Skip to content

Commit

Permalink
Added derive_surface and get_positions with tests. (#40)
Browse files Browse the repository at this point in the history
* Refactored code with tests.
  • Loading branch information
Estefania Barreto-Ojeda authored Jul 6, 2021
1 parent 97713b3 commit 687d869
Show file tree
Hide file tree
Showing 3 changed files with 139 additions and 99 deletions.
4 changes: 2 additions & 2 deletions membrane_curvature/core.py
Original file line number Diff line number Diff line change
Expand Up @@ -5,7 +5,7 @@
Handles the primary functions
"""

from .lib.mods import core_fast_leaflet, gaussian_curvature, mean_curvature
from .lib.mods import derive_surface, gaussian_curvature, mean_curvature
import time
import MDAnalysis as mda
import math
Expand All @@ -32,7 +32,7 @@ def main():

# 4. Save pickles zpo4
z_Ref = np.zeros([n_cells, n_cells])
z_coords = core_fast_leaflet(u, z_Ref, n_cells, selection, max_width)
z_coords = derive_surface(n_cells, selection, max_width)

# 5. Calculate curvature
K = gaussian_curvature(z_coords)
Expand Down
131 changes: 76 additions & 55 deletions membrane_curvature/lib/mods.py
Original file line number Diff line number Diff line change
@@ -1,89 +1,110 @@
import itertools as it
import numpy as np


def grid_map(coords, factor):
""" Maps (x,y) coordinates to unit cell in grid.
def derive_surface(n_cells_x, n_cells_y, selection, max_width_x, max_width_y):
"""
Derive surface from AtomGroup positions.
Parameters
----------
(x, y): tuple
Value of (x, y) coordinates
factor: float
Mappign factor to assign grid.
n_cells_x : int.
number of cells in the grid of size `max_width_x`, `x` axis.
n_cells_y : int.
number of cells in the grid of size `max_width_y`, `y` axis.
selection : AtomGroup.
AtomGroup of reference selection to define the surface
of the membrane.
max_width_x: float.
Maximum width of simulation box in x axis. (Determined by simulation box dimensions)
max_width_y: float.
Maximum width of simulation box in y axis. (Determined by simulation box dimensions)
Returns
-------
Returns l, m with l,m as int.
Returns
-------
z_coordinates: numpy.ndarray
Average z-coordinate values. Return Numpy array of floats of
shape `(n_cells_x, n_cells_y)`.
"""
coordinates = selection.positions
return get_z_surface(coordinates, n_x_bins=n_cells_x, n_y_bins=n_cells_y,
x_range=(0, max_width_x), y_range=(0, max_width_y))

index_grid_l = int(abs(coords[0]) * factor)
index_grid_m = int(abs(coords[1]) * factor)

return index_grid_l, index_grid_m


def core_fast_leaflet(universe, z_Ref, n_cells, selection, max_width):
def get_z_surface(coordinates, n_x_bins=10, n_y_bins=10, x_range=(0, 100), y_range=(0, 100)):
"""
Runs core_fast_leaflet for selected surface
Derive surface from distribution of z coordinates in grid.
Parameters
----------
universe: MDA Universe
Provides coordinates and trajectory of the coordinates.
z_Ref : dict.
Dictionary to store values in every iteration over frames.
n_cells : int.
number of cells in the grid of size `max_width`.
selection : AtomGroup
AtomGroup of reference selection to define the surface
of the membrane.
max_width : int.
Maximum width of simulation box.
coordinates : numpy.ndarray
Coordinates of AtomGroup. Numpy array of shape=(n_atoms, 3).
n_x_bins : int.
Number of bins in grid in the `x` dimension.
n_y_bins : int.
Number of bins in grid in the `y` dimension.
x_range : tuple of (float, float)
Range of coordinates (min, max) in the `x` dimension with shape=(2,).
y_range : tuple of (float, float)
Range of coordinates (min, max) in the `y` dimension with shape=(2,).
Returns
-------
Returns a dictionary with tuples of [i,j] as keys, where 0<i<`max_width`,
and 0<j<`max_width`. The resulting values for each key are a list of
`len=(n_frames)` containing the extracted z_coordinate a given [i,j] cell
in each frame.
z_surface: numpy.ndarray
Surface derived from set of coordinates in grid of `x_range, y_range` dimensions.
Returns Numpy array of floats of shape (`n_x_bins`, `n_y_bins`)
"""

grid_count_frames = np.zeros([n_cells, n_cells])
grid_z_coordinates = np.zeros((n_x_bins, n_y_bins))
grid_norm_unit = np.zeros((n_x_bins, n_y_bins))

x_factor = n_x_bins / (x_range[1] - x_range[0])
y_factor = n_y_bins / (y_range[1] - y_range[0])

for ts in universe.trajectory:
x_coords, y_coords, z_coords = coordinates.T

grid_z_coordinates = np.zeros([n_cells, n_cells])
grid_norm_unit = np.zeros([n_cells, n_cells])
cell_x_floor = np.floor(x_coords * x_factor).astype(int)
cell_y_floor = np.floor(y_coords * y_factor).astype(int)

factor = np.float32(n_cells / max_width)
for l, m, z in zip(cell_x_floor, cell_y_floor, z_coords):

for bead in selection:
x, y, z = bead.position/10
try:
grid_z_coordinates[l, m] += z
grid_norm_unit[l, m] += 1

l, m = grid_map((x, y), factor)
except IndexError:
print("Atom outside grid boundaries. Skipping atom.")

try:
grid_z_coordinates[l, m] += z
grid_norm_unit[l, m] += 1
z_surface = normalized_grid(grid_z_coordinates, grid_norm_unit)

except ValueError:
print("Atom outside grid boundaries. Skipping atom {}".format(bead))
return z_surface

for i, j in it.product(range(n_cells), range(n_cells)):
if grid_norm_unit[i, j] > 0:
z_Ref[i, j] += grid_z_coordinates[i, j] / grid_norm_unit[i, j]
grid_count_frames[i, j] += 1

for i, j in it.product(range(n_cells), range(n_cells)):
if grid_count_frames[i, j] > 0:
z_Ref[i, j] /= grid_count_frames[i, j]
def normalized_grid(grid_z_coordinates, grid_norm_unit):
"""
Calculates average z coordinate in unit cell
Parameters
----------
z_ref: np.array
Empty array of (l,m)
grid_z_coordinates: np.array
Array of size (l,m) with z coordinates stored in unit cell.
grid_norm_unit: np.array
Array of size (l,m) with number of atoms in unit cell.
Returns
-------
Returns nornalized set of z coordinates in grid.
"""

grid_norm_unit = np.where(grid_norm_unit > 0, grid_norm_unit, np.nan)
z_normalized = grid_z_coordinates / grid_norm_unit

else:
z_Ref[i, j] = np.nan
return z_normalized


def gaussian_curvature(Z):
Expand Down
103 changes: 61 additions & 42 deletions membrane_curvature/tests/test_mdakit_membcurv.py
Original file line number Diff line number Diff line change
Expand Up @@ -2,9 +2,8 @@
Unit and regression test for the membrane_curvature package.
"""

# Import package, test suite, and other packages as needed
import pytest
from ..lib.mods import core_fast_leaflet, mean_curvature, gaussian_curvature, grid_map
from ..lib.mods import mean_curvature, gaussian_curvature, normalized_grid, derive_surface, get_z_surface
import numpy as np
from numpy.testing import assert_almost_equal
import MDAnalysis as mda
Expand Down Expand Up @@ -120,6 +119,13 @@
}


@pytest.fixture
def small_grofile():
u = mda.Universe(GRO_PO4_SMALL)
sel = u.select_atoms('name PO4')
return sel


def test_gaussian_curvature_small():
K_test = gaussian_curvature(MEMBRANE_CURVATURE_DATA['z_ref']['small'])
for k, k_test in zip(MEMBRANE_CURVATURE_DATA['gaussian_curvature']['small'], K_test):
Expand All @@ -144,44 +150,57 @@ def test_mean_curvature_all():
assert_almost_equal(h, h_test)


def test_core_fast_leaflets():
n_cells, max_width = 3, 3
z_calc = np.zeros([n_cells, n_cells])
u = mda.Universe(GRO_PO4_SMALL, XTC_PO4_SMALL)
selection = u.select_atoms('index 0:3')
core_fast_leaflet(u, z_calc, n_cells, selection, max_width)
for z, z_test in zip(MEMBRANE_CURVATURE_DATA['grid']['small']['upper'], z_calc):
print(z, z_test)
assert_almost_equal(z, z_test)


@pytest.mark.parametrize('factor', [1, 2])
@pytest.mark.parametrize('dummy_coord', [
# dummy coordinates (x,y) in grid of 3x3
(0, 0), (1, 0), (2, 0),
(0, 1), (1, 1), (2, 1),
(0, 2), (1, 2), (2, 2),
# dummy coordinates (x,y) in grid of 5x5
(0, 0), (1, 0), (2, 0), (3, 0), (4, 0),
(0, 1), (1, 1), (2, 1), (3, 1), (4, 1),
(0, 2), (1, 2), (2, 2), (3, 2), (4, 2),
(0, 3), (1, 3), (2, 3), (3, 3), (4, 3),
(0, 4), (1, 4), (2, 4), (3, 4), (4, 4)
@pytest.mark.parametrize('n_cells, grid_z_coords', [
(3, np.full((3, 3), 10.)),
(3, np.array([[10., 20., 30.], [10., 20., 30.], [10., 20., 30.]], dtype=float))
])
def test_normalized_grid_identity_other_values(n_cells, grid_z_coords):
unit = np.ones([n_cells, n_cells])
z_avg = normalized_grid(grid_z_coords, unit)
assert_almost_equal(z_avg, grid_z_coords)


def test_normalized_grid_more_beads():
# sum of z coordinate in grid,
grid_z_coords = np.full((3, 3), 10.)
# grid number of beads per unit
norm_grid = np.array([[2., 1., 1.], [1., 2., 1.], [1., 1., 2.]])
# avg z coordinate in grid
expected_normalized_surface = np.array([[5., 10., 10.], [10., 5., 10.], [10., 10., 5.]])
average_surface = normalized_grid(grid_z_coords, norm_grid)
assert_almost_equal(average_surface, expected_normalized_surface)


def test_derive_surface(small_grofile):
n_cells, max_width = 3, 30
expected_surface = np.array(([150., 150., 120.], [150., 120., 120.], [150., 120., 120.]))
max_width_x = max_width_y = max_width
surface = derive_surface(n_cells, n_cells, small_grofile, max_width_x, max_width_y)
assert_almost_equal(surface, expected_surface)


def test_derive_surface_from_numpy():
dummy_array = np.array([[0., 0., 150.], [100., 0., 150.], [200., 0., 150.],
[0., 100., 150.], [100., 100., 120.], [200., 100., 120.],
[0., 200., 120.], [100., 200., 120.], [200., 200., 120.]])
x_bin = y_bin = 3
x_range = y_range = (0, 300)
expected_surface = np.array(([150., 150., 120.], [150., 120., 120.], [150., 120., 120.]))
surface = get_z_surface(dummy_array, x_bin, y_bin, x_range, y_range)
assert_almost_equal(surface, expected_surface)


@pytest.mark.parametrize('x_bin, y_bin, x_range, y_range, expected_surface', [
(3, 3, (0, 300), (0, 300), np.array(([150., np.nan, 150.],
[np.nan, 150., 150.],
[150., 150., 150.]))),
(3, 4, (0, 300), (0, 400), np.array([[150., np.nan, 150., np.nan],
[np.nan, 150., 150., np.nan],
[150., 150., 150., np.nan]]))
])
def test_grid_map_grids(dummy_coord, factor):
cell = (dummy_coord[0] * factor, dummy_coord[1] * factor)
assert grid_map(dummy_coord, factor) == cell


@pytest.mark.parametrize('dummy_coords, expected', [
# dummy coordinates (x,y)
(0, 0), (-1, 0), (2, 0),
(0, 1), (-1, 1), (2, 1),
(0, 2), (-1, 2), (2, 2),
# should map to
(0, 0), (2, 0), (2, 0),
(0, 1), (2, 1), (2, 1),
(0, 2), (2, 2), (2, 2)])
@pytest.mark.xfail(reason='Incorrect mapping of negative coordinates')
def test_grid_map_9grid_negative(dummy_coords, expected):
assert grid_map(dummy_coords, 1) == expected
def test_get_z_surface(x_bin, y_bin, x_range, y_range, expected_surface):
dummy_array = np.array([[0., 0., 150.], [0., 0., 150.], [200., 0., 150.],
[0., 0., 150.], [100., 100., 150.], [200., 100., 150.],
[0., 200., 150.], [100., 200., 150.], [200., 200., 150.]])
surface = get_z_surface(dummy_array, x_bin, y_bin, x_range, y_range)
assert_almost_equal(surface, expected_surface)

0 comments on commit 687d869

Please sign in to comment.