist-make: /var/jenkins_home/workspace/nvtabular_tests/nvtabular/setup.py
test-gpu recreate: /var/jenkins_home/workspace/nvtabular_tests/nvtabular/.tox/test-gpu
test-gpu installdeps: pytest, pytest-cov
WARNING: Discarding $PYTHONPATH from environment, to override specify PYTHONPATH in 'passenv' in your configuration.
test-gpu inst: /var/jenkins_home/workspace/nvtabular_tests/nvtabular/.tox/.tmp/package/1/nvtabular-1.6.0+14.g05c2b8c3.zip
WARNING: Discarding $PYTHONPATH from environment, to override specify PYTHONPATH in 'passenv' in your configuration.
test-gpu installed: absl-py==1.2.0,aiohttp==3.8.1,aiosignal==1.2.0,alabaster==0.7.12,alembic==1.8.1,anyio==3.6.1,argon2-cffi==21.3.0,argon2-cffi-bindings==21.2.0,astroid==2.5.6,asttokens==2.0.8,astunparse==1.6.3,asv==0.5.1,asvdb==0.4.2,async-timeout==4.0.2,attrs==22.1.0,autopage==0.5.1,awscli==1.27.20,Babel==2.10.3,backcall==0.2.0,beautifulsoup4==4.11.1,betterproto==1.2.5,black==22.6.0,bleach==5.0.1,boto3==1.24.75,botocore==1.29.20,Brotli==1.0.9,cachetools==5.2.0,certifi==2019.11.28,cffi==1.15.1,chardet==3.0.4,charset-normalizer==2.1.1,clang==5.0,click==8.1.3,cliff==4.1.0,cloudpickle==2.2.0,cmaes==0.9.0,cmake==3.24.1.1,cmd2==2.4.2,colorama==0.4.4,colorlog==6.7.0,contourpy==1.0.5,coverage==6.5.0,cuda-python==11.7.1,cupy-cuda117==10.6.0,cycler==0.11.0,Cython==0.29.32,dask==2022.1.1,dbus-python==1.2.16,debugpy==1.6.3,decorator==5.1.1,defusedxml==0.7.1,dill==0.3.5.1,distlib==0.3.6,distributed==2022.5.1,distro==1.7.0,dm-tree==0.1.6,docker-pycreds==0.4.0,docutils==0.16,emoji==1.7.0,entrypoints==0.4,execnet==1.9.0,executing==1.0.0,faiss==1.7.2,faiss-gpu==1.7.2,fastai==2.7.9,fastapi==0.85.0,fastavro==1.6.1,fastcore==1.5.27,fastdownload==0.0.7,fastjsonschema==2.16.1,fastprogress==1.0.3,fastrlock==0.8,feast==0.19.4,fiddle==0.2.2,filelock==3.8.0,flatbuffers==1.12,fonttools==4.37.3,frozenlist==1.3.1,fsspec==2022.5.0,gast==0.4.0,gevent==21.12.0,geventhttpclient==2.0.2,gitdb==4.0.9,GitPython==3.1.27,google==3.0.0,google-api-core==2.10.1,google-auth==2.11.1,google-auth-oauthlib==0.4.6,google-pasta==0.2.0,googleapis-common-protos==1.52.0,graphviz==0.20.1,greenlet==1.1.3,grpcio==1.41.0,grpcio-channelz==1.49.0,grpcio-reflection==1.48.1,grpclib==0.4.3,h11==0.13.0,h2==4.1.0,h5py==3.7.0,HeapDict==1.0.1,horovod==0.26.1,hpack==4.0.0,httptools==0.5.0,hugectr2onnx==0.0.0,huggingface-hub==0.9.1,hyperframe==6.0.1,idna==2.8,imagesize==1.4.1,implicit==0.6.1,importlib-metadata==4.12.0,importlib-resources==5.9.0,iniconfig==1.1.1,ipykernel==6.15.3,ipython==8.5.0,ipython-genutils==0.2.0,ipywidgets==7.7.0,jedi==0.18.1,Jinja2==3.1.2,jmespath==1.0.1,joblib==1.2.0,json5==0.9.10,jsonschema==4.16.0,jupyter-cache==0.4.3,jupyter-core==4.11.1,jupyter-server==1.18.1,jupyter-server-mathjax==0.2.5,jupyter-sphinx==0.3.2,jupyter_client==7.3.5,jupyterlab==3.4.7,jupyterlab-pygments==0.2.2,jupyterlab-widgets==1.1.0,jupyterlab_server==2.15.1,keras==2.9.0,Keras-Preprocessing==1.1.2,kiwisolver==1.4.4,lazy-object-proxy==1.8.0,libclang==14.0.6,libcst==0.4.7,lightfm==1.16,lightgbm==3.3.2,linkify-it-py==1.0.3,llvmlite==0.39.1,locket==1.0.0,lxml==4.9.1,Mako==1.2.4,Markdown==3.4.1,markdown-it-py==1.1.0,MarkupSafe==2.1.1,matplotlib==3.6.0,matplotlib-inline==0.1.6,mdit-py-plugins==0.2.8,merlin-core==0.6.0+1.g5926fcf,merlin-dataloader==0.0.3,merlin-models==0.7.0+11.g280956aa4,merlin-systems==0.5.0+4.g15074ad,mistune==2.0.4,mmh3==3.0.0,mpi4py==3.1.3,msgpack==1.0.4,multidict==6.0.2,mypy-extensions==0.4.3,myst-nb==0.13.2,myst-parser==0.15.2,natsort==8.1.0,nbclassic==0.4.3,nbclient==0.6.8,nbconvert==7.0.0,nbdime==3.1.1,nbformat==5.5.0,nest-asyncio==1.5.5,ninja==1.10.2.3,notebook==6.4.12,notebook-shim==0.1.0,numba==0.56.2,numpy==1.22.4,nvidia-pyindex==1.0.9,-e git+https://github.com/NVIDIA-Merlin/NVTabular.git@05c2b8c3737512cff6262a6a952ebfb2ec99f860#egg=nvtabular,nvtx==0.2.5,oauthlib==3.2.1,oldest-supported-numpy==2022.8.16,onnx==1.12.0,onnxruntime==1.11.1,opt-einsum==3.3.0,optuna==3.0.4,packaging==21.3,pandas==1.3.5,pandavro==1.5.2,pandocfilters==1.5.0,parso==0.8.3,partd==1.3.0,pathtools==0.1.2,pbr==5.11.0,pexpect==4.8.0,pickleshare==0.7.5,Pillow==9.2.0,pkgutil_resolve_name==1.3.10,platformdirs==2.5.2,plotly==5.11.0,pluggy==1.0.0,prettytable==3.5.0,prometheus-client==0.14.1,promise==2.3,prompt-toolkit==3.0.31,proto-plus==1.19.6,protobuf==3.19.5,psutil==5.9.2,ptyprocess==0.7.0,pure-eval==0.2.2,py==1.11.0,pyarrow==7.0.0,pyasn1==0.4.8,pyasn1-modules==0.2.8,pybind11==2.10.0,pycparser==2.21,pydantic==1.10.2,pydot==1.4.2,Pygments==2.13.0,PyGObject==3.36.0,pynvml==11.4.1,pyparsing==3.0.9,pyperclip==1.8.2,pyrsistent==0.18.1,pytest==7.1.3,pytest-cov==4.0.0,pytest-xdist==3.0.2,python-apt==2.0.0+ubuntu0.20.4.8,python-dateutil==2.8.2,python-dotenv==0.21.0,python-rapidjson==1.8,pytz==2022.2.1,PyYAML==5.4.1,pyzmq==24.0.0,regex==2022.9.13,requests==2.22.0,requests-oauthlib==1.3.1,requests-unixsocket==0.2.0,rsa==4.7.2,s3fs==2022.2.0,s3transfer==0.6.0,sacremoses==0.0.53,scikit-build==0.15.0,scikit-learn==1.1.2,scipy==1.8.1,seedir==0.3.0,Send2Trash==1.8.0,sentry-sdk==1.9.8,setproctitle==1.3.2,setuptools-scm==7.0.5,shortuuid==1.0.9,six==1.15.0,sklearn==0.0,smmap==5.0.0,sniffio==1.3.0,snowballstemmer==2.2.0,sortedcontainers==2.4.0,soupsieve==2.3.2.post1,Sphinx==5.3.0,sphinx-multiversion==0.2.4,sphinx-togglebutton==0.3.1,sphinx_external_toc==0.3.0,sphinxcontrib-applehelp==1.0.2,sphinxcontrib-copydirs @ git+https://github.com/mikemckiernan/sphinxcontrib-copydirs.git@bd8c5d79b3f91cf5f1bb0d6995aeca3fe84b670e,sphinxcontrib-devhelp==1.0.2,sphinxcontrib-htmlhelp==2.0.0,sphinxcontrib-jsmath==1.0.1,sphinxcontrib-qthelp==1.0.3,sphinxcontrib-serializinghtml==1.1.5,SQLAlchemy==1.4.44,stack-data==0.5.0,starlette==0.20.4,stevedore==4.1.1,stringcase==1.2.0,supervisor==4.1.0,tabulate==0.8.10,tblib==1.7.0,tdqm==0.0.1,tenacity==8.0.1,tensorboard==2.9.1,tensorboard-data-server==0.6.1,tensorboard-plugin-wit==1.8.1,tensorflow==2.9.2,tensorflow-estimator==2.9.0,tensorflow-gpu==2.9.2,tensorflow-io-gcs-filesystem==0.27.0,tensorflow-metadata==1.10.0,termcolor==2.0.1,terminado==0.15.0,testbook==0.4.2,threadpoolctl==3.1.0,tinycss2==1.1.1,tokenizers==0.10.3,toml==0.10.2,tomli==2.0.1,toolz==0.12.0,torch==1.12.1+cu113,torchmetrics==0.3.2,tornado==6.2,tox==3.26.0,tqdm==4.64.1,traitlets==5.4.0,transformers==4.12.0,transformers4rec==0.1.12+2.gbcc939255,treelite==2.3.0,treelite-runtime==2.3.0,tritonclient==2.25.0,typing-inspect==0.8.0,typing_extensions==4.3.0,uc-micro-py==1.0.1,urllib3==1.26.12,uvicorn==0.18.3,uvloop==0.17.0,versioneer==0.20,virtualenv==20.16.5,wandb==0.13.3,watchfiles==0.17.0,wcwidth==0.2.5,webencodings==0.5.1,websocket-client==1.4.1,websockets==10.3,Werkzeug==2.2.2,widgetsnbextension==3.6.0,wrapt==1.12.1,xgboost==1.6.2,yarl==1.8.1,zict==2.2.0,zipp==3.8.1,zope.event==4.5.0,zope.interface==5.4.0
test-gpu run-test-pre: PYTHONHASHSEED='3441507980'
test-gpu run-test: commands[0] | python -m pip install --upgrade git+https://github.com/NVIDIA-Merlin/core.git
Looking in indexes: https://pypi.org/simple, https://pypi.ngc.nvidia.com
Collecting git+https://github.com/NVIDIA-Merlin/core.git
  Cloning https://github.com/NVIDIA-Merlin/core.git to /tmp/pip-req-build-2d99hk3u
  Running command git clone --filter=blob:none --quiet https://github.com/NVIDIA-Merlin/core.git /tmp/pip-req-build-2d99hk3u
  Resolved https://github.com/NVIDIA-Merlin/core.git to commit 4f73ff5bd4121c1acaabdc01a123af4f986ffc78
  Installing build dependencies: started
  Installing build dependencies: finished with status 'done'
  Getting requirements to build wheel: started
  Getting requirements to build wheel: finished with status 'done'
  Preparing metadata (pyproject.toml): started
  Preparing metadata (pyproject.toml): finished with status 'done'
Requirement already satisfied: pyarrow>=5.0.0 in /usr/local/lib/python3.8/dist-packages (from merlin-core==0.9.0+14.g4f73ff5) (7.0.0)
Requirement already satisfied: pandas<1.4.0dev0,>=1.2.0 in /var/jenkins_home/.local/lib/python3.8/site-packages (from merlin-core==0.9.0+14.g4f73ff5) (1.3.5)
Requirement already satisfied: packaging in /usr/local/lib/python3.8/dist-packages (from merlin-core==0.9.0+14.g4f73ff5) (21.3)
Requirement already satisfied: numba>=0.54 in /var/jenkins_home/.local/lib/python3.8/site-packages (from merlin-core==0.9.0+14.g4f73ff5) (0.55.1)
Requirement already satisfied: betterproto<2.0.0 in /usr/local/lib/python3.8/dist-packages (from merlin-core==0.9.0+14.g4f73ff5) (1.2.5)
Requirement already satisfied: tqdm>=4.0 in /usr/local/lib/python3.8/dist-packages (from merlin-core==0.9.0+14.g4f73ff5) (4.64.1)
Requirement already satisfied: fsspec==2022.5.0 in /var/jenkins_home/.local/lib/python3.8/site-packages (from merlin-core==0.9.0+14.g4f73ff5) (2022.5.0)
Requirement already satisfied: dask>=2022.3.0 in /var/jenkins_home/.local/lib/python3.8/site-packages (from merlin-core==0.9.0+14.g4f73ff5) (2022.3.0)
Requirement already satisfied: distributed>=2022.3.0 in /var/jenkins_home/.local/lib/python3.8/site-packages (from merlin-core==0.9.0+14.g4f73ff5) (2022.3.0)
Requirement already satisfied: tensorflow-metadata>=1.2.0 in /usr/local/lib/python3.8/dist-packages (from merlin-core==0.9.0+14.g4f73ff5) (1.10.0)
Requirement already satisfied: protobuf>=3.0.0 in /usr/local/lib/python3.8/dist-packages (from merlin-core==0.9.0+14.g4f73ff5) (3.19.5)
Requirement already satisfied: stringcase in /usr/local/lib/python3.8/dist-packages (from betterproto<2.0.0->merlin-core==0.9.0+14.g4f73ff5) (1.2.0)
Requirement already satisfied: grpclib in /usr/local/lib/python3.8/dist-packages (from betterproto<2.0.0->merlin-core==0.9.0+14.g4f73ff5) (0.4.3)
Requirement already satisfied: toolz>=0.8.2 in /usr/local/lib/python3.8/dist-packages (from dask>=2022.3.0->merlin-core==0.9.0+14.g4f73ff5) (0.12.0)
Requirement already satisfied: cloudpickle>=1.1.1 in /usr/local/lib/python3.8/dist-packages (from dask>=2022.3.0->merlin-core==0.9.0+14.g4f73ff5) (2.2.0)
Requirement already satisfied: partd>=0.3.10 in /var/jenkins_home/.local/lib/python3.8/site-packages/partd-1.2.0-py3.8.egg (from dask>=2022.3.0->merlin-core==0.9.0+14.g4f73ff5) (1.2.0)
Requirement already satisfied: pyyaml>=5.3.1 in /var/jenkins_home/.local/lib/python3.8/site-packages/PyYAML-5.4.1-py3.8-linux-x86_64.egg (from dask>=2022.3.0->merlin-core==0.9.0+14.g4f73ff5) (5.4.1)
Requirement already satisfied: tblib>=1.6.0 in /var/jenkins_home/.local/lib/python3.8/site-packages/tblib-1.7.0-py3.8.egg (from distributed>=2022.3.0->merlin-core==0.9.0+14.g4f73ff5) (1.7.0)
Requirement already satisfied: click>=6.6 in /usr/local/lib/python3.8/dist-packages (from distributed>=2022.3.0->merlin-core==0.9.0+14.g4f73ff5) (8.1.3)
Requirement already satisfied: jinja2 in /usr/local/lib/python3.8/dist-packages (from distributed>=2022.3.0->merlin-core==0.9.0+14.g4f73ff5) (3.1.2)
Requirement already satisfied: sortedcontainers!=2.0.0,!=2.0.1 in /var/jenkins_home/.local/lib/python3.8/site-packages/sortedcontainers-2.4.0-py3.8.egg (from distributed>=2022.3.0->merlin-core==0.9.0+14.g4f73ff5) (2.4.0)
Requirement already satisfied: zict>=0.1.3 in /var/jenkins_home/.local/lib/python3.8/site-packages/zict-2.0.0-py3.8.egg (from distributed>=2022.3.0->merlin-core==0.9.0+14.g4f73ff5) (2.0.0)
Requirement already satisfied: msgpack>=0.6.0 in /usr/local/lib/python3.8/dist-packages (from distributed>=2022.3.0->merlin-core==0.9.0+14.g4f73ff5) (1.0.4)
Requirement already satisfied: psutil>=5.0 in /var/jenkins_home/.local/lib/python3.8/site-packages/psutil-5.8.0-py3.8-linux-x86_64.egg (from distributed>=2022.3.0->merlin-core==0.9.0+14.g4f73ff5) (5.8.0)
Requirement already satisfied: tornado>=6.0.3 in /var/jenkins_home/.local/lib/python3.8/site-packages/tornado-6.1-py3.8-linux-x86_64.egg (from distributed>=2022.3.0->merlin-core==0.9.0+14.g4f73ff5) (6.1)
Requirement already satisfied: setuptools in ./.tox/test-gpu/lib/python3.8/site-packages (from numba>=0.54->merlin-core==0.9.0+14.g4f73ff5) (65.5.1)
Requirement already satisfied: llvmlite<0.39,>=0.38.0rc1 in ./.tox/test-gpu/lib/python3.8/site-packages (from numba>=0.54->merlin-core==0.9.0+14.g4f73ff5) (0.38.1)
Requirement already satisfied: numpy<1.22,>=1.18 in /var/jenkins_home/.local/lib/python3.8/site-packages (from numba>=0.54->merlin-core==0.9.0+14.g4f73ff5) (1.20.3)
Requirement already satisfied: pyparsing!=3.0.5,>=2.0.2 in /usr/local/lib/python3.8/dist-packages (from packaging->merlin-core==0.9.0+14.g4f73ff5) (3.0.9)
Requirement already satisfied: python-dateutil>=2.7.3 in /usr/local/lib/python3.8/dist-packages (from pandas<1.4.0dev0,>=1.2.0->merlin-core==0.9.0+14.g4f73ff5) (2.8.2)
Requirement already satisfied: pytz>=2017.3 in /usr/local/lib/python3.8/dist-packages (from pandas<1.4.0dev0,>=1.2.0->merlin-core==0.9.0+14.g4f73ff5) (2022.2.1)
Requirement already satisfied: absl-py<2.0.0,>=0.9 in /usr/local/lib/python3.8/dist-packages (from tensorflow-metadata>=1.2.0->merlin-core==0.9.0+14.g4f73ff5) (1.2.0)
Requirement already satisfied: googleapis-common-protos<2,>=1.52.0 in /usr/local/lib/python3.8/dist-packages (from tensorflow-metadata>=1.2.0->merlin-core==0.9.0+14.g4f73ff5) (1.52.0)
Requirement already satisfied: locket in /var/jenkins_home/.local/lib/python3.8/site-packages/locket-0.2.1-py3.8.egg (from partd>=0.3.10->dask>=2022.3.0->merlin-core==0.9.0+14.g4f73ff5) (0.2.1)
Requirement already satisfied: six>=1.5 in /var/jenkins_home/.local/lib/python3.8/site-packages (from python-dateutil>=2.7.3->pandas<1.4.0dev0,>=1.2.0->merlin-core==0.9.0+14.g4f73ff5) (1.15.0)
Requirement already satisfied: heapdict in /var/jenkins_home/.local/lib/python3.8/site-packages/HeapDict-1.0.1-py3.8.egg (from zict>=0.1.3->distributed>=2022.3.0->merlin-core==0.9.0+14.g4f73ff5) (1.0.1)
Requirement already satisfied: h2<5,>=3.1.0 in /usr/local/lib/python3.8/dist-packages (from grpclib->betterproto<2.0.0->merlin-core==0.9.0+14.g4f73ff5) (4.1.0)
Requirement already satisfied: multidict in /usr/local/lib/python3.8/dist-packages (from grpclib->betterproto<2.0.0->merlin-core==0.9.0+14.g4f73ff5) (6.0.2)
Requirement already satisfied: MarkupSafe>=2.0 in /usr/local/lib/python3.8/dist-packages (from jinja2->distributed>=2022.3.0->merlin-core==0.9.0+14.g4f73ff5) (2.1.1)
Requirement already satisfied: hyperframe<7,>=6.0 in /usr/local/lib/python3.8/dist-packages (from h2<5,>=3.1.0->grpclib->betterproto<2.0.0->merlin-core==0.9.0+14.g4f73ff5) (6.0.1)
Requirement already satisfied: hpack<5,>=4.0 in /usr/local/lib/python3.8/dist-packages (from h2<5,>=3.1.0->grpclib->betterproto<2.0.0->merlin-core==0.9.0+14.g4f73ff5) (4.0.0)
Building wheels for collected packages: merlin-core
  Building wheel for merlin-core (pyproject.toml): started
  Building wheel for merlin-core (pyproject.toml): finished with status 'done'
  Created wheel for merlin-core: filename=merlin_core-0.9.0+14.g4f73ff5-py3-none-any.whl size=119010 sha256=3ff03c9f7cd963a677c261c4c899c788a1e6afcabe7dcdf697551ff17b808841
  Stored in directory: /tmp/pip-ephem-wheel-cache-a9kusj5x/wheels/c8/38/16/a6968787eafcec5fa772148af8408b089562f71af0752e8e84
Successfully built merlin-core
Installing collected packages: merlin-core
  Attempting uninstall: merlin-core
    Found existing installation: merlin-core 0.3.0+12.g78ecddd
    Not uninstalling merlin-core at /var/jenkins_home/.local/lib/python3.8/site-packages, outside environment /var/jenkins_home/workspace/nvtabular_tests/nvtabular/.tox/test-gpu
    Can't uninstall 'merlin-core'. No files were found to uninstall.
Successfully installed merlin-core-0.9.0+14.g4f73ff5
test-gpu run-test: commands[1] | python -m pip install --upgrade git+https://github.com/NVIDIA-Merlin/dataloader.git
Looking in indexes: https://pypi.org/simple, https://pypi.ngc.nvidia.com
Collecting git+https://github.com/NVIDIA-Merlin/dataloader.git
  Cloning https://github.com/NVIDIA-Merlin/dataloader.git to /tmp/pip-req-build-e2fcj9eb
  Running command git clone --filter=blob:none --quiet https://github.com/NVIDIA-Merlin/dataloader.git /tmp/pip-req-build-e2fcj9eb
  Resolved https://github.com/NVIDIA-Merlin/dataloader.git to commit 498543d54629216dc09a5854dca4dbeeabcab356
  Installing build dependencies: started
  Installing build dependencies: finished with status 'done'
  Getting requirements to build wheel: started
  Getting requirements to build wheel: finished with status 'done'
  Preparing metadata (pyproject.toml): started
  Preparing metadata (pyproject.toml): finished with status 'done'
Requirement already satisfied: merlin-core>=0.8.0 in ./.tox/test-gpu/lib/python3.8/site-packages (from merlin-dataloader==0.0.2+22.g498543d) (0.9.0+14.g4f73ff5)
Requirement already satisfied: pyarrow>=5.0.0 in /usr/local/lib/python3.8/dist-packages (from merlin-core>=0.8.0->merlin-dataloader==0.0.2+22.g498543d) (7.0.0)
Requirement already satisfied: pandas<1.4.0dev0,>=1.2.0 in /var/jenkins_home/.local/lib/python3.8/site-packages (from merlin-core>=0.8.0->merlin-dataloader==0.0.2+22.g498543d) (1.3.5)
Requirement already satisfied: packaging in /usr/local/lib/python3.8/dist-packages (from merlin-core>=0.8.0->merlin-dataloader==0.0.2+22.g498543d) (21.3)
Requirement already satisfied: numba>=0.54 in /var/jenkins_home/.local/lib/python3.8/site-packages (from merlin-core>=0.8.0->merlin-dataloader==0.0.2+22.g498543d) (0.55.1)
Requirement already satisfied: betterproto<2.0.0 in /usr/local/lib/python3.8/dist-packages (from merlin-core>=0.8.0->merlin-dataloader==0.0.2+22.g498543d) (1.2.5)
Requirement already satisfied: tqdm>=4.0 in /usr/local/lib/python3.8/dist-packages (from merlin-core>=0.8.0->merlin-dataloader==0.0.2+22.g498543d) (4.64.1)
Requirement already satisfied: fsspec==2022.5.0 in /var/jenkins_home/.local/lib/python3.8/site-packages (from merlin-core>=0.8.0->merlin-dataloader==0.0.2+22.g498543d) (2022.5.0)
Requirement already satisfied: dask>=2022.3.0 in /var/jenkins_home/.local/lib/python3.8/site-packages (from merlin-core>=0.8.0->merlin-dataloader==0.0.2+22.g498543d) (2022.3.0)
Requirement already satisfied: distributed>=2022.3.0 in /var/jenkins_home/.local/lib/python3.8/site-packages (from merlin-core>=0.8.0->merlin-dataloader==0.0.2+22.g498543d) (2022.3.0)
Requirement already satisfied: tensorflow-metadata>=1.2.0 in /usr/local/lib/python3.8/dist-packages (from merlin-core>=0.8.0->merlin-dataloader==0.0.2+22.g498543d) (1.10.0)
Requirement already satisfied: protobuf>=3.0.0 in /usr/local/lib/python3.8/dist-packages (from merlin-core>=0.8.0->merlin-dataloader==0.0.2+22.g498543d) (3.19.5)
Requirement already satisfied: stringcase in /usr/local/lib/python3.8/dist-packages (from betterproto<2.0.0->merlin-core>=0.8.0->merlin-dataloader==0.0.2+22.g498543d) (1.2.0)
Requirement already satisfied: grpclib in /usr/local/lib/python3.8/dist-packages (from betterproto<2.0.0->merlin-core>=0.8.0->merlin-dataloader==0.0.2+22.g498543d) (0.4.3)
Requirement already satisfied: toolz>=0.8.2 in /usr/local/lib/python3.8/dist-packages (from dask>=2022.3.0->merlin-core>=0.8.0->merlin-dataloader==0.0.2+22.g498543d) (0.12.0)
Requirement already satisfied: cloudpickle>=1.1.1 in /usr/local/lib/python3.8/dist-packages (from dask>=2022.3.0->merlin-core>=0.8.0->merlin-dataloader==0.0.2+22.g498543d) (2.2.0)
Requirement already satisfied: partd>=0.3.10 in /var/jenkins_home/.local/lib/python3.8/site-packages/partd-1.2.0-py3.8.egg (from dask>=2022.3.0->merlin-core>=0.8.0->merlin-dataloader==0.0.2+22.g498543d) (1.2.0)
Requirement already satisfied: pyyaml>=5.3.1 in /var/jenkins_home/.local/lib/python3.8/site-packages/PyYAML-5.4.1-py3.8-linux-x86_64.egg (from dask>=2022.3.0->merlin-core>=0.8.0->merlin-dataloader==0.0.2+22.g498543d) (5.4.1)
Requirement already satisfied: tblib>=1.6.0 in /var/jenkins_home/.local/lib/python3.8/site-packages/tblib-1.7.0-py3.8.egg (from distributed>=2022.3.0->merlin-core>=0.8.0->merlin-dataloader==0.0.2+22.g498543d) (1.7.0)
Requirement already satisfied: click>=6.6 in /usr/local/lib/python3.8/dist-packages (from distributed>=2022.3.0->merlin-core>=0.8.0->merlin-dataloader==0.0.2+22.g498543d) (8.1.3)
Requirement already satisfied: jinja2 in /usr/local/lib/python3.8/dist-packages (from distributed>=2022.3.0->merlin-core>=0.8.0->merlin-dataloader==0.0.2+22.g498543d) (3.1.2)
Requirement already satisfied: sortedcontainers!=2.0.0,!=2.0.1 in /var/jenkins_home/.local/lib/python3.8/site-packages/sortedcontainers-2.4.0-py3.8.egg (from distributed>=2022.3.0->merlin-core>=0.8.0->merlin-dataloader==0.0.2+22.g498543d) (2.4.0)
Requirement already satisfied: zict>=0.1.3 in /var/jenkins_home/.local/lib/python3.8/site-packages/zict-2.0.0-py3.8.egg (from distributed>=2022.3.0->merlin-core>=0.8.0->merlin-dataloader==0.0.2+22.g498543d) (2.0.0)
Requirement already satisfied: msgpack>=0.6.0 in /usr/local/lib/python3.8/dist-packages (from distributed>=2022.3.0->merlin-core>=0.8.0->merlin-dataloader==0.0.2+22.g498543d) (1.0.4)
Requirement already satisfied: psutil>=5.0 in /var/jenkins_home/.local/lib/python3.8/site-packages/psutil-5.8.0-py3.8-linux-x86_64.egg (from distributed>=2022.3.0->merlin-core>=0.8.0->merlin-dataloader==0.0.2+22.g498543d) (5.8.0)
Requirement already satisfied: tornado>=6.0.3 in /var/jenkins_home/.local/lib/python3.8/site-packages/tornado-6.1-py3.8-linux-x86_64.egg (from distributed>=2022.3.0->merlin-core>=0.8.0->merlin-dataloader==0.0.2+22.g498543d) (6.1)
Requirement already satisfied: setuptools in ./.tox/test-gpu/lib/python3.8/site-packages (from numba>=0.54->merlin-core>=0.8.0->merlin-dataloader==0.0.2+22.g498543d) (65.5.1)
Requirement already satisfied: llvmlite<0.39,>=0.38.0rc1 in ./.tox/test-gpu/lib/python3.8/site-packages (from numba>=0.54->merlin-core>=0.8.0->merlin-dataloader==0.0.2+22.g498543d) (0.38.1)
Requirement already satisfied: numpy<1.22,>=1.18 in /var/jenkins_home/.local/lib/python3.8/site-packages (from numba>=0.54->merlin-core>=0.8.0->merlin-dataloader==0.0.2+22.g498543d) (1.20.3)
Requirement already satisfied: pyparsing!=3.0.5,>=2.0.2 in /usr/local/lib/python3.8/dist-packages (from packaging->merlin-core>=0.8.0->merlin-dataloader==0.0.2+22.g498543d) (3.0.9)
Requirement already satisfied: python-dateutil>=2.7.3 in /usr/local/lib/python3.8/dist-packages (from pandas<1.4.0dev0,>=1.2.0->merlin-core>=0.8.0->merlin-dataloader==0.0.2+22.g498543d) (2.8.2)
Requirement already satisfied: pytz>=2017.3 in /usr/local/lib/python3.8/dist-packages (from pandas<1.4.0dev0,>=1.2.0->merlin-core>=0.8.0->merlin-dataloader==0.0.2+22.g498543d) (2022.2.1)
Requirement already satisfied: absl-py<2.0.0,>=0.9 in /usr/local/lib/python3.8/dist-packages (from tensorflow-metadata>=1.2.0->merlin-core>=0.8.0->merlin-dataloader==0.0.2+22.g498543d) (1.2.0)
Requirement already satisfied: googleapis-common-protos<2,>=1.52.0 in /usr/local/lib/python3.8/dist-packages (from tensorflow-metadata>=1.2.0->merlin-core>=0.8.0->merlin-dataloader==0.0.2+22.g498543d) (1.52.0)
Requirement already satisfied: locket in /var/jenkins_home/.local/lib/python3.8/site-packages/locket-0.2.1-py3.8.egg (from partd>=0.3.10->dask>=2022.3.0->merlin-core>=0.8.0->merlin-dataloader==0.0.2+22.g498543d) (0.2.1)
Requirement already satisfied: six>=1.5 in /var/jenkins_home/.local/lib/python3.8/site-packages (from python-dateutil>=2.7.3->pandas<1.4.0dev0,>=1.2.0->merlin-core>=0.8.0->merlin-dataloader==0.0.2+22.g498543d) (1.15.0)
Requirement already satisfied: heapdict in /var/jenkins_home/.local/lib/python3.8/site-packages/HeapDict-1.0.1-py3.8.egg (from zict>=0.1.3->distributed>=2022.3.0->merlin-core>=0.8.0->merlin-dataloader==0.0.2+22.g498543d) (1.0.1)
Requirement already satisfied: h2<5,>=3.1.0 in /usr/local/lib/python3.8/dist-packages (from grpclib->betterproto<2.0.0->merlin-core>=0.8.0->merlin-dataloader==0.0.2+22.g498543d) (4.1.0)
Requirement already satisfied: multidict in /usr/local/lib/python3.8/dist-packages (from grpclib->betterproto<2.0.0->merlin-core>=0.8.0->merlin-dataloader==0.0.2+22.g498543d) (6.0.2)
Requirement already satisfied: MarkupSafe>=2.0 in /usr/local/lib/python3.8/dist-packages (from jinja2->distributed>=2022.3.0->merlin-core>=0.8.0->merlin-dataloader==0.0.2+22.g498543d) (2.1.1)
Requirement already satisfied: hyperframe<7,>=6.0 in /usr/local/lib/python3.8/dist-packages (from h2<5,>=3.1.0->grpclib->betterproto<2.0.0->merlin-core>=0.8.0->merlin-dataloader==0.0.2+22.g498543d) (6.0.1)
Requirement already satisfied: hpack<5,>=4.0 in /usr/local/lib/python3.8/dist-packages (from h2<5,>=3.1.0->grpclib->betterproto<2.0.0->merlin-core>=0.8.0->merlin-dataloader==0.0.2+22.g498543d) (4.0.0)
Building wheels for collected packages: merlin-dataloader
  Building wheel for merlin-dataloader (pyproject.toml): started
  Building wheel for merlin-dataloader (pyproject.toml): finished with status 'done'
  Created wheel for merlin-dataloader: filename=merlin_dataloader-0.0.2+22.g498543d-py3-none-any.whl size=40350 sha256=4922b2269d7e4f8abbab5c641007577f905f2062374bbe5c44175f959e9d2e81
  Stored in directory: /tmp/pip-ephem-wheel-cache-qd8q2n10/wheels/de/f5/d9/251909f4627d2920fb15548f5ffd6daf1bf24c3c56bb4977b1
Successfully built merlin-dataloader
Installing collected packages: merlin-dataloader
  Attempting uninstall: merlin-dataloader
    Found existing installation: merlin-dataloader 0.0.3
    Uninstalling merlin-dataloader-0.0.3:
      Successfully uninstalled merlin-dataloader-0.0.3
Successfully installed merlin-dataloader-0.0.2+22.g498543d
test-gpu run-test: commands[2] | python -m pip install --upgrade git+https://github.com/NVIDIA-Merlin/models.git
Looking in indexes: https://pypi.org/simple, https://pypi.ngc.nvidia.com
Collecting git+https://github.com/NVIDIA-Merlin/models.git
  Cloning https://github.com/NVIDIA-Merlin/models.git to /tmp/pip-req-build-6p0t0bhh
  Running command git clone --filter=blob:none --quiet https://github.com/NVIDIA-Merlin/models.git /tmp/pip-req-build-6p0t0bhh
  Resolved https://github.com/NVIDIA-Merlin/models.git to commit e08a72c9c59416a9000e62d25548eb08367fc3fa
  Installing build dependencies: started
  Installing build dependencies: finished with status 'done'
  Getting requirements to build wheel: started
  Getting requirements to build wheel: finished with status 'done'
  Preparing metadata (pyproject.toml): started
  Preparing metadata (pyproject.toml): finished with status 'done'
Requirement already satisfied: merlin-core>=0.2.0 in ./.tox/test-gpu/lib/python3.8/site-packages (from merlin-models==0.9.0+61.ge08a72c9) (0.9.0+14.g4f73ff5)
Requirement already satisfied: pyarrow>=5.0.0 in /usr/local/lib/python3.8/dist-packages (from merlin-core>=0.2.0->merlin-models==0.9.0+61.ge08a72c9) (7.0.0)
Requirement already satisfied: pandas<1.4.0dev0,>=1.2.0 in /var/jenkins_home/.local/lib/python3.8/site-packages (from merlin-core>=0.2.0->merlin-models==0.9.0+61.ge08a72c9) (1.3.5)
Requirement already satisfied: packaging in /usr/local/lib/python3.8/dist-packages (from merlin-core>=0.2.0->merlin-models==0.9.0+61.ge08a72c9) (21.3)
Requirement already satisfied: numba>=0.54 in /var/jenkins_home/.local/lib/python3.8/site-packages (from merlin-core>=0.2.0->merlin-models==0.9.0+61.ge08a72c9) (0.55.1)
Requirement already satisfied: betterproto<2.0.0 in /usr/local/lib/python3.8/dist-packages (from merlin-core>=0.2.0->merlin-models==0.9.0+61.ge08a72c9) (1.2.5)
Requirement already satisfied: tqdm>=4.0 in /usr/local/lib/python3.8/dist-packages (from merlin-core>=0.2.0->merlin-models==0.9.0+61.ge08a72c9) (4.64.1)
Requirement already satisfied: fsspec==2022.5.0 in /var/jenkins_home/.local/lib/python3.8/site-packages (from merlin-core>=0.2.0->merlin-models==0.9.0+61.ge08a72c9) (2022.5.0)
Requirement already satisfied: dask>=2022.3.0 in /var/jenkins_home/.local/lib/python3.8/site-packages (from merlin-core>=0.2.0->merlin-models==0.9.0+61.ge08a72c9) (2022.3.0)
Requirement already satisfied: distributed>=2022.3.0 in /var/jenkins_home/.local/lib/python3.8/site-packages (from merlin-core>=0.2.0->merlin-models==0.9.0+61.ge08a72c9) (2022.3.0)
Requirement already satisfied: tensorflow-metadata>=1.2.0 in /usr/local/lib/python3.8/dist-packages (from merlin-core>=0.2.0->merlin-models==0.9.0+61.ge08a72c9) (1.10.0)
Requirement already satisfied: protobuf>=3.0.0 in /usr/local/lib/python3.8/dist-packages (from merlin-core>=0.2.0->merlin-models==0.9.0+61.ge08a72c9) (3.19.5)
Requirement already satisfied: stringcase in /usr/local/lib/python3.8/dist-packages (from betterproto<2.0.0->merlin-core>=0.2.0->merlin-models==0.9.0+61.ge08a72c9) (1.2.0)
Requirement already satisfied: grpclib in /usr/local/lib/python3.8/dist-packages (from betterproto<2.0.0->merlin-core>=0.2.0->merlin-models==0.9.0+61.ge08a72c9) (0.4.3)
Requirement already satisfied: toolz>=0.8.2 in /usr/local/lib/python3.8/dist-packages (from dask>=2022.3.0->merlin-core>=0.2.0->merlin-models==0.9.0+61.ge08a72c9) (0.12.0)
Requirement already satisfied: cloudpickle>=1.1.1 in /usr/local/lib/python3.8/dist-packages (from dask>=2022.3.0->merlin-core>=0.2.0->merlin-models==0.9.0+61.ge08a72c9) (2.2.0)
Requirement already satisfied: partd>=0.3.10 in /var/jenkins_home/.local/lib/python3.8/site-packages/partd-1.2.0-py3.8.egg (from dask>=2022.3.0->merlin-core>=0.2.0->merlin-models==0.9.0+61.ge08a72c9) (1.2.0)
Requirement already satisfied: pyyaml>=5.3.1 in /var/jenkins_home/.local/lib/python3.8/site-packages/PyYAML-5.4.1-py3.8-linux-x86_64.egg (from dask>=2022.3.0->merlin-core>=0.2.0->merlin-models==0.9.0+61.ge08a72c9) (5.4.1)
Requirement already satisfied: tblib>=1.6.0 in /var/jenkins_home/.local/lib/python3.8/site-packages/tblib-1.7.0-py3.8.egg (from distributed>=2022.3.0->merlin-core>=0.2.0->merlin-models==0.9.0+61.ge08a72c9) (1.7.0)
Requirement already satisfied: click>=6.6 in /usr/local/lib/python3.8/dist-packages (from distributed>=2022.3.0->merlin-core>=0.2.0->merlin-models==0.9.0+61.ge08a72c9) (8.1.3)
Requirement already satisfied: jinja2 in /usr/local/lib/python3.8/dist-packages (from distributed>=2022.3.0->merlin-core>=0.2.0->merlin-models==0.9.0+61.ge08a72c9) (3.1.2)
Requirement already satisfied: sortedcontainers!=2.0.0,!=2.0.1 in /var/jenkins_home/.local/lib/python3.8/site-packages/sortedcontainers-2.4.0-py3.8.egg (from distributed>=2022.3.0->merlin-core>=0.2.0->merlin-models==0.9.0+61.ge08a72c9) (2.4.0)
Requirement already satisfied: zict>=0.1.3 in /var/jenkins_home/.local/lib/python3.8/site-packages/zict-2.0.0-py3.8.egg (from distributed>=2022.3.0->merlin-core>=0.2.0->merlin-models==0.9.0+61.ge08a72c9) (2.0.0)
Requirement already satisfied: msgpack>=0.6.0 in /usr/local/lib/python3.8/dist-packages (from distributed>=2022.3.0->merlin-core>=0.2.0->merlin-models==0.9.0+61.ge08a72c9) (1.0.4)
Requirement already satisfied: psutil>=5.0 in /var/jenkins_home/.local/lib/python3.8/site-packages/psutil-5.8.0-py3.8-linux-x86_64.egg (from distributed>=2022.3.0->merlin-core>=0.2.0->merlin-models==0.9.0+61.ge08a72c9) (5.8.0)
Requirement already satisfied: tornado>=6.0.3 in /var/jenkins_home/.local/lib/python3.8/site-packages/tornado-6.1-py3.8-linux-x86_64.egg (from distributed>=2022.3.0->merlin-core>=0.2.0->merlin-models==0.9.0+61.ge08a72c9) (6.1)
Requirement already satisfied: setuptools in ./.tox/test-gpu/lib/python3.8/site-packages (from numba>=0.54->merlin-core>=0.2.0->merlin-models==0.9.0+61.ge08a72c9) (65.5.1)
Requirement already satisfied: llvmlite<0.39,>=0.38.0rc1 in ./.tox/test-gpu/lib/python3.8/site-packages (from numba>=0.54->merlin-core>=0.2.0->merlin-models==0.9.0+61.ge08a72c9) (0.38.1)
Requirement already satisfied: numpy<1.22,>=1.18 in /var/jenkins_home/.local/lib/python3.8/site-packages (from numba>=0.54->merlin-core>=0.2.0->merlin-models==0.9.0+61.ge08a72c9) (1.20.3)
Requirement already satisfied: pyparsing!=3.0.5,>=2.0.2 in /usr/local/lib/python3.8/dist-packages (from packaging->merlin-core>=0.2.0->merlin-models==0.9.0+61.ge08a72c9) (3.0.9)
Requirement already satisfied: python-dateutil>=2.7.3 in /usr/local/lib/python3.8/dist-packages (from pandas<1.4.0dev0,>=1.2.0->merlin-core>=0.2.0->merlin-models==0.9.0+61.ge08a72c9) (2.8.2)
Requirement already satisfied: pytz>=2017.3 in /usr/local/lib/python3.8/dist-packages (from pandas<1.4.0dev0,>=1.2.0->merlin-core>=0.2.0->merlin-models==0.9.0+61.ge08a72c9) (2022.2.1)
Requirement already satisfied: absl-py<2.0.0,>=0.9 in /usr/local/lib/python3.8/dist-packages (from tensorflow-metadata>=1.2.0->merlin-core>=0.2.0->merlin-models==0.9.0+61.ge08a72c9) (1.2.0)
Requirement already satisfied: googleapis-common-protos<2,>=1.52.0 in /usr/local/lib/python3.8/dist-packages (from tensorflow-metadata>=1.2.0->merlin-core>=0.2.0->merlin-models==0.9.0+61.ge08a72c9) (1.52.0)
Requirement already satisfied: locket in /var/jenkins_home/.local/lib/python3.8/site-packages/locket-0.2.1-py3.8.egg (from partd>=0.3.10->dask>=2022.3.0->merlin-core>=0.2.0->merlin-models==0.9.0+61.ge08a72c9) (0.2.1)
Requirement already satisfied: six>=1.5 in /var/jenkins_home/.local/lib/python3.8/site-packages (from python-dateutil>=2.7.3->pandas<1.4.0dev0,>=1.2.0->merlin-core>=0.2.0->merlin-models==0.9.0+61.ge08a72c9) (1.15.0)
Requirement already satisfied: heapdict in /var/jenkins_home/.local/lib/python3.8/site-packages/HeapDict-1.0.1-py3.8.egg (from zict>=0.1.3->distributed>=2022.3.0->merlin-core>=0.2.0->merlin-models==0.9.0+61.ge08a72c9) (1.0.1)
Requirement already satisfied: h2<5,>=3.1.0 in /usr/local/lib/python3.8/dist-packages (from grpclib->betterproto<2.0.0->merlin-core>=0.2.0->merlin-models==0.9.0+61.ge08a72c9) (4.1.0)
Requirement already satisfied: multidict in /usr/local/lib/python3.8/dist-packages (from grpclib->betterproto<2.0.0->merlin-core>=0.2.0->merlin-models==0.9.0+61.ge08a72c9) (6.0.2)
Requirement already satisfied: MarkupSafe>=2.0 in /usr/local/lib/python3.8/dist-packages (from jinja2->distributed>=2022.3.0->merlin-core>=0.2.0->merlin-models==0.9.0+61.ge08a72c9) (2.1.1)
Requirement already satisfied: hyperframe<7,>=6.0 in /usr/local/lib/python3.8/dist-packages (from h2<5,>=3.1.0->grpclib->betterproto<2.0.0->merlin-core>=0.2.0->merlin-models==0.9.0+61.ge08a72c9) (6.0.1)
Requirement already satisfied: hpack<5,>=4.0 in /usr/local/lib/python3.8/dist-packages (from h2<5,>=3.1.0->grpclib->betterproto<2.0.0->merlin-core>=0.2.0->merlin-models==0.9.0+61.ge08a72c9) (4.0.0)
Building wheels for collected packages: merlin-models
  Building wheel for merlin-models (pyproject.toml): started
  Building wheel for merlin-models (pyproject.toml): finished with status 'done'
  Created wheel for merlin-models: filename=merlin_models-0.9.0+61.ge08a72c9-py3-none-any.whl size=367208 sha256=62a9634c12ea84f489126f1e859ebefa18ee528dc1806ae9c321f6be600ee296
  Stored in directory: /tmp/pip-ephem-wheel-cache-8uc52c4s/wheels/5a/43/99/d50fe2c33b4f4686db73207ce3865e0d6be6609ffb03abade5
Successfully built merlin-models
Installing collected packages: merlin-models
  Attempting uninstall: merlin-models
    Found existing installation: merlin-models 0.7.0+11.g280956aa4
    Not uninstalling merlin-models at /usr/local/lib/python3.8/dist-packages, outside environment /var/jenkins_home/workspace/nvtabular_tests/nvtabular/.tox/test-gpu
    Can't uninstall 'merlin-models'. No files were found to uninstall.
Successfully installed merlin-models-0.9.0+61.ge08a72c9
test-gpu run-test: commands[3] | python -m pytest --cov-report term --cov merlin -rxs tests/unit
============================= test session starts ==============================
platform linux -- Python 3.8.10, pytest-7.1.3, pluggy-1.0.0
cachedir: .tox/test-gpu/.pytest_cache
rootdir: /var/jenkins_home/workspace/nvtabular_tests/nvtabular, configfile: pyproject.toml
plugins: anyio-3.5.0, xdist-3.0.2, cov-4.0.0
collected 1439 items / 1 skipped

tests/unit/test_dask_nvt.py ............................................ [ 3%]
........................................................................ [ 8%]
.... [ 8%]
tests/unit/test_notebooks.py .... [ 8%]
tests/unit/test_tf4rec.py . [ 8%]
tests/unit/test_tools.py ...................... [ 10%]
tests/unit/test_triton_inference.py ................................ [ 12%]
tests/unit/examples/test_01-Getting-started.py . [ 12%]
tests/unit/examples/test_02-Advanced-NVTabular-workflow.py . [ 12%]
tests/unit/examples/test_03-Running-on-multiple-GPUs-or-on-CPU.py . [ 12%]
tests/unit/framework_utils/test_tf_feature_columns.py . [ 12%]
tests/unit/framework_utils/test_tf_layers.py ........................... [ 14%]
................................................... [ 18%]
tests/unit/framework_utils/test_torch_layers.py . [ 18%]
tests/unit/loader/test_tf_dataloader.py ................................ [ 20%]
........................................s.. [ 23%]
tests/unit/loader/test_torch_dataloader.py ............................. [ 25%]
..................................................... [ 29%]
tests/unit/ops/test_categorify.py ...................................... [ 31%]
........................................................................ [ 36%]
..................................................... [ 40%]
tests/unit/ops/test_column_similarity.py ........................ [ 42%]
tests/unit/ops/test_drop_low_cardinality.py .. [ 42%]
tests/unit/ops/test_fill.py ............................................ [ 45%]
........ [ 45%]
tests/unit/ops/test_groupyby.py ....................... [ 47%]
tests/unit/ops/test_hash_bucket.py ......................... [ 49%]
tests/unit/ops/test_join.py ............................................ [ 52%]
........................................................................ [ 57%]
.................................. [ 59%]
tests/unit/ops/test_lambda.py .......... [ 60%]
tests/unit/ops/test_normalize.py ....................................... [ 63%]
.. [ 63%]
tests/unit/ops/test_ops.py ............................................. [ 66%]
.................... [ 67%]
tests/unit/ops/test_ops_schema.py ...................................... [ 70%]
........................................................................ [ 75%]
........................................................................ [ 80%]
........................................................................ [ 85%]
....................................... [ 88%]
tests/unit/ops/test_reduce_dtype_size.py .. [ 88%]
tests/unit/ops/test_target_encode.py ..................... [ 89%]
tests/unit/ops/test_value_count.py ... [ 89%]
tests/unit/workflow/test_cpu_workflow.py ...... [ 90%]
tests/unit/workflow/test_workflow.py ................................... [ 92%]
.......................................................... [ 96%]
tests/unit/workflow/test_workflow_chaining.py ... [ 96%]
tests/unit/workflow/test_workflow_node.py ........... [ 97%]
tests/unit/workflow/test_workflow_ops.py ... [ 97%]
tests/unit/workflow/test_workflow_schemas.py ........................... [ 99%]
... [100%]

=============================== warnings summary ===============================
../../../../../usr/local/lib/python3.8/dist-packages/dask_cudf/core.py:33
/usr/local/lib/python3.8/dist-packages/dask_cudf/core.py:33: DeprecationWarning: distutils Version classes are deprecated. Use packaging.version instead.
DASK_VERSION = LooseVersion(dask.version)

.tox/test-gpu/lib/python3.8/site-packages/setuptools/_distutils/version.py:346: 34 warnings
/var/jenkins_home/workspace/nvtabular_tests/nvtabular/.tox/test-gpu/lib/python3.8/site-packages/setuptools/_distutils/version.py:346: DeprecationWarning: distutils Version classes are deprecated. Use packaging.version instead.
other = LooseVersion(other)

tests/unit/test_dask_nvt.py: 6 warnings
tests/unit/workflow/test_workflow.py: 78 warnings
/var/jenkins_home/.local/lib/python3.8/site-packages/dask/base.py:1282: UserWarning: Running on a single-machine scheduler when a distributed client is active might lead to unexpected results.
warnings.warn(

tests/unit/test_dask_nvt.py::test_merlin_core_execution_managers
/var/jenkins_home/workspace/nvtabular_tests/nvtabular/.tox/test-gpu/lib/python3.8/site-packages/merlin/core/utils.py:431: UserWarning: Existing Dask-client object detected in the current context. New cuda cluster will not be deployed. Set force_new to True to ignore running clusters.
warnings.warn(

tests/unit/ops/test_fill.py::test_fill_missing[True-True-parquet]
tests/unit/ops/test_fill.py::test_fill_missing[True-False-parquet]
tests/unit/ops/test_ops.py::test_filter[parquet-0.1-True]
/var/jenkins_home/.local/lib/python3.8/site-packages/pandas/core/indexing.py:1732: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
self._setitem_single_block(indexer, value, name)

tests/unit/ops/test_ops_schema.py: 12 warnings
/var/jenkins_home/workspace/nvtabular_tests/nvtabular/.tox/test-gpu/lib/python3.8/site-packages/merlin/schema/tags.py:148: UserWarning: Compound tags like Tags.USER_ID have been deprecated and will be removed in a future version. Please use the atomic versions of these tags, like [<Tags.USER: 'user'>, <Tags.ID: 'id'>].
warnings.warn(

tests/unit/ops/test_ops_schema.py: 12 warnings
/var/jenkins_home/workspace/nvtabular_tests/nvtabular/.tox/test-gpu/lib/python3.8/site-packages/merlin/schema/tags.py:148: UserWarning: Compound tags like Tags.ITEM_ID have been deprecated and will be removed in a future version. Please use the atomic versions of these tags, like [<Tags.ITEM: 'item'>, <Tags.ID: 'id'>].
warnings.warn(

-- Docs: https://docs.pytest.org/en/stable/how-to/capture-warnings.html

---------- coverage: platform linux, python 3.8.10-final-0 -----------
Name Stmts Miss Cover

merlin/transforms/init.py 1 1 0%
merlin/transforms/ops/init.py 1 1 0%

TOTAL 2 2 0%

=========================== short test summary info ============================
SKIPPED [1] ../../../../../usr/local/lib/python3.8/dist-packages/dask_cudf/io/tests/test_s3.py:14: could not import 'moto': No module named 'moto'
SKIPPED [1] tests/unit/loader/test_tf_dataloader.py:529: not working correctly in ci environment
========== 1438 passed, 2 skipped, 147 warnings in 1127.07s (0:18:47) ==========
/usr/local/lib/python3.8/dist-packages/coverage/control.py:801: CoverageWarning: No data was collected. (no-data-collected)
self._warn("No data was collected.", slug="no-data-collected")
___________________________________ summary ____________________________________
test-gpu: commands succeeded
congratulations :)
Performing Post build task...
Match found for : : True
Logical operation result is TRUE
Running script : #!/bin/bash
cd /var/jenkins_home/
CUDA_VISIBLE_DEVICES=1 python test_res_push.py "https://api.GitHub.com/repos/NVIDIA-Merlin/NVTabular/issues/$ghprbPullId/comments" "/var/jenkins_home/jobs/$JOB_NAME/builds/$BUILD_NUMBER/log"
[workspace] $ /bin/bash /tmp/jenkins5108190111148325489.sh

@mikemckiernan mikemckiernan merged commit 51af616 into NVIDIA-Merlin:main Dec 1, 2022
@mikemckiernan mikemckiernan deleted the dev-doc-link-testing branch December 1, 2022 20:29
@mikemckiernan
Copy link
Member Author

I know that I suggested waiting until another PR was merged, but when Jenkins finally says you can merge, you really, really need to merge.

bschifferer added a commit that referenced this pull request Dec 6, 2022
* Migrate the legacy examples to the Merlin repo

We may (or may not) want to keep these examples but they've overstayed their welcome in the NVTabular repo, which is burdened with the accumulation of a lot of historical cruft. Since some of these examples use inference code that's moving to Systems, it makes more sense for them to live in the Merlin repo (if we want to keep them.)

* update READMEs

* docs: Contribute to examples clean up

- Fix difficult to detect broken links.
- Revise TOC.

* Handle data loader as an iterator (#1720)

* Update test_gpu_dl_break to handle data loader as an iterator

* Use peek method to look at first batch in notebooks

* Revert whitespace change to image cell

* Revert change to PyTorch training example notebook

* Call peek on data iter to get batch

* Describe how to check for broken links (#1719)

This is one way to check for broken links,
but I'm happy to adopt something that is
better.

Co-authored-by: Karl Higley <[email protected]>

Co-authored-by: Benedikt Schifferer <[email protected]>
Co-authored-by: Mike McKiernan <[email protected]>
Co-authored-by: Oliver Holworthy <[email protected]>
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
chore skip-changelog Exclude from change log
Projects
None yet
Development

Successfully merging this pull request may close these issues.

3 participants