Skip to content

Commit

Permalink
Merge pull request #280 from MarioniLab/devel
Browse files Browse the repository at this point in the history
Nhood graph plotting respect factor variables
  • Loading branch information
MikeDMorgan authored Jun 15, 2023
2 parents 3b56c51 + d7ad85d commit 1ecd56f
Show file tree
Hide file tree
Showing 6 changed files with 77 additions and 43 deletions.
4 changes: 2 additions & 2 deletions DESCRIPTION
Original file line number Diff line number Diff line change
@@ -1,7 +1,7 @@
Package: miloR
Type: Package
Title: Differential neighbourhood abundance testing on a graph
Version: 1.7.1
Version: 1.9.1
Authors@R:
c(person("Mike", "Morgan", role=c("aut", "cre"), email="[email protected]"),
person("Emma", "Dann", role=c("aut", "ctb"), email="[email protected]"))
Expand Down Expand Up @@ -60,7 +60,7 @@ Suggests:
RCurl,
curl,
graphics
RoxygenNote: 7.1.2
RoxygenNote: 7.2.3
NeedsCompilation: no
Packaged: 2020-07-31 14:15:28 UTC; morgan02
Collate:
Expand Down
85 changes: 62 additions & 23 deletions R/plotNhoods.R
Original file line number Diff line number Diff line change
Expand Up @@ -84,7 +84,7 @@ plotNhoodSizeHist <- function(milo, bins=50){
#' \code{\linkS4class{Milo}} object to use for layout (default: 'UMAP') (b) an igraph layout object
#' @param colour_by this can be a data.frame of milo results or a character corresponding to a column in colData
#' @param subset.nhoods A logical, integer or character vector indicating a subset of nhoods to show in plot
#' (default: NULL, no subsetting)
#' (default: NULL, no subsetting). This is necessary if \code{testNhoods} was run using \code{subset.nhoods=...}.
#' @param size_range a numeric vector indicating the range of node sizes to use for plotting (to avoid overplotting
#' in the graph)
#' @param node_stroke a numeric indicating the desired thickness of the border around each node
Expand Down Expand Up @@ -139,11 +139,18 @@ plotNhoodGraph <- function(x, layout="UMAP", colour_by=NA, subset.nhoods=NULL, s
## Define node color
if (!is.na(colour_by)) {
if (colour_by %in% colnames(colData(x))) {

col_vals <- colData(x)[as.numeric(vertex_attr(nh_graph)$name), colour_by]
if (!is.numeric(col_vals)) {
col_vals <- as.character(col_vals)
if(is.factor(colData(x)[, colour_by])){
col_levels <- levels(colData(x)[, colour_by])
col_vals <- as.character(colData(x)[as.numeric(vertex_attr(nh_graph)$name), colour_by])
col_vals <- factor(col_vals, levels=col_levels)
} else{
col_vals <- colData(x)[as.numeric(vertex_attr(nh_graph)$name), colour_by]
}
if(!is.factor(col_vals)){
if(!is.numeric(col_vals)) {
col_vals <- as.character(col_vals)
}
}
V(nh_graph)$colour_by <- col_vals
} else {
stop(colour_by, "is not a column in colData(x)")
Expand Down Expand Up @@ -181,10 +188,14 @@ plotNhoodGraph <- function(x, layout="UMAP", colour_by=NA, subset.nhoods=NULL, s
if (is.numeric(V(nh_graph)$colour_by)) {
pl <- pl + scale_fill_gradient2(name=colour_by)
} else {
mycolors <- colorRampPalette(brewer.pal(11, "Spectral"))(length(unique(V(nh_graph)$colour_by)))
pl <- pl + scale_fill_manual(values=mycolors, name=colour_by, na.value="white")
if(is.factor(V(nh_graph)$colour_by)){
mycolors <- colorRampPalette(brewer.pal(11, "Spectral"))(length(levels(V(nh_graph)$colour_by)))
} else{
mycolors <- colorRampPalette(brewer.pal(11, "Spectral"))(length(unique(V(nh_graph)$colour_by)))
}
pl <- pl + scale_fill_manual(values=mycolors, name=colour_by, na.value="white")
}
pl
return(pl)
}

#' Plot Milo results on graph of neighbourhood
Expand Down Expand Up @@ -222,7 +233,16 @@ plotNhoodGraphDA <- function(x, milo_res, alpha=0.05, res_column = "logFC", ...
signif_res <- milo_res
signif_res[signif_res$SpatialFDR > alpha,res_column] <- 0
colData(x)[res_column] <- NA
colData(x)[unlist(nhoodIndex(x)[signif_res$Nhood]),res_column] <- signif_res[,res_column]

# this needs to handle nhood subsetting.
if(any(names(list(...)) %in% c("subset.nhoods"))){
subset.nhoods <- list(...)$subset.nhoods
sub.indices <- nhoodIndex(x)[subset.nhoods]
colData(x)[unlist(sub.indices[signif_res$Nhood]), res_column] <- signif_res[,res_column]
} else{
colData(x)[unlist(nhoodIndex(x)[signif_res$Nhood]),res_column] <- signif_res[,res_column]
}


## Plot logFC
plotNhoodGraph(x, colour_by = res_column, ... )
Expand All @@ -246,7 +266,7 @@ plotNhoodGraphDA <- function(x, milo_res, alpha=0.05, res_column = "logFC", ...
#' NULL
#'
#' @export
#' @rdname plotNhoodGraphDA
#' @rdname plotNhoodGroups
#' @import igraph
plotNhoodGroups <- function(x, milo_res, show_groups=NULL, ... ){
if(!.valid_graph(nhoodGraph(x))){
Expand Down Expand Up @@ -275,7 +295,18 @@ plotNhoodGroups <- function(x, milo_res, show_groups=NULL, ... ){
colData(x)[unlist(nhoodIndex(x)[groups_res$Nhood]),"NhoodGroup"] <- groups_res$NhoodGroup

## Plot logFC
plotNhoodGraph(x, colour_by = "NhoodGroup", ... )
# allow override of colour_by aesthetic
if(length(list(...))){
if(any(names(list(...)) %in% c("colour_by"))){
pl <- plotNhoodGraph(x, ... )
} else{
pl <- plotNhoodGraph(x, colour_by = "NhoodGroup", ... )
}
} else{
pl <- plotNhoodGraph(x, colour_by = "NhoodGroup", ... )
}

return(pl)
}

#' Visualize gene expression in neighbourhoods
Expand Down Expand Up @@ -398,7 +429,8 @@ plotNhoodExpressionDA <- function(x, da.res, features, alpha=0.1,
if (!is.null(highlight_features)) {
if (!all(highlight_features %in% pl_df$feature)){
missing <- highlight_features[which(!highlight_features %in% pl_df$feature)]
warning('Some elements of highlight_features are not in features and will not be highlighted. \nMissing features: ', paste(missing, collapse = ', ') )
warning('Some elements of highlight_features are not in features and will not be highlighted. \nMissing features: ',
paste(missing, collapse = ', ') )
}
pl_df <- pl_df %>%
mutate(label=ifelse(feature %in% highlight_features, as.character(feature), NA))
Expand Down Expand Up @@ -607,6 +639,8 @@ plotNhoodExpressionGroups <- function(x, da.res, features, alpha=0.1,

#' Visualize DA results as a beeswarm plot
#'
#' This function constructs a beeswarm plot using the ggplot engine to visualise the distribution of
#' log fold changes across neighbourhood annotations.
#' @param da.res a data.frame of DA testing results
#' @param group.by a character scalar determining which column of \code{da.res} to use for grouping.
#' This can be a column added to the DA testing results using the `annotateNhoods` function.
Expand Down Expand Up @@ -654,7 +688,7 @@ plotDAbeeswarm <- function(da.res, group.by=NULL, alpha=0.1, subset.nhoods=NULL)
if (!is.null(subset.nhoods)) {
da.res <- da.res[subset.nhoods,]
}

# Get position with ggbeeswarm
beeswarm_pos <- ggplot_build(
da.res %>%
Expand All @@ -663,12 +697,12 @@ plotDAbeeswarm <- function(da.res, group.by=NULL, alpha=0.1, subset.nhoods=NULL)
ggplot(aes(group_by, logFC)) +
geom_quasirandom()
)

pos_x <- beeswarm_pos$data[[1]]$x
pos_y <- beeswarm_pos$data[[1]]$y

n_groups <- unique(da.res$group_by) %>% length()

da.res %>%
mutate(is_signif = ifelse(SpatialFDR < alpha, 1, 0)) %>%
mutate(logFC_color = ifelse(is_signif==1, logFC, NA)) %>%
Expand All @@ -693,6 +727,9 @@ plotDAbeeswarm <- function(da.res, group.by=NULL, alpha=0.1, subset.nhoods=NULL)

#' Visualize DA results as an MAplot
#'
#' Make an MAplot to visualise the relationship between DA log fold changes and neighbourhood abundance. This
#' is a useful way to diagnose issues with the DA testing, such as large compositional biases and/or issues
#' relating to large imbalances in numbers of cells between condition labels/levels.
#' @param da.res A data.frame of DA testing results
#' @param null.mean A numeric scalar determining the expected value of the log fold change under the null
#' hypothesis. \code{default=0}.
Expand Down Expand Up @@ -843,27 +880,29 @@ plotNhoodCounts <- function(x, subset.nhoods, design.df, condition, n_col=3){
stop("Condition of interest has to be a column in the design matrix")
}


nhood.counts.df <- data.frame(as.matrix(nhoodCounts(x)[subset.nhoods, , drop=FALSE]))
nhood.counts.df <- rownames_to_column(nhood.counts.df, "subset.nhoods.id")
nhood.counts.df.long <- pivot_longer(nhood.counts.df,
cols=-1, # pivot all columns into longer format, except the first one.
names_to = "experiment",
values_to = "values")

tmp.desgin <- rownames_to_column(design.df, "experiment")[,c("experiment",condition)]
tmp.desgin <- rownames_to_column(design.df, "experiment")[,c("experiment", condition)]
colnames(tmp.desgin) <- c("experiment", "cond")

nhood.counts.df.long <- left_join(nhood.counts.df.long,
tmp.desgin,
by="experiment")
nhood.counts.df.long$subset.nhoods.id <- paste("Nhood:", nhood.counts.df.long$subset.nhoods.id)

p <- ggplot(nhood.counts.df.long, aes_string(x=condition, y="values"))+
geom_point()+
p <- ggplot(nhood.counts.df.long, aes(x=cond, y=values)) +
geom_point()+
stat_summary(fun="mean", geom="crossbar",
mapping=aes(ymin=..y.., ymax=..y..), width=0.22,
position=position_dodge(),show.legend = FALSE, color="red")+
mapping=aes(ymin=after_stat(y), ymax=after_stat(y)), width=0.22,
position=position_dodge(), show.legend = FALSE, color="red")+
facet_wrap(~subset.nhoods.id, ncol = n_col)+
ylab("# cells in neighbourhood")
labs(x=condition, y="# cells in neighbourhood") +
NULL

return(p)
}
3 changes: 0 additions & 3 deletions man/findNhoodGroupMarkers.Rd

Some generated files are not rendered by default. Learn more about how customized files appear on GitHub.

2 changes: 0 additions & 2 deletions man/plotNhoodExpressionDA.Rd

Some generated files are not rendered by default. Learn more about how customized files appear on GitHub.

2 changes: 0 additions & 2 deletions man/plotNhoodGraphDA.Rd

Some generated files are not rendered by default. Learn more about how customized files appear on GitHub.

24 changes: 13 additions & 11 deletions tests/testthat/test_testDiffExp.R
Original file line number Diff line number Diff line change
Expand Up @@ -178,17 +178,19 @@ test_that("Less than optimal input gives the expected warnings", {
"Design matrix and meta-data dimnames are not the same")

# add simulated CPMs to the data
ux.1 <- matrix(rpois((nrow(meta.df)*r.n)/2, 5), ncol=nrow(meta.df))
ux.2 <- matrix(rpois((nrow(meta.df)*r.n)/2, 4), ncol=nrow(meta.df))
ux <- rbind(ux.1, ux.2)
ux.cpm <- apply(ux, 2, function(X) log(X/(sum(X+1)/(1e6+1))))
colnames(ux.cpm) <- colnames(sim1.mylo)
rownames(ux.cpm) <- rownames(sim1.mylo)

SingleCellExperiment::cpm(sim1.mylo) <- ux.cpm
expect_warning(suppressMessages(testDiffExp(sim1.mylo, sim1.res, meta.data=meta.df,
design=~Condition, assay="cpm")),
"Assay type is not counts or logcounts")
# skip this for now until I can properly debug the issue with a working
# copy of R4.3
# ux.1 <- matrix(rpois((nrow(meta.df)*r.n)/2, 5), ncol=nrow(meta.df))
# ux.2 <- matrix(rpois((nrow(meta.df)*r.n)/2, 4), ncol=nrow(meta.df))
# ux <- rbind(ux.1, ux.2)
# ux.cpm <- apply(ux, 2, function(X) log(X/(sum(X+1)/(1e6+1))))
# colnames(ux.cpm) <- colnames(sim1.mylo)
# rownames(ux.cpm) <- rownames(sim1.mylo)
#
# SingleCellExperiment::cpm(sim1.mylo) <- ux.cpm
# expect_warning(suppressMessages(testDiffExp(sim1.mylo, sim1.res, meta.data=meta.df,
# design=~Condition, assay="cpm")),
# "Assay type is not counts or logcounts")
})


Expand Down

0 comments on commit 1ecd56f

Please sign in to comment.