git clone https://github.com/MICL-biolab/MINE.git --depth=1
- Need to prepare juicer_tools and cuda10.1 environment in advance
- conda create -n MINE python=3.6
- pip install torch==1.7.1+cu101 torchvision==0.8.2+cu101 torchaudio==0.7.2 -f https://download.pytorch.org/whl/torch_stable.html
- pip install -r requirements.txt
- .hic -> .txt(by juicer)
bash hic2txt.sh <juicer_tools_path> <hic_path> /folder/to/txt
- .txt -> .npz
python txt2npy.py -i /folder/to/txt -o /folder/to/npz -r 1000
- Generate training data(Hi-C)
python generate_train_data.py -i /folder/to/npz -o /folder/to/train -s 400 -f 2000
- .bigWig -> .npz
python analysis_epi.py -i /path/to/bigWig -o /folder/to/epi -r 1000
- Combine multiple epi data to generate correlation matrix
python epi_concat.py -i /folder/to/epis -o /folder/to/train/epi -r 1000 -s 400 -f 2000
.bigBed -> .npz
python generate_train_annotation_data.py -i /path/to/bigBed -o /folder/to/train/annotation
or peaks -> .npz
python generate_train_annotation_data_by_peaks.py -i /path/to/bigBed -o /folder/to/train/annotation
- train
CUDA_VISIBLE_DEVICES=1,2,3,4,5,6 python -m torch.distributed.launch --nproc_per_node=6 train_model.py -i /folder/to/train -o /folder/to/checkpoint
- validate
python validate.py --train_folder /folder/to/train --model /path/to/model --results /folder/to/result
- We trained a model and put it in the data folder, you can use the validate.py in the data folder to predict the data
- The result of model prediction is analyzed by Jupyter under the folder of analyze/fig2 & analyze/fig3
- The MINE-Density calculation is under the folder MINE_Density, and we provide two levels of calculation for TAD and compartment
- After the first step, we also provide analysis of the density and 3D structure in the analyze/fig4 and analyze/fig5 folders
We have listed the detailed usage process for our work (from the raw data to the final analysis results)