Skip to content

Maxfashko/dataset_converter

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

39 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Introduction

dataset converter is a toolkit for converting object detection datasets. Designed to easily convert your data into popular dataset formats.

Allowed dataset types

Supported methods are shown in the below table

parse convert unstructured support
COCO
PASCAL
Labelme-web
YOLO
CSV

parse - the method provides an opportunity to read data and convert it into a unified structure, which operates with all dataset formats

convert - the method provides the ability to convert data from a unified structure into the selected dataset format

unstructured support - support for data that can be set as paths to the annotation directory and images

Installation

python setup.py install

Get Started

convert dataset using a structured data format

In this example, we download and convert data from the PASCAL format to the YOLO format.

  1. Download dataset PASCAL_VOC 2007:
cd /tmp
wget http://host.robots.ox.ac.uk/pascal/VOC/voc2007/VOCtrainval_06-Nov-2007.tar
tar xvf VOCtrainval_06-Nov-2007.tar
  1. The parameters for data conversion are located in the configuration file (https://github.com/Maxfashko/dataset_converter/blob/master/configs/pascal_to_yolo.py) replace the data_root, dir_name options. As a result, the configuration file should look like this:
data = dict(
    input_data = dict(
        type="PascalDataset",
        data_root='/tmp/VOCdevkit',
        dir_name='VOC2007'
    ),

    output_data = dict(
        type="YoloDataset",
        data_root='/tmp/VOCdevkit_YOLO',
        dir_name='VOC2007'
    )
)
  1. To convert your dataset from the PASCAL format to the YOLO format, use the following command:
python tools/convert.py configs/pascal_to_yolo.py

you will see the following output:

start parse...
100%|████████████████████████████████████████████████████████████████████████████████████████████| 5011/5011 [00:00<00:00, 30432.46it/s]
parse completed
start convert...
100%|█████████████████████████████████████████████████████████████████████████████████████████████| 5011/5011 [00:00<00:00, 15454.61it/s]
convert completed
  1. By default, the data is split for training and testing in the proportion of 80/20. You can specify your values:
data = dict(
    input_data = dict(
        type="PascalDataset",
        data_root='/tmp/VOCdevkit',
        dir_name='VOC2007'
    ),

    output_data = dict(
        type="YoloDataset",
        data_root='/tmp/VOCdevkit_YOLO',
        dir_name='VOC2007',
        params = dict(
            train_test_split=dict(
                train=0.9,
                test=0.1,
                seed=42
            )
        )
    )
)

convert dataset using a unstructured data format

In this example, we are converting data that does not match the PASCAL directory structure, but belongs to this format. For example, we will use the data obtained as a result of manual marking in the LabelImg program. For more information about the markup process, find out the link The marked data can be found at the following link (https://github.com/Maxfashko/dataset_converter/edit/master/test_data/labelimg/)

  1. edit the configuration file to look like this:
data = dict(
    input_data = dict(
        type="PascalDataset",
        data_root='<link_to_repo_path>/dataset_converter/test_data/',
        dir_name='labelimg',
        images='./',
        annotations='./'
    ),

    output_data = dict(
        type="YoloDataset",
        data_root='/tmp/test_data/',
        dir_name='labelimg_YOLO'
    )
)

you will see the following output:

start parse...
100%|███████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:00<00:00, 12196.88it/s]
parse completed
start convert...
100%|███████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:00<00:00, 8700.78it/s]
convert completed

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages