Skip to content

Original implementation of the paper "Recurrent Convolutional Fusion for RGB-D Object Recognition": https://arxiv.org/pdf/1806.01673.pdf

License

Notifications You must be signed in to change notification settings

MRLoghmani/rcfusion

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

27 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

RCFusion

Original implementation of the paper "Recurrent Convolutional Fusion for RGB-D Object Recognition": https://arxiv.org/pdf/1806.01673.pdf

Requirements:

Instructions:

  1. Download dataset and parameteres (see link below) and extract them in directory <dataset_dir> and <params_dir> [Skip to point (4) to run w/o docker]
  2. To execute the code within a docker container, run docker build -t <container_name> .
  3. Start the container with docker run -it --runtime=nvidia -v <dataset_dir>:<dataset_dir> -v <params_dir>:<params_dir> <container_name> bash
  4. Run python code/train_and_eval.py <dataset_dir> <params_dir>

Disclaimers:

  • The paper should be cosidered the main reference for this work. All the details of the algorithm and the training are reported there.
  • The data augmentation taken from an external repo. Credits go to: https://github.com/aleju/imgaug
  • WARNING: code has been developed w/ Tensorflow 1.5.0. We noticed some fluctuation in the results when migrating to Tensorflow 1.10.0.

Download:

Contributors:

Citation:

@ARTICLE{rcfusion, 
author={M. R. {Loghmani} and M. {Planamente} and B. {Caputo} and M. {Vincze}}, 
journal={IEEE Robotics and Automation Letters}, 
title={Recurrent Convolutional Fusion for RGB-D Object Recognition}, 
year={2019}, 
volume={4}, 
number={3}, 
pages={2878-2885}, 
doi={10.1109/LRA.2019.2921506}}

About

Original implementation of the paper "Recurrent Convolutional Fusion for RGB-D Object Recognition": https://arxiv.org/pdf/1806.01673.pdf

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published