Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[ENH, REF] Allow re-running without manacc and reorder args #508

Merged
merged 5 commits into from
Jan 21, 2020
Merged
Changes from 4 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
248 changes: 125 additions & 123 deletions tedana/workflows/tedana.py
Original file line number Diff line number Diff line change
Expand Up @@ -65,6 +65,12 @@ def _get_parser():
type=float,
help='Echo times (in ms). E.g., 15.0 39.0 63.0',
required=True)
optional.add_argument('--out-dir',
dest='out_dir',
type=str,
metavar='PATH',
help='Output directory.',
default='.')
optional.add_argument('--mask',
dest='mask',
metavar='FILE',
Expand All @@ -76,54 +82,25 @@ def _get_parser():
"function will be used to derive a mask "
"from the first echo's data."),
default=None)
optional.add_argument('--mix',
dest='mixm',
metavar='FILE',
type=lambda x: is_valid_file(parser, x),
help=('File containing mixing matrix. If not '
'provided, ME-PCA & ME-ICA is done.'),
default=None)
optional.add_argument('--ctab',
dest='ctab',
metavar='FILE',
type=lambda x: is_valid_file(parser, x),
help=('File containing a component table from which '
'to extract pre-computed classifications.'),
default=None)
optional.add_argument('--manacc',
dest='manacc',
help=('Comma separated list of manually '
'accepted components'),
default=None)
optional.add_argument('--fittype',
dest='fittype',
action='store',
choices=['loglin', 'curvefit'],
help=('Desired T2*/S0 fitting method. '
'"loglin" means that a linear model is fit '
'to the log of the data. '
'"curvefit" means that a more computationally '
'demanding monoexponential model is fit '
'to the raw data. '
'Default is "loglin".'),
default='loglin')
optional.add_argument('--combmode',
dest='combmode',
action='store',
choices=['t2s'],
help=('Combination scheme for TEs: '
't2s (Posse 1999, default)'),
default='t2s')
optional.add_argument('--verbose',
dest='verbose',
action='store_true',
help='Generate intermediate and additional files.',
default=False)
optional.add_argument('--tedort',
dest='tedort',
action='store_true',
help=('Orthogonalize rejected components w.r.t. '
'accepted components prior to denoising.'),
default=False)
optional.add_argument('--gscontrol',
dest='gscontrol',
required=False,
action='store',
nargs='+',
help=('Perform additional denoising to remove '
'spatially diffuse noise. Default is None. '
'This argument can be single value or a space '
'delimited list'),
choices=['t1c', 'gsr'],
default=None)
optional.add_argument('--tedpca',
dest='tedpca',
help=('Method with which to select components in TEDPCA. '
Expand All @@ -133,63 +110,73 @@ def _get_parser():
'Default=\'mdl\'.'),
choices=['kundu', 'kundu-stabilize', 'mdl', 'aic', 'kic'],
default='mdl')
optional.add_argument('--out-dir',
dest='out_dir',
type=str,
help='Output directory.',
default='.')
optional.add_argument('--seed',
dest='fixed_seed',
metavar='INT',
type=int,
help=('Value used for random initialization of ICA algorithm. '
'Set to an integer value for reproducible ICA results. '
'Set to -1 for varying results across ICA calls. '
help=('Value used for random initialization of ICA '
'algorithm. Set to an integer value for '
'reproducible ICA results. Set to -1 for '
'varying results across ICA calls. '
'Default=42.'),
default=42)
optional.add_argument('--no-png',
dest='no_png',
action='store_true',
help=('Creates a figures folder with static component '
'maps, timecourse plots and other diagnostic '
'images'),
default=False)
optional.add_argument('--png-cmap',
dest='png_cmap',
type=str,
help=('Colormap for figures'),
default='coolwarm')
optional.add_argument('--maxit',
dest='maxit',
type=int,
metavar='INT',
help=('Maximum number of iterations for ICA.'),
default=500)
optional.add_argument('--maxrestart',
dest='maxrestart',
type=int,
metavar='INT',
help=('Maximum number of attempts for ICA. If ICA '
'fails to converge, the fixed seed will be '
'updated and ICA will be run again. If '
'convergence is achieved before maxrestart '
'attempts, ICA will finish early.'),
default=10)
optional.add_argument('--tedort',
dest='tedort',
action='store_true',
help=('Orthogonalize rejected components w.r.t. '
'accepted components prior to denoising.'),
default=False)
optional.add_argument('--gscontrol',
dest='gscontrol',
required=False,
action='store',
nargs='+',
help=('Perform additional denoising to remove '
'spatially diffuse noise. Default is None. '
'This argument can be single value or a space '
'delimited list'),
choices=['t1c', 'gsr'],
default=None)
optional.add_argument('--no-png',
dest='no_png',
action='store_true',
help=('Creates a figures folder with static component '
'maps, timecourse plots and other diagnostic '
'images'),
default=False)
optional.add_argument('--png-cmap',
dest='png_cmap',
type=str,
help='Colormap for figures',
default='coolwarm')
optional.add_argument('--verbose',
dest='verbose',
action='store_true',
help='Generate intermediate and additional files.',
default=False)
optional.add_argument('--lowmem',
dest='low_mem',
action='store_true',
help=('Enables low-memory processing, including the '
'use of IncrementalPCA. May increase workflow '
'duration.'),
default=False)
optional.add_argument('--fittype',
dest='fittype',
action='store',
choices=['loglin', 'curvefit'],
help='Desired Fitting Method '
'"loglin" means that a linear model is fit '
'to the log of the data, default '
'"curvefit" means that a more computationally '
'demanding monoexponential model is fit '
'to the raw data',
default='loglin')
optional.add_argument('--debug',
dest='debug',
action='store_true',
Expand All @@ -204,16 +191,38 @@ def _get_parser():
default=False)
optional.add_argument('-v', '--version', action='version', version=verstr)
parser._action_groups.append(optional)

rerungrp = parser.add_argument_group('arguments for rerunning the workflow')
rerungrp.add_argument('--mix',
dest='mixm',
metavar='FILE',
type=lambda x: is_valid_file(parser, x),
help=('File containing mixing matrix. If not '
'provided, ME-PCA & ME-ICA is done.'),
default=None)
rerungrp.add_argument('--ctab',
dest='ctab',
metavar='FILE',
type=lambda x: is_valid_file(parser, x),
help=('File containing a component table from which '
jbteves marked this conversation as resolved.
Show resolved Hide resolved
'to extract pre-computed classifications.'),
default=None)
rerungrp.add_argument('--manacc',
dest='manacc',
help=('Comma separated list of manually '
'accepted components'),
default=None)

return parser


def tedana_workflow(data, tes, mask=None, mixm=None, ctab=None, manacc=None,
tedort=False, gscontrol=None, tedpca='mdl',
combmode='t2s', verbose=False, stabilize=False,
out_dir='.', fixed_seed=42, maxit=500, maxrestart=10,
debug=False, quiet=False, no_png=False,
png_cmap='coolwarm',
low_mem=False, fittype='loglin'):
def tedana_workflow(data, tes, out_dir='.', mask=None,
fittype='loglin', combmode='t2s', tedpca='mdl',
fixed_seed=42, maxit=500, maxrestart=10,
tedort=False, gscontrol=None,
no_png=False, png_cmap='coolwarm',
verbose=False, low_mem=False, debug=False, quiet=False,
mixm=None, ctab=None, manacc=None):
"""
Run the "canonical" TE-Dependent ANAlysis workflow.

Expand All @@ -224,46 +233,46 @@ def tedana_workflow(data, tes, mask=None, mixm=None, ctab=None, manacc=None,
list of echo-specific files, in ascending order.
tes : :obj:`list`
List of echo times associated with data in milliseconds.
mask : :obj:`str`, optional
out_dir : :obj:`str`, optional
Output directory.
mask : :obj:`str` or None, optional
Binary mask of voxels to include in TE Dependent ANAlysis. Must be
spatially aligned with `data`. If an explicit mask is not provided,
then Nilearn's compute_epi_mask function will be used to derive a mask
from the first echo's data.
mixm : :obj:`str`, optional
File containing mixing matrix. If not provided, ME-PCA and ME-ICA are
done.
ctab : :obj:`str`, optional
File containing component table from which to extract pre-computed
classifications.
manacc : :obj:`list`, :obj:`str`, or None, optional
List of manually accepted components. Can be a list of the components,
a comma-separated string with component numbers, or None. Default is
None.
fittype : {'loglin', 'curvefit'}, optional
Monoexponential fitting method. 'loglin' uses the the default linear
fit to the log of the data. 'curvefit' uses a monoexponential fit to
the raw data, which is slightly slower but may be more accurate.
Default is 'loglin'.
combmode : {'t2s'}, optional
Combination scheme for TEs: 't2s' (Posse 1999, default).
tedpca : {'kundu', 'kundu-stabilize', 'mdl', 'aic', 'kic'}, optional
Method with which to select components in TEDPCA. Default is 'mdl'.
tedort : :obj:`bool`, optional
Orthogonalize rejected components w.r.t. accepted ones prior to
denoising. Default is False.
gscontrol : {None, 't1c', 'gsr'} or :obj:`list`, optional
Perform additional denoising to remove spatially diffuse noise. Default
is None.
tedpca : {'kundu', 'kundu-stabilize', 'mdl', 'aic', 'kic'}, optional
Method with which to select components in TEDPCA. Default is 'mdl'.
combmode : {'t2s'}, optional
Combination scheme for TEs: 't2s' (Posse 1999, default).
fittype : {'loglin', 'curvefit'}, optional
Monoexponential fitting method.
'loglin' means to use the the default linear fit to the log of
the data.
'curvefit' means to use a monoexponential fit to the raw data,
which is slightly slower but may be more accurate.
verbose : :obj:`bool`, optional
Generate intermediate and additional files. Default is False.
no_png : obj:'bool', optional
Do not generate .png plots and figures. Default is false.
png_cmap : obj:'str', optional
Name of a matplotlib colormap to be used when generating figures.
Cannot be used with --no-png. Default 'coolwarm'
out_dir : :obj:`str`, optional
Output directory.
Name of a matplotlib colormap to be used when generating figures.
Cannot be used with --no-png. Default is 'coolwarm'.
mixm : :obj:`str` or None, optional
File containing mixing matrix, to be used when re-running the workflow.
If not provided, ME-PCA and ME-ICA are done. Default is None.
ctab : :obj:`str` or None, optional
File containing component table from which to extract pre-computed
classifications, to be used with 'mixm' when re-running the workflow.
Default is None.
manacc : :obj:`list`, :obj:`str`, or None, optional
List of manually accepted components. Can be a list of the components,
a comma-separated string with component numbers, or None. Default is
None.

Other Parameters
----------------
Expand Down Expand Up @@ -360,12 +369,6 @@ def tedana_workflow(data, tes, mask=None, mixm=None, ctab=None, manacc=None,
if not isinstance(gscontrol, list):
gscontrol = [gscontrol]

# coerce data to samples x echos x time array
if isinstance(data, str):
if not op.exists(data):
raise ValueError('Zcat file {} does not exist'.format(data))
data = [data]

LGR.info('Loading input data: {}'.format([f for f in data]))
catd, ref_img = io.load_data(data, n_echos=n_echos)
n_samp, n_echos, n_vols = catd.shape
Expand Down Expand Up @@ -410,9 +413,6 @@ def tedana_workflow(data, tes, mask=None, mixm=None, ctab=None, manacc=None,
if ctab and not mixm:
LGR.warning('Argument "ctab" requires argument "mixm".')
ctab = None
elif ctab and (manacc is None):
LGR.warning('Argument "ctab" requires argument "manacc".')
ctab = None
elif manacc is not None and not mixm:
LGR.warning('Argument "manacc" requires argument "mixm".')
manacc = None
Expand Down Expand Up @@ -497,21 +497,23 @@ def tedana_workflow(data, tes, mask=None, mixm=None, ctab=None, manacc=None,
else:
LGR.info('Using supplied mixing matrix from ICA')
mmix_orig = pd.read_table(op.join(out_dir, 'ica_mixing.tsv')).values
comptable, metric_maps, betas, mmix = metrics.dependence_metrics(
catd, data_oc, mmix_orig, t2s_limited, tes,
ref_img, label='meica_', out_dir=out_dir,
algorithm='kundu_v2', verbose=verbose)
betas_oc = utils.unmask(computefeats2(data_oc, mmix, mask), mask)
io.filewrite(betas_oc,
op.join(out_dir, 'ica_components.nii.gz'),
ref_img)

if ctab is None:
comptable, metric_maps, betas, mmix = metrics.dependence_metrics(
catd, data_oc, mmix_orig, t2s_limited, tes,
ref_img, label='meica_', out_dir=out_dir,
algorithm='kundu_v2', verbose=verbose)
comptable = metrics.kundu_metrics(comptable, metric_maps)
comptable = selection.kundu_selection_v2(comptable, n_echos, n_vols)
else:
comptable = pd.read_csv(ctab, sep='\t', index_col='component')
comptable = selection.manual_selection(comptable, acc=manacc)
mmix = mmix_orig.copy()
comptable = io.load_comptable(ctab)
if manacc is not None:
comptable = selection.manual_selection(comptable, acc=manacc)
betas_oc = utils.unmask(computefeats2(data_oc, mmix, mask), mask)
io.filewrite(betas_oc,
op.join(out_dir, 'ica_components.nii.gz'),
ref_img)

# Save decomposition
comptable['Description'] = 'ICA fit to dimensionally-reduced optimally combined data.'
Expand Down