Skip to content

Commit

Permalink
More reproducible test
Browse files Browse the repository at this point in the history
  • Loading branch information
chezou committed Dec 12, 2024
1 parent 6963f4a commit 2f096b6
Showing 1 changed file with 27 additions and 10 deletions.
37 changes: 27 additions & 10 deletions tests/models/test_implicit_bpr.py
Original file line number Diff line number Diff line change
@@ -1,4 +1,5 @@
import typing as tp
from copy import deepcopy

import implicit.gpu
import numpy as np
Expand All @@ -19,6 +20,7 @@
from rectools.columns import Columns
from rectools.dataset.dataset import Dataset
from rectools.exceptions import NotFittedError
from rectools.models.base import ModelBase
from rectools.models.implicit_bpr import (
AnyBayesianPersonalizedRanking,
ImplicitBPRWrapperModel,
Expand All @@ -28,7 +30,6 @@
from tests.models.utils import (
assert_default_config_and_default_model_params_are_the_same,
assert_dumps_loads_do_not_change_model,
assert_get_config_and_from_config_compatibility,
assert_second_fit_refits_model,
)

Expand Down Expand Up @@ -80,7 +81,7 @@ def dataset(self) -> Dataset:
pd.DataFrame(
{
Columns.User: [10, 10, 20, 20],
Columns.Item: [11, 12, 11, 17],
Columns.Item: [11, 17, 11, 17],
Columns.Rank: [1, 2, 1, 2],
}
),
Expand All @@ -103,7 +104,7 @@ def test_basic(
use_gpu: bool,
) -> None:
base_model = BayesianPersonalizedRanking(
factors=2, num_threads=2, iterations=100, use_gpu=use_gpu, random_state=1
factors=2, num_threads=2, iterations=100, use_gpu=use_gpu, random_state=42
)
self._init_model_factors_inplace(base_model, dataset)
model = ImplicitBPRWrapperModel(model=base_model).fit(dataset)
Expand All @@ -127,14 +128,13 @@ def test_consistent_with_pure_implicit(self, dataset: Dataset, use_gpu: bool) ->
self._init_model_factors_inplace(base_model, dataset)
users = np.array([10, 20, 30, 40])

model_for_wrap = BayesianPersonalizedRanking(
factors=2, num_threads=2, iterations=100, use_gpu=use_gpu, random_state=42
)
self._init_model_factors_inplace(model_for_wrap, dataset)
model_for_wrap = deepcopy(base_model)
state = np.random.get_state()
wrapper_model = ImplicitBPRWrapperModel(model=model_for_wrap).fit(dataset)
actual_reco = wrapper_model.recommend(users=users, dataset=dataset, k=3, filter_viewed=False)

ui_csr = dataset.get_user_item_matrix(include_weights=True)
np.random.set_state(state)
base_model.fit(ui_csr)
for user_id in users:
internal_id = dataset.user_id_map.convert_to_internal([user_id])[0]
Expand Down Expand Up @@ -410,14 +410,31 @@ def test_custom_model_class(self) -> None:

assert model.get_config()["model"]["cls"] == CustomBPR # pylint: disable=unsubscriptable-object

@pytest.mark.skip("BPR doesn't behave deterministically")
@pytest.mark.parametrize("simple_types", (False, True))
def test_get_config_and_from_config_compatibility(self, simple_types: bool) -> None:
initial_config = {
"model": {"factors": 16, "num_threads": 2, "iterations": 3, "random_state": 42},
"model": {"factors": 4, "num_threads": 2, "iterations": 2, "random_state": 42},
"verbose": 1,
}
assert_get_config_and_from_config_compatibility(ImplicitBPRWrapperModel, DATASET, initial_config, simple_types)
dataset = DATASET
model = ImplicitBPRWrapperModel

def get_reco(model: ModelBase) -> pd.DataFrame:
return model.fit(dataset).recommend(users=np.array([10, 20]), dataset=dataset, k=2, filter_viewed=False)

state = np.random.get_state()
model_1 = model.from_config(initial_config)
reco_1 = get_reco(model_1)
config_1 = model_1.get_config(simple_types=simple_types)

model_2 = model.from_config(config_1)
np.random.set_state(state)
reco_2 = get_reco(model_2)

config_2 = model_2.get_config(simple_types=simple_types)

assert config_1 == config_2
pd.testing.assert_frame_equal(reco_1, reco_2, atol=0.01)

def test_default_config_and_default_model_params_are_the_same(self) -> None:
default_config: tp.Dict[str, tp.Any] = {"model": {}}
Expand Down

0 comments on commit 2f096b6

Please sign in to comment.