Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[FIX] Eliminate duplicate lines in logs #645

Merged
merged 1 commit into from
Jan 15, 2021
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
52 changes: 30 additions & 22 deletions tedana/combine.py
Original file line number Diff line number Diff line change
Expand Up @@ -14,7 +14,7 @@
@due.dcite(Doi('10.1002/(SICI)1522-2594(199907)42:1<87::AID-MRM13>3.0.CO;2-O'),
description='T2* method of combining data across echoes using '
'monoexponential equation.')
def _combine_t2s(data, tes, ft2s):
def _combine_t2s(data, tes, ft2s, report=True):
"""
Combine data across echoes using weighted averaging according to voxel-
(and sometimes volume-) wise estimates of T2*.
Expand All @@ -27,6 +27,8 @@ def _combine_t2s(data, tes, ft2s):
Echo times in milliseconds.
ft2s : (M [x T] X 1) array_like
Either voxel-wise or voxel- and volume-wise estimates of T2*.
report : bool, optional
Whether to log a description of this step or not. Default is True.

Returns
-------
Expand All @@ -42,14 +44,15 @@ def _combine_t2s(data, tes, ft2s):
Medicine: An Official Journal of the International Society
for Magnetic Resonance in Medicine, 42(1), 87-97.
"""
RepLGR.info("Multi-echo data were then optimally combined using the "
"T2* combination method (Posse et al., 1999).")
RefLGR.info("Posse, S., Wiese, S., Gembris, D., Mathiak, K., Kessler, "
"C., Grosse‐Ruyken, M. L., ... & Kiselev, V. G. (1999). "
"Enhancement of BOLD‐contrast sensitivity by single‐shot "
"multi‐echo functional MR imaging. Magnetic Resonance in "
"Medicine: An Official Journal of the International Society "
"for Magnetic Resonance in Medicine, 42(1), 87-97.")
if report:
RepLGR.info("Multi-echo data were then optimally combined using the "
"T2* combination method (Posse et al., 1999).")
RefLGR.info("Posse, S., Wiese, S., Gembris, D., Mathiak, K., Kessler, "
"C., Grosse‐Ruyken, M. L., ... & Kiselev, V. G. (1999). "
"Enhancement of BOLD‐contrast sensitivity by single‐shot "
"multi‐echo functional MR imaging. Magnetic Resonance in "
"Medicine: An Official Journal of the International Society "
"for Magnetic Resonance in Medicine, 42(1), 87-97.")
n_vols = data.shape[-1]
alpha = tes * np.exp(-tes / ft2s)
if alpha.ndim == 2:
Expand All @@ -71,7 +74,7 @@ def _combine_t2s(data, tes, ft2s):
@due.dcite(Doi('10.1002/mrm.20900'),
description='PAID method of combining data across echoes using just '
'SNR/signal and TE.')
def _combine_paid(data, tes):
def _combine_paid(data, tes, report=True):
"""
Combine data across echoes using SNR/signal and TE via the
parallel-acquired inhomogeneity desensitized (PAID) ME-fMRI combination
Expand All @@ -83,6 +86,8 @@ def _combine_paid(data, tes):
Masked data.
tes : (1 x E) array_like
Echo times in milliseconds.
report : bool, optional
Whether to log a description of this step or not. Default is True.

Returns
-------
Expand All @@ -99,16 +104,17 @@ def _combine_paid(data, tes):
International Society for Magnetic Resonance in Medicine,
55(6), 1227-1235.
"""
RepLGR.info("Multi-echo data were then optimally combined using the "
"parallel-acquired inhomogeneity desensitized (PAID) "
"combination method.")
RefLGR.info("Poser, B. A., Versluis, M. J., Hoogduin, J. M., & Norris, "
"D. G. (2006). BOLD contrast sensitivity enhancement and "
"artifact reduction with multiecho EPI: parallel‐acquired "
"inhomogeneity‐desensitized fMRI. "
"Magnetic Resonance in Medicine: An Official Journal of the "
"International Society for Magnetic Resonance in Medicine, "
"55(6), 1227-1235.")
if report:
RepLGR.info("Multi-echo data were then optimally combined using the "
"parallel-acquired inhomogeneity desensitized (PAID) "
"combination method.")
RefLGR.info("Poser, B. A., Versluis, M. J., Hoogduin, J. M., & Norris, "
"D. G. (2006). BOLD contrast sensitivity enhancement and "
"artifact reduction with multiecho EPI: parallel‐acquired "
"inhomogeneity‐desensitized fMRI. "
"Magnetic Resonance in Medicine: An Official Journal of the "
"International Society for Magnetic Resonance in Medicine, "
"55(6), 1227-1235.")
n_vols = data.shape[-1]
snr = data.mean(axis=-1) / data.std(axis=-1)
alpha = snr * tes
Expand Down Expand Up @@ -215,17 +221,19 @@ def make_optcom(data, tes, adaptive_mask, t2s=None, combmode='t2s', verbose=True
data = data[mask, :, :] # mask out unstable voxels/samples
tes = np.array(tes)[np.newaxis, ...] # (1 x E) array_like
combined = np.zeros((data.shape[0], data.shape[2]))
report = True
for echo in np.unique(adaptive_mask[mask]):
echo_idx = adaptive_mask[mask] == echo

if combmode == 'paid':
combined[echo_idx, :] = _combine_paid(data[echo_idx, :echo, :],
tes[:echo])
tes[:echo], report=report)
else:
t2s_ = t2s[mask, ..., np.newaxis] # mask out empty voxels/samples

combined[echo_idx, :] = _combine_t2s(
data[echo_idx, :echo, :], tes[:, :echo], t2s_[echo_idx, ...])
data[echo_idx, :echo, :], tes[:, :echo], t2s_[echo_idx, ...], report=report)
report = False
jbteves marked this conversation as resolved.
Show resolved Hide resolved

combined = unmask(combined, mask)
return combined
31 changes: 19 additions & 12 deletions tedana/decay.py
Original file line number Diff line number Diff line change
Expand Up @@ -61,7 +61,7 @@ def monoexponential(tes, s0, t2star):
return s0 * np.exp(-tes / t2star)


def fit_monoexponential(data_cat, echo_times, adaptive_mask):
def fit_monoexponential(data_cat, echo_times, adaptive_mask, report=True):
"""
Fit monoexponential decay model with nonlinear curve-fitting.

Expand All @@ -74,18 +74,21 @@ def fit_monoexponential(data_cat, echo_times, adaptive_mask):
adaptive_mask
Array where each value indicates the number of echoes with good signal
for that voxel.
report : bool, optional
Whether to log a description of this step or not. Default is True.

Returns
-------
t2s_limited, s0_limited, t2s_full, s0_full
"""
RepLGR.info("A monoexponential model was fit to the data at each voxel "
"using nonlinear model fitting in order to estimate T2* and S0 "
"maps, using T2*/S0 estimates from a log-linear fit as "
"initial values. For each voxel, the value from the adaptive "
"mask was used to determine which echoes would be used to "
"estimate T2* and S0. In cases of model fit failure, T2*/S0 "
"estimates from the log-linear fit were retained instead.")
if report:
RepLGR.info("A monoexponential model was fit to the data at each voxel "
"using nonlinear model fitting in order to estimate T2* and S0 "
"maps, using T2*/S0 estimates from a log-linear fit as "
"initial values. For each voxel, the value from the adaptive "
"mask was used to determine which echoes would be used to "
"estimate T2* and S0. In cases of model fit failure, T2*/S0 "
"estimates from the log-linear fit were retained instead.")
n_samp, n_echos, n_vols = data_cat.shape

# Currently unused
Expand Down Expand Up @@ -215,7 +218,7 @@ def fit_loglinear(data_cat, echo_times, adaptive_mask, report=True):
return t2s_limited, s0_limited, t2s_full, s0_full


def fit_decay(data, tes, mask, adaptive_mask, fittype):
def fit_decay(data, tes, mask, adaptive_mask, fittype, report=True):
"""
Fit voxel-wise monoexponential decay models to `data`

Expand All @@ -234,6 +237,8 @@ def fit_decay(data, tes, mask, adaptive_mask, fittype):
given sample
fittype : {loglin, curvefit}
The type of model fit to use
report : bool, optional
Whether to log a description of this step or not. Default is True.

Returns
-------
Expand Down Expand Up @@ -285,10 +290,10 @@ def fit_decay(data, tes, mask, adaptive_mask, fittype):

if fittype == 'loglin':
t2s_limited, s0_limited, t2s_full, s0_full = fit_loglinear(
data_masked, tes, adaptive_mask_masked)
data_masked, tes, adaptive_mask_masked, report=report)
elif fittype == 'curvefit':
t2s_limited, s0_limited, t2s_full, s0_full = fit_monoexponential(
data_masked, tes, adaptive_mask_masked)
data_masked, tes, adaptive_mask_masked, report=report)
else:
raise ValueError('Unknown fittype option: {}'.format(fittype))

Expand Down Expand Up @@ -355,12 +360,14 @@ def fit_decay_ts(data, tes, mask, adaptive_mask, fittype):
t2s_full_ts = np.copy(t2s_limited_ts)
s0_full_ts = np.copy(t2s_limited_ts)

report = True
for vol in range(n_vols):
t2s_limited, s0_limited, t2s_full, s0_full = fit_decay(
data[:, :, vol][:, :, None], tes, mask, adaptive_mask, fittype)
data[:, :, vol][:, :, None], tes, mask, adaptive_mask, fittype, report=report)
t2s_limited_ts[:, vol] = t2s_limited
s0_limited_ts[:, vol] = s0_limited
t2s_full_ts[:, vol] = t2s_full
s0_full_ts[:, vol] = s0_full
report = False

return t2s_limited_ts, s0_limited_ts, t2s_full_ts, s0_full_ts