Original implementation of the paper "Recurrent Convolutional Fusion for RGB-D Object Recognition": https://arxiv.org/pdf/1806.01673.pdf
- Tensorflow 1.10.0
- CUDA 8.0
- Python 2.7
- See python requirements in requirements.txt
- Docker + nvidia-docker [optional]: https://github.com/NVIDIA/nvidia-docker
- Download dataset and parameteres (see link below) and extract them in directory <dataset_dir> and <params_dir> [Skip to point (4) to run w/o docker]
- To execute the code within a docker container, run
docker build -t <container_name> .
- Start the container with
docker run -it --runtime=nvidia -v <dataset_dir>:<dataset_dir> -v <params_dir>:<params_dir> <container_name> bash
- Run
python code/train_and_eval.py <dataset_dir> <params_dir>
- The paper should be cosidered the main reference for this work. All the details of the algorithm and the training are reported there.
- The data augmentation taken from an external repo. Credits go to: https://github.com/aleju/imgaug
- WARNING: code has been developed w/ Tensorflow 1.5.0. We noticed some fluctuation in the results when migrating to Tensorflow 1.10.0.
- Pre-processed semantic crops of OCID dataset: https://data.acin.tuwien.ac.at/index.php/s/e46X2cCIjLXoRn7
- Original semantic crops of OCID dataset (we recommend using the link above instead to have the exact same pre-training we used in our experiments): https://www.acin.tuwien.ac.at/vision-for-robotics/software-tools/object-clutter-indoor-dataset/
- ResNet-18 pre-trained weights for initialization: https://data.acin.tuwien.ac.at/index.php/s/RueHQUbs2JtoHeJ
- Mohammad Reza Loghmani - email: [email protected]
- Mirco Planamente - email: [email protected]
@ARTICLE{rcfusion,
author={M. R. {Loghmani} and M. {Planamente} and B. {Caputo} and M. {Vincze}},
journal={IEEE Robotics and Automation Letters},
title={Recurrent Convolutional Fusion for RGB-D Object Recognition},
year={2019},
volume={4},
number={3},
pages={2878-2885},
doi={10.1109/LRA.2019.2921506}}