Skip to content

Commit

Permalink
initial commit
Browse files Browse the repository at this point in the history
  • Loading branch information
MathisBD committed Nov 22, 2024
1 parent 6e75b70 commit 91c1d38
Show file tree
Hide file tree
Showing 7 changed files with 427 additions and 4 deletions.
1 change: 1 addition & 0 deletions template-coq/_TemplateCoqProject.in
Original file line number Diff line number Diff line change
Expand Up @@ -24,6 +24,7 @@ src/plugin_core.mli
src/plugin_core.ml

theories/Loader.v
theories/Lib.v
theories/All.v

# A checker of well-formedness in MetaCoq and Coq
Expand Down
3 changes: 2 additions & 1 deletion template-coq/theories/All.v
Original file line number Diff line number Diff line change
Expand Up @@ -16,4 +16,5 @@ From MetaCoq.Template Require Export
UnivSubst (* Substitution of universe instances *)
Typing (* Typing judgment *)
TemplateMonad (* The TemplateMonad *)
Loader (* The plugin *).
Loader (* The plugin *)
Lib (* Meta-programming facilities *).
2 changes: 1 addition & 1 deletion template-coq/theories/Ast.v
Original file line number Diff line number Diff line change
Expand Up @@ -538,7 +538,7 @@ Notation closed t := (closedn 0 t).

Fixpoint noccur_between k n (t : term) : bool :=
match t with
| tRel i => Nat.ltb i k && Nat.leb (k + n) i
| tRel i => Nat.ltb i k || Nat.leb (k + n) i
| tEvar ev args => List.forallb (noccur_between k n) args
| tLambda _ T M | tProd _ T M => noccur_between k n T && noccur_between (S k) n M
| tApp u v => noccur_between k n u && List.forallb (noccur_between k n) v
Expand Down
253 changes: 253 additions & 0 deletions template-coq/theories/AstUtils.v
Original file line number Diff line number Diff line change
Expand Up @@ -7,6 +7,8 @@ From MetaCoq.Template Require Import Ast.
Require Import ssreflect ssrbool.
Require Import ZArith.

#[local] Set Universe Polymorphism.

(** Raw term printing *)

Module string_of_term_tree.
Expand Down Expand Up @@ -464,3 +466,254 @@ Ltac nth_leb_simpl :=
replace n' with n in H' by lia; rewrite -> H in H'; injection H'; intros; subst
| _ => lia || congruence || solve [repeat (f_equal; try lia)]
end.

(** * Traversal functions. *)

Section TraverseWithBinders.
Context {Acc : Type} {A : Type} (a : A) (lift : aname -> A -> A).

Definition lift_names : list aname -> A -> A :=
fun names a => List.fold_right lift a names.

Definition map_predicate_with_binders (f : A -> term -> term) (p : predicate term) : predicate term :=
let a_return := lift_names p.(pcontext) a in
{| puinst := p.(puinst)
; pparams := List.map (f a) p.(pparams)
; pcontext := p.(pcontext)
; preturn := f a_return p.(preturn) |}.

Definition map_branch_with_binders (f : A -> term -> term) (b : branch term) : branch term :=
let a_body := lift_names b.(bcontext) a in
{| bcontext := b.(bcontext) ; bbody := f a_body b.(bbody) |}.

(** [map_term_with_binders a lift f t] maps [f] on the immediate subterms of [t].
It carries an extra data [a] (typically a lift index) which is processed by [lift]
(which typically add 1 to [a]) at each binder traversal.
It is not recursive and the order in which subterms are processed is not specified. *)
Definition map_term_with_binders (f : A -> term -> term) (t : term) : term :=
match t with
| tRel _ | tVar _ | tSort _ | tConst _ _ | tInd _ _ | tConstruct _ _ _ | tInt _ | tFloat _ | tString _ => t
| tEvar n ts => tEvar n (List.map (f a) ts)
| tCast b k t => tCast (f a b) k (f a t)
| tProd name ty body => tProd name (f a ty) (f (lift name a) body)
| tLambda name ty body => tLambda name (f a ty) (f (lift name a) body)
| tLetIn name def ty body => tLetIn name (f a def) (f a ty) (f (lift name a) body)
| tApp func args => tApp (f a func) (List.map (f a) args)
| tProj proj t => tProj proj (f a t)
(* For [tFix] and [tCoFix] we have to take care to lift [a]
only when processing the body of the (co)fixpoint. *)
| tFix defs i =>
let a_body := lift_names (List.map dname defs) a in
let on_def := map_def (f a) (f a_body) in
tFix (List.map on_def defs) i
| tCoFix defs i =>
let a_body := lift_names (List.map dname defs) a in
let on_def := map_def (f a) (f a_body) in
tCoFix (List.map on_def defs) i
| tCase ci pred x branches =>
tCase ci (map_predicate_with_binders f pred) (f a x) (List.map (map_branch_with_binders f) branches)
| tArray l t def ty => tArray l (List.map (f a) t) (f a def) (f a ty)
end.

Definition fold_predicate_with_binders (f : A -> Acc -> term -> Acc) (acc : Acc) (p : predicate term) : Acc :=
let a_return := lift_names p.(pcontext) a in
let acc := List.fold_left (f a) p.(pparams) acc in
f a_return acc p.(preturn).

Definition fold_branch_with_binders (f : A -> Acc -> term -> Acc) (acc : Acc) (b : branch term) : Acc :=
let a_body := lift_names b.(bcontext) a in
f a_body acc b.(bbody).

(** Fold version of [map_term_with_binders]. *)
Definition fold_term_with_binders (f : A -> Acc -> term -> Acc) (acc : Acc) (t : term) : Acc :=
match t with
| tRel _ | tVar _ | tSort _ | tConst _ _ | tInd _ _
| tConstruct _ _ _ | tInt _ | tFloat _ | tString _ => acc
| tEvar n ts => List.fold_left (f a) ts acc
| tCast b k t => let acc := f a acc b in f a acc t
| tProd name ty body => let acc := f a acc ty in f (lift name a) acc body
| tLambda name ty body => let acc := f a acc ty in f (lift name a) acc body
| tLetIn name def ty body =>
let acc := f a acc def in
let acc := f a acc ty in
f (lift name a) acc body
| tApp func args => List.fold_left (f a) (func :: args) acc
| tProj proj t => f a acc t
| tFix defs i =>
let a_body := lift_names (List.map dname defs) a in
let acc := List.fold_left (f a) (List.map dtype defs) acc in
List.fold_left (f a_body) (List.map dbody defs) acc
| tCoFix defs i =>
let a_body := lift_names (List.map dname defs) a in
let acc := List.fold_left (f a) (List.map dtype defs) acc in
List.fold_left (f a_body) (List.map dbody defs) acc
| tCase ci pred x branches =>
let acc := fold_predicate_with_binders f acc pred in
let acc := f a acc x in
List.fold_left (fold_branch_with_binders f) branches acc
| tArray l t def ty =>
let acc := List.fold_left (f a) t acc in
let acc := f a acc def in
f a acc ty
end.

End TraverseWithBinders.

Section TraverseWithBindersM.
Import MCMonadNotation.

Context {M : Type -> Type} `{Monad M} {Acc : Type} {A : Type} {a : A} {liftM : aname -> A -> M A}.

Definition lift_namesM (names : list aname) (a : A) : M A :=
let fix loop names a :=
match names with
| [] => ret a
| n :: names => loop names =<< liftM n a
end
in
loop (List.rev names) a.

Definition map_defM {A B} (tyf bodyf : A -> M B) (d : def A) : M (def B) :=
mlet dtype <- tyf d.(dtype) ;;
mlet dbody <- bodyf d.(dbody) ;;
ret (mkdef _ d.(dname) dtype dbody d.(rarg)).

Definition map_predicate_with_bindersM (f : A -> term -> M term) (p : predicate term) : M (predicate term) :=
mlet a_return <- lift_namesM p.(pcontext) a ;;
mlet pparams <- monad_map (f a) p.(pparams) ;;
mlet preturn <- f a_return p.(preturn) ;;
ret (mk_predicate p.(puinst) pparams p.(pcontext) preturn).

Definition map_branch_with_bindersM (f : A -> term -> M term) (b : branch term) : M (branch term) :=
mlet a_body <- lift_namesM b.(bcontext) a ;;
mlet bbody <- f a_body b.(bbody) ;;
ret (mk_branch b.(bcontext) bbody).

(** Monadic variant of [map_term_with_binders]. *)
Definition map_term_with_bindersM (f : A -> term -> M term) (t : term) : M term :=
match t with
| tRel _ | tVar _ | tSort _ | tConst _ _ | tInd _ _
| tConstruct _ _ _ | tInt _ | tFloat _ | tString _ => ret t
| tEvar n ts =>
mlet ts <- monad_map (f a) ts ;;
ret (tEvar n ts)
| tCast b k t =>
mlet b <- f a b ;;
mlet t <- f a t ;;
ret (tCast b k t)
| tProd name ty body =>
mlet ty <- f a ty ;;
mlet a_body <- liftM name a ;;
mlet body <- f a_body body ;;
ret (tProd name ty body)
| tLambda name ty body =>
mlet ty <- f a ty ;;
mlet a_body <- liftM name a ;;
mlet body <- f a_body body ;;
ret (tLambda name ty body)
| tLetIn name def ty body =>
mlet def <- f a def ;;
mlet ty <- f a ty ;;
mlet a_body <- liftM name a ;;
mlet body <- f a_body body ;;
ret (tLetIn name def ty body)
| tApp func args =>
mlet func <- f a func ;;
mlet args <- monad_map (f a) args ;;
ret (tApp func args)
| tProj proj t =>
mlet t <- f a t ;;
ret (tProj proj t)
(* For [tFix] and [tCoFix] we have to take care to lift [a]
only when processing the body of the (co)fixpoint. *)
| tFix defs i =>
mlet a_body <- lift_namesM (List.map dname defs) a ;;
let on_def := map_defM (f a) (f a_body) in
mlet defs <- monad_map on_def defs ;;
ret (tFix defs i)
| tCoFix defs i =>
mlet a_body <- lift_namesM (List.map dname defs) a ;;
let on_def := map_defM (f a) (f a_body) in
mlet defs <- monad_map on_def defs ;;
ret (tCoFix defs i)
| tCase ci pred x branches =>
mlet pred <- map_predicate_with_bindersM f pred ;;
mlet x <- f a x ;;
mlet branches <- monad_map (map_branch_with_bindersM f) branches ;;
ret (tCase ci pred x branches)
| tArray l t def ty =>
mlet t <- monad_map (f a) t ;;
mlet def <- f a def ;;
mlet ty <- f a ty ;;
ret (tArray l t def ty)
end.

Definition fold_predicate_with_bindersM (f : A -> Acc -> term -> M Acc) (acc : Acc) (p : predicate term) : M Acc :=
mlet a_return <- lift_namesM p.(pcontext) a ;;
mlet acc <- monad_fold_left (f a) p.(pparams) acc ;;
f a_return acc p.(preturn).

Definition fold_branch_with_bindersM (f : A -> Acc -> term -> M Acc) (acc : Acc) (b : branch term) : M Acc :=
mlet a_body <- lift_namesM b.(bcontext) a ;;
f a_body acc b.(bbody).

(** Monadic variant of [fold_term_with_binders]. *)
Definition fold_term_with_bindersM (f : A -> Acc -> term -> M Acc) (acc : Acc) (t : term) : M Acc :=
match t with
| tRel _ | tVar _ | tSort _ | tConst _ _ | tInd _ _
| tConstruct _ _ _ | tInt _ | tFloat _ | tString _ => ret acc
| tEvar n ts => monad_fold_left (f a) ts acc
| tCast b k t => mlet acc <- f a acc b ;; f a acc t
| tProd name ty body =>
mlet a_body <- liftM name a ;;
mlet acc <- f a acc ty ;;
f a_body acc body
| tLambda name ty body =>
mlet a_body <- liftM name a ;;
mlet acc <- f a acc ty ;;
f a_body acc body
| tLetIn name def ty body =>
mlet a_body <- liftM name a ;;
mlet def <- f a acc def ;;
mlet acc <- f a acc ty ;;
f a_body acc body
| tApp func args => monad_fold_left (f a) (func :: args) acc
| tProj proj t => f a acc t
| tFix defs i =>
mlet a_body <- lift_namesM (List.map dname defs) a ;;
mlet acc <- monad_fold_left (f a) (List.map dtype defs) acc ;;
monad_fold_left (f a_body) (List.map dbody defs) acc
| tCoFix defs i =>
mlet a_body <- lift_namesM (List.map dname defs) a ;;
mlet acc <- monad_fold_left (f a) (List.map dtype defs) acc ;;
monad_fold_left (f a_body) (List.map dbody defs) acc
| tCase ci pred x branches =>
mlet acc <- fold_predicate_with_bindersM f acc pred ;;
mlet acc <- f a acc x ;;
monad_fold_left (fold_branch_with_bindersM f) branches acc
| tArray l t def ty =>
mlet acc <- monad_fold_left (f a) t acc ;;
mlet acc <- f a acc def ;;
f a acc ty
end.

End TraverseWithBindersM.


(** [map_term f t] maps [f] on the immediate subterms of [t].
It is not recursive and the order in which subterms are processed is not specified. *)
Definition map_term (f : term -> term) (t : term) : term :=
@map_term_with_binders unit tt (fun _ _ => tt) (fun _ => f) t.

(** Monadic variant of [map_term]. *)
Definition map_termM {M} `{Monad M} (f : term -> M term) (t : term) : M term :=
@map_term_with_bindersM M _ unit tt (fun _ _ => ret tt) (fun _ => f) t.

(** [fold_term f acc t] folds [f] on the immediate subterms of [t].
It is not recursive and the order in which subterms are processed is not specified. *)
Definition fold_term {Acc} (f : Acc -> term -> Acc) (acc : Acc) (t : term) : Acc :=
@fold_term_with_binders Acc unit tt (fun _ _ => tt) (fun _ => f) acc t.

(** Monadic variant of [fold_term]. *)
Definition fold_termM {M} `{Monad M} {Acc} (f : Acc -> term -> M Acc) (acc : Acc) (t : term) : M Acc :=
@fold_term_with_bindersM M _ Acc unit tt (fun _ _ => ret tt) (fun _ => f) acc t.
Loading

0 comments on commit 91c1d38

Please sign in to comment.