Skip to content

MehmetAygun/fusenet-pytorch

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

FuseNet implementation in PyTorch

This is the PyTorch implementation for FuseNet, developed based on Pix2Pix code.

Prerequisites

  • Linux
  • Python 3.7.0
  • CPU or NVIDIA GPU + CUDA CuDNN

Getting Started

Installation

git clone https://github.com/MehmetAygun/fusenet-pytorch
cd fusenet-pytorch
pip install -r requirements.txt

Dataset preparation

sunrgbd dataset

nyuv2 dataset

  • Download the dataset and create the training set
cd datasets
sh download_nyuv2.sh
python create_training_set.py

scannetv2 dataset

  • Download the scannet_frames_25k and scannet_frames_test under /datasets/scannet/tasks/

FuseNet train/test

visdom visualization

  • To view training errors and loss plots, set --display_id 1, run python -m visdom.server and click the URL http://localhost:8097
  • Checkpoints are saved under ./checkpoints/sunrgbd/

train & test on sunrgbd

python train.py --dataroot datasets/sunrgbd --dataset sunrgbd --name sunrgbd

python test.py --dataroot datasets/sunrgbd --dataset sunrgbd --name sunrgbd --epoch 400

train & test on nyuv2

python train.py --dataroot datasets/nyuv2 --dataset nyuv2 --name nyuv2

python test.py --dataroot datasets/nyuv2 --dataset nyuv2 --name nyuv2 --epoch 400

train & val & test on scannetv2

python train.py --dataroot datasets/scannet/tasks/scannet_frames_25k --dataset scannetv2 \
                --name scannetv2

python test.py --dataroot datasets/scannet/tasks/scannet_frames_25k --dataset scannetv2 \
               --name scannetv2 --epoch 380 --phase val

python test.py --dataroot datasets/scannet/tasks/scannet_frames_test --dataset scannetv2 \
               --name scannetv2 --epoch 380 --phase test

Results

  • We use the training scheme defined in FuseNet
  • Loss is weighted for SUNRGBD dataset
  • Learning rate is set to 0.01 for NYUv2 dataset
  • Results can be improved with a hyper-parameter search
  • Results on the scannetv2-test (w/o class-weighted loss) can be found here
Dataset FuseNet-SF5 (CAFFE) FuseNet-SF5
overall mean iou overall mean iou
sunrgbd 76.30 48.30 37.30 75.41 46.48 35.69
nyuv2 66.00 43.40 32.70 68.76 46.42 35.48
scannetv2-val -- -- -- 76.32 55.84 44.12
scannetv2-cls_weighted-val -- -- -- 76.26 55.74 44.40
scannetv2-test avg iou bathtub bed bookshelf cabinet chair counter curtain desk door floor other furniture picture refrigerator shower curtain sink sofa table toilet wall window
no-cls_weighted 52.1 59.1 68.2 22.0 48.8 27.9 34.4 61.0 46.1 47.5 91.0 29.3 44.7 51.2 39.7 61.8 56.7 45.2 73.4 78.2 56.6
cls_weighted 53.5 57.0 68.1 18.2 51.2 29.0 43.1 65.9 50.4 49.5 90.3 30.8 42.8 52.3 36.5 67.6 62.1 47.0 76.2 77.9 54.1

Citation

@inproceedings{hazirbas16fusenet,
  Title                    = {{FuseNet}: Incorporating Depth into Semantic Segmentation via Fusion-Based CNN Architecture},
  Author                   = {Hazirbas, Caner and Ma, Lingni and Domokos, Csaba and Cremers, Daniel},
  Booktitle                = {Asian Conference on Computer Vision ({ACCV})},
  Year                     = {2016},
  Doi                      = {10.1007/978-3-319-54181-5_14},
  Url                      = {https://github.com/tum-vision/fusenet}
}

Acknowledgments

Code is inspired by pytorch-CycleGAN-and-pix2pix.

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published