Skip to content

Commit

Permalink
Merge pull request #1 from v0xie/oft-faster
Browse files Browse the repository at this point in the history
Support LyCORIS diag-oft OFT implementation (minus MultiheadAttention layer), maintains support for kohya-ss OFT
  • Loading branch information
v0xie authored Nov 4, 2023
2 parents 6523edb + f6c8201 commit 1dd25be
Show file tree
Hide file tree
Showing 3 changed files with 135 additions and 17 deletions.
47 changes: 47 additions & 0 deletions extensions-builtin/Lora/lyco_helpers.py
Original file line number Diff line number Diff line change
Expand Up @@ -19,3 +19,50 @@ def rebuild_cp_decomposition(up, down, mid):
up = up.reshape(up.size(0), -1)
down = down.reshape(down.size(0), -1)
return torch.einsum('n m k l, i n, m j -> i j k l', mid, up, down)


# copied from https://github.com/KohakuBlueleaf/LyCORIS/blob/dev/lycoris/modules/lokr.py
def factorization(dimension: int, factor:int=-1) -> tuple[int, int]:
'''
return a tuple of two value of input dimension decomposed by the number closest to factor
second value is higher or equal than first value.
In LoRA with Kroneckor Product, first value is a value for weight scale.
secon value is a value for weight.
Becuase of non-commutative property, A⊗B ≠ B⊗A. Meaning of two matrices is slightly different.
examples)
factor
-1 2 4 8 16 ...
127 -> 1, 127 127 -> 1, 127 127 -> 1, 127 127 -> 1, 127 127 -> 1, 127
128 -> 8, 16 128 -> 2, 64 128 -> 4, 32 128 -> 8, 16 128 -> 8, 16
250 -> 10, 25 250 -> 2, 125 250 -> 2, 125 250 -> 5, 50 250 -> 10, 25
360 -> 8, 45 360 -> 2, 180 360 -> 4, 90 360 -> 8, 45 360 -> 12, 30
512 -> 16, 32 512 -> 2, 256 512 -> 4, 128 512 -> 8, 64 512 -> 16, 32
1024 -> 32, 32 1024 -> 2, 512 1024 -> 4, 256 1024 -> 8, 128 1024 -> 16, 64
'''

if factor > 0 and (dimension % factor) == 0:
m = factor
n = dimension // factor
if m > n:
n, m = m, n
return m, n
if factor < 0:
factor = dimension
m, n = 1, dimension
length = m + n
while m<n:
new_m = m + 1
while dimension%new_m != 0:
new_m += 1
new_n = dimension // new_m
if new_m + new_n > length or new_m>factor:
break
else:
m, n = new_m, new_n
if m > n:
n, m = m, n
return m, n

98 changes: 81 additions & 17 deletions extensions-builtin/Lora/network_oft.py
Original file line number Diff line number Diff line change
@@ -1,34 +1,62 @@
import torch
import network
from lyco_helpers import factorization
from einops import rearrange


class ModuleTypeOFT(network.ModuleType):
def create_module(self, net: network.Network, weights: network.NetworkWeights):
if all(x in weights.w for x in ["oft_blocks"]):
if all(x in weights.w for x in ["oft_blocks"]) or all(x in weights.w for x in ["oft_diag"]):
return NetworkModuleOFT(net, weights)

return None

# adapted from kohya's implementation https://github.com/kohya-ss/sd-scripts/blob/main/networks/oft.py
# adapted from kohya-ss' implementation https://github.com/kohya-ss/sd-scripts/blob/main/networks/oft.py
# and KohakuBlueleaf's implementation https://github.com/KohakuBlueleaf/LyCORIS/blob/dev/lycoris/modules/diag_oft.py
class NetworkModuleOFT(network.NetworkModule):
def __init__(self, net: network.Network, weights: network.NetworkWeights):

super().__init__(net, weights)

self.oft_blocks = weights.w["oft_blocks"]
self.alpha = weights.w["alpha"]
self.dim = self.oft_blocks.shape[0]
self.num_blocks = self.dim
self.lin_module = None
self.org_module: list[torch.Module] = [self.sd_module]

# kohya-ss
if "oft_blocks" in weights.w.keys():
self.is_kohya = True
self.oft_blocks = weights.w["oft_blocks"]
self.alpha = weights.w["alpha"]
self.dim = self.oft_blocks.shape[0]
elif "oft_diag" in weights.w.keys():
self.is_kohya = False
self.oft_blocks = weights.w["oft_diag"]
# alpha is rank if alpha is 0 or None
if self.alpha is None:
pass
self.dim = self.oft_blocks.shape[1] # FIXME: almost certainly incorrect, assumes tensor is shape [*, m, n]
else:
raise ValueError("oft_blocks or oft_diag must be in weights dict")

if "Linear" in self.sd_module.__class__.__name__:
is_linear = type(self.sd_module) in [torch.nn.Linear, torch.nn.modules.linear.NonDynamicallyQuantizableLinear]
is_conv = type(self.sd_module) in [torch.nn.Conv2d]
is_other_linear = type(self.sd_module) in [torch.nn.MultiheadAttention]

if is_linear:
self.out_dim = self.sd_module.out_features
elif "Conv" in self.sd_module.__class__.__name__:
elif is_other_linear:
self.out_dim = self.sd_module.embed_dim
elif is_conv:
self.out_dim = self.sd_module.out_channels
else:
raise ValueError("sd_module must be Linear or Conv")

self.constraint = self.alpha * self.out_dim
self.block_size = self.out_dim // self.num_blocks

self.org_module: list[torch.Module] = [self.sd_module]
if self.is_kohya:
self.num_blocks = self.dim
self.block_size = self.out_dim // self.num_blocks
self.constraint = self.alpha * self.out_dim
else:
self.block_size, self.num_blocks = factorization(self.out_dim, self.dim)
self.constraint = None

def merge_weight(self, R_weight, org_weight):
R_weight = R_weight.to(org_weight.device, dtype=org_weight.dtype)
Expand All @@ -39,31 +67,67 @@ def merge_weight(self, R_weight, org_weight):
return weight

def get_weight(self, oft_blocks, multiplier=None):
constraint = self.constraint.to(oft_blocks.device, dtype=oft_blocks.dtype)
if self.constraint is not None:
constraint = self.constraint.to(oft_blocks.device, dtype=oft_blocks.dtype)

block_Q = oft_blocks - oft_blocks.transpose(1, 2)
norm_Q = torch.norm(block_Q.flatten())
new_norm_Q = torch.clamp(norm_Q, max=constraint)
if self.constraint is not None:
new_norm_Q = torch.clamp(norm_Q, max=constraint)
else:
new_norm_Q = norm_Q
block_Q = block_Q * ((new_norm_Q + 1e-8) / (norm_Q + 1e-8))
m_I = torch.eye(self.block_size, device=oft_blocks.device).unsqueeze(0).repeat(self.num_blocks, 1, 1)
block_R = torch.matmul(m_I + block_Q, (m_I - block_Q).inverse())

block_R_weighted = multiplier * block_R + (1 - multiplier) * m_I
R = torch.block_diag(*block_R_weighted)

return R

def calc_updown(self, orig_weight):
multiplier = self.multiplier() * self.calc_scale()
def calc_updown_kohya(self, orig_weight, multiplier):
R = self.get_weight(self.oft_blocks, multiplier)
merged_weight = self.merge_weight(R, orig_weight)

updown = merged_weight.to(orig_weight.device, dtype=orig_weight.dtype) - orig_weight
output_shape = orig_weight.shape
orig_weight = orig_weight
return self.finalize_updown(updown, orig_weight, output_shape)

def calc_updown_kb(self, orig_weight, multiplier):
is_other_linear = type(self.sd_module) in [torch.nn.MultiheadAttention]

if not is_other_linear:
if is_other_linear and orig_weight.shape[0] != orig_weight.shape[1]:
orig_weight=orig_weight.permute(1, 0)

R = self.oft_blocks.to(orig_weight.device, dtype=orig_weight.dtype)
merged_weight = rearrange(orig_weight, '(k n) ... -> k n ...', k=self.num_blocks, n=self.block_size)
merged_weight = torch.einsum(
'k n m, k n ... -> k m ...',
R * multiplier + torch.eye(self.block_size, device=orig_weight.device),
merged_weight
)
merged_weight = rearrange(merged_weight, 'k m ... -> (k m) ...')

if is_other_linear and orig_weight.shape[0] != orig_weight.shape[1]:
orig_weight=orig_weight.permute(1, 0)

updown = merged_weight.to(orig_weight.device, dtype=orig_weight.dtype) - orig_weight
output_shape = orig_weight.shape
else:
# FIXME: skip MultiheadAttention for now
updown = torch.zeros([orig_weight.shape[1], orig_weight.shape[1]], device=orig_weight.device, dtype=orig_weight.dtype)
output_shape = (orig_weight.shape[1], orig_weight.shape[1])

return self.finalize_updown(updown, orig_weight, output_shape)

def calc_updown(self, orig_weight):
multiplier = self.multiplier() * self.calc_scale()
if self.is_kohya:
return self.calc_updown_kohya(orig_weight, multiplier)
else:
return self.calc_updown_kb(orig_weight, multiplier)

# override to remove the multiplier/scale factor; it's already multiplied in get_weight
def finalize_updown(self, updown, orig_weight, output_shape, ex_bias=None):
#return super().finalize_updown(updown, orig_weight, output_shape, ex_bias)
Expand Down
7 changes: 7 additions & 0 deletions extensions-builtin/Lora/networks.py
Original file line number Diff line number Diff line change
Expand Up @@ -191,10 +191,17 @@ def load_network(name, network_on_disk):
key = key_network_without_network_parts.replace("lora_te1_text_model", "transformer_text_model")
sd_module = shared.sd_model.network_layer_mapping.get(key, None)

# kohya_ss OFT module
elif sd_module is None and "oft_unet" in key_network_without_network_parts:
key = key_network_without_network_parts.replace("oft_unet", "diffusion_model")
sd_module = shared.sd_model.network_layer_mapping.get(key, None)

# KohakuBlueLeaf OFT module
if sd_module is None and "oft_diag" in key:
key = key_network_without_network_parts.replace("lora_unet", "diffusion_model")
key = key_network_without_network_parts.replace("lora_te1_text_model", "0_transformer_text_model")
sd_module = shared.sd_model.network_layer_mapping.get(key, None)

if sd_module is None:
keys_failed_to_match[key_network] = key
continue
Expand Down

0 comments on commit 1dd25be

Please sign in to comment.