Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[fmt] lib #4804

Merged
merged 21 commits into from
Dec 6, 2024
Merged
Show file tree
Hide file tree
Changes from 19 commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
38 changes: 22 additions & 16 deletions package/MDAnalysis/lib/NeighborSearch.py
Original file line number Diff line number Diff line change
Expand Up @@ -44,8 +44,9 @@ class AtomNeighborSearch(object):
:class:`~MDAnalysis.lib.distances.capped_distance`.
"""

def __init__(self, atom_group: AtomGroup,
box: Optional[npt.ArrayLike] = None) -> None:
def __init__(
self, atom_group: AtomGroup, box: Optional[npt.ArrayLike] = None
) -> None:
"""

Parameters
Expand All @@ -62,10 +63,9 @@ def __init__(self, atom_group: AtomGroup,
self._u = atom_group.universe
self._box = box

def search(self, atoms: AtomGroup,
radius: float,
level: str = 'A'
) -> Optional[Union[AtomGroup, ResidueGroup, SegmentGroup]]:
def search(
self, atoms: AtomGroup, radius: float, level: str = "A"
) -> Optional[Union[AtomGroup, ResidueGroup, SegmentGroup]]:
"""
Return all atoms/residues/segments that are within *radius* of the
atoms in *atoms*.
Expand Down Expand Up @@ -102,17 +102,21 @@ def search(self, atoms: AtomGroup,
except AttributeError:
# For atom, take the position attribute
position = atoms.position
pairs = capped_distance(position, self.atom_group.positions,
radius, box=self._box, return_distances=False)
pairs = capped_distance(
position,
self.atom_group.positions,
radius,
box=self._box,
return_distances=False,
)

if pairs.size > 0:
unique_idx = unique_int_1d(np.asarray(pairs[:, 1], dtype=np.intp))
return self._index2level(unique_idx, level)

def _index2level(self,
indices: List[int],
level: str
) -> Union[AtomGroup, ResidueGroup, SegmentGroup]:
def _index2level(
self, indices: List[int], level: str
) -> Union[AtomGroup, ResidueGroup, SegmentGroup]:
"""Convert list of atom_indices in a AtomGroup to either the
Atoms or segments/residues containing these atoms.

Expand All @@ -125,11 +129,13 @@ def _index2level(self,
*radius* of *atoms*.
"""
atomgroup = self.atom_group[indices]
if level == 'A':
if level == "A":
return atomgroup
elif level == 'R':
elif level == "R":
return atomgroup.residues
elif level == 'S':
elif level == "S":
return atomgroup.segments
else:
raise NotImplementedError('{0}: level not implemented'.format(level))
raise NotImplementedError(
"{0}: level not implemented".format(level)
)
21 changes: 16 additions & 5 deletions package/MDAnalysis/lib/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -27,8 +27,17 @@
================================================================
"""

__all__ = ['log', 'transformations', 'util', 'mdamath', 'distances',
'NeighborSearch', 'formats', 'pkdtree', 'nsgrid']
__all__ = [
"log",
"transformations",
"util",
"mdamath",
"distances",
"NeighborSearch",
"formats",
"pkdtree",
"nsgrid",
]

from . import log
from . import transformations
Expand All @@ -39,6 +48,8 @@
from . import formats
from . import pkdtree
from . import nsgrid
from .picklable_file_io import (FileIOPicklable,
BufferIOPicklable,
TextIOPicklable)
from .picklable_file_io import (
FileIOPicklable,
BufferIOPicklable,
TextIOPicklable,
)
25 changes: 13 additions & 12 deletions package/MDAnalysis/lib/_distopia.py
Original file line number Diff line number Diff line change
Expand Up @@ -39,13 +39,15 @@

# check for compatibility: currently needs to be >=0.2.0,<0.3.0 (issue
# #4740) No distopia.__version__ available so we have to do some probing.
needed_funcs = ['calc_bonds_no_box_float', 'calc_bonds_ortho_float']
needed_funcs = ["calc_bonds_no_box_float", "calc_bonds_ortho_float"]
has_distopia_020 = all([hasattr(distopia, func) for func in needed_funcs])
if not has_distopia_020:
warnings.warn("Install 'distopia>=0.2.0,<0.3.0' to be used with this "
"release of MDAnalysis. Your installed version of "
"distopia >=0.3.0 will NOT be used.",
category=RuntimeWarning)
warnings.warn(
"Install 'distopia>=0.2.0,<0.3.0' to be used with this "
"release of MDAnalysis. Your installed version of "
"distopia >=0.3.0 will NOT be used.",
category=RuntimeWarning,
)
del distopia
HAS_DISTOPIA = False

Expand All @@ -59,23 +61,22 @@
def calc_bond_distance_ortho(
coords1, coords2: np.ndarray, box: np.ndarray, results: np.ndarray
) -> None:
distopia.calc_bonds_ortho_float(
coords1, coords2, box[:3], results=results
)
distopia.calc_bonds_ortho_float(coords1, coords2, box[:3], results=results)
# upcast is currently required, change for 3.0, see #3927


def calc_bond_distance(
coords1: np.ndarray, coords2: np.ndarray, results: np.ndarray
) -> None:
distopia.calc_bonds_no_box_float(
coords1, coords2, results=results
)
distopia.calc_bonds_no_box_float(coords1, coords2, results=results)
# upcast is currently required, change for 3.0, see #3927


def calc_bond_distance_triclinic(
coords1: np.ndarray, coords2: np.ndarray, box: np.ndarray, results: np.ndarray
coords1: np.ndarray,
coords2: np.ndarray,
box: np.ndarray,
results: np.ndarray,
) -> None:
# redirect to serial backend
warnings.warn(
Expand Down
15 changes: 10 additions & 5 deletions package/MDAnalysis/lib/correlations.py
Original file line number Diff line number Diff line change
Expand Up @@ -135,12 +135,18 @@ def autocorrelation(list_of_sets, tau_max, window_step=1):
"""

# check types
if (type(list_of_sets) != list and len(list_of_sets) != 0) or type(list_of_sets[0]) != set:
raise TypeError("list_of_sets must be a one-dimensional list of sets") # pragma: no cover
if (type(list_of_sets) != list and len(list_of_sets) != 0) or type(
list_of_sets[0]
) != set:
raise TypeError(
"list_of_sets must be a one-dimensional list of sets"
) # pragma: no cover

# Check dimensions of parameters
if len(list_of_sets) < tau_max:
raise ValueError("tau_max cannot be greater than the length of list_of_sets") # pragma: no cover
raise ValueError(
"tau_max cannot be greater than the length of list_of_sets"
) # pragma: no cover

tau_timeseries = list(range(1, tau_max + 1))
timeseries_data = [[] for _ in range(tau_max)]
Expand All @@ -157,7 +163,7 @@ def autocorrelation(list_of_sets, tau_max, window_step=1):
break

# continuous: IDs that survive from t to t + tau and at every frame in between
Ntau = len(set.intersection(*list_of_sets[t:t + tau + 1]))
Ntau = len(set.intersection(*list_of_sets[t : t + tau + 1]))
timeseries_data[tau - 1].append(Ntau / float(Nt))

timeseries = [np.mean(x) for x in timeseries_data]
Expand Down Expand Up @@ -257,4 +263,3 @@ def correct_intermittency(list_of_sets, intermittency):

seen_frames_ago[element] = 0
return list_of_sets

Loading
Loading