Skip to content

Commit

Permalink
manually added lates benchmarks.json
Browse files Browse the repository at this point in the history
  • Loading branch information
orbeckst committed Feb 4, 2022
1 parent af9c09e commit 32daf27
Showing 1 changed file with 88 additions and 0 deletions.
88 changes: 88 additions & 0 deletions results/benchmarks.json
Original file line number Diff line number Diff line change
Expand Up @@ -1147,6 +1147,94 @@
"version": "e17b327697d267cf044412cc544be3b2e309edad29b10d0ab5af64a7b847d269",
"warmup_time": -1
},
"ag_methods.CompoundSplitting.time_center_compounds": {
"code": "class CompoundSplitting:\n def time_center_compounds(self, *args):\n self.u.atoms.center(None, compound='residues')\n\n def setup(self, n_atoms, n_compounds, homogeneous, contiguous):\n rg = np.random.Generator(np.random.MT19937(3000))\n \n # some parameter screening for nonsensical combinations.\n if n_compounds > n_atoms:\n raise NotImplementedError\n \n if n_compounds == 1 and not (homogeneous and contiguous):\n raise NotImplementedError\n \n if n_compounds == n_atoms:\n if not (homogeneous and contiguous):\n raise NotImplementedError\n compound_indices = np.arange(n_compounds)\n elif homogeneous:\n ats_per_compound, remainder = divmod(n_atoms, n_compounds)\n if remainder:\n raise NotImplementedError\n compound_indices = np.tile(np.arange(n_compounds),\n (ats_per_compound, 1)).T.ravel()\n else:\n compound_indices = np.sort(np.floor(rg.random(n_atoms)\n * n_compounds).astype(np.int))\n \n unique_indices = np.unique(compound_indices)\n if len(unique_indices) != n_compounds:\n raise RuntimeError\n \n if not contiguous:\n rg.shuffle(compound_indices)\n \n self.u = MDAnalysis.Universe.empty(n_atoms,\n n_residues=n_compounds,\n n_segments=1,\n atom_resindex=compound_indices,\n trajectory=True)\n self.u.atoms.positions = rg.random((n_atoms, 3),\n dtype=np.float32) * 100\n self.u.dimensions = [50, 50, 50, 90, 90, 90]",
"min_run_count": 2,
"name": "ag_methods.CompoundSplitting.time_center_compounds",
"number": 0,
"param_names": [
"param1",
"param2",
"param3",
"param4"
],
"params": [
[
"100",
"10000",
"1000000"
],
[
"1",
"10",
"100"
],
[
"True",
"False"
],
[
"True",
"False"
]
],
"processes": 2,
"repeat": 0,
"sample_time": 0.01,
"timeout": 60.0,
"type": "time",
"unit": "seconds",
"version": "1a2731a96f06d85a503ae24d79262851ff5c7c0755d17baf7819456d54075f17",
"warmup_time": -1
},
"ag_methods.FragmentCaching.time_find_cached_fragments": {
"code": "class FragmentCaching:\n def time_find_cached_fragments(self, universe_type):\n frags = self.u.atoms.fragments\n\n def setup(self, universe_type):\n super(FragmentCaching, self).setup(universe_type)\n frags = self.u.atoms.fragments # Priming the cache",
"min_run_count": 2,
"name": "ag_methods.FragmentCaching.time_find_cached_fragments",
"number": 0,
"param_names": [
"universe_type"
],
"params": [
[
"'large_fragment_small_solvents'",
"'large_fragment'",
"'polymer_chains'"
]
],
"processes": 2,
"repeat": 0,
"sample_time": 0.01,
"timeout": 60.0,
"type": "time",
"unit": "seconds",
"version": "e10a712eaf0f8c9a2489bc4f2dbc9677be29528aa3314aa5bcb814b05e4c5cd8",
"warmup_time": -1
},
"ag_methods.FragmentCaching.time_find_fragments": {
"code": "class FragmentFinding:\n def time_find_fragments(self, universe_type):\n frags = self.u.atoms.fragments\n\nclass FragmentCaching:\n def setup(self, universe_type):\n super(FragmentCaching, self).setup(universe_type)\n frags = self.u.atoms.fragments # Priming the cache",
"min_run_count": 2,
"name": "ag_methods.FragmentCaching.time_find_fragments",
"number": 0,
"param_names": [
"universe_type"
],
"params": [
[
"'large_fragment_small_solvents'",
"'large_fragment'",
"'polymer_chains'"
]
],
"processes": 2,
"repeat": 0,
"sample_time": 0.01,
"timeout": 60.0,
"type": "time",
"unit": "seconds",
"version": "9ee4ba9d30022cba05eab57475bff54164b9f4ffc8a37286663ae8befdd78225",
"warmup_time": -1
},
"ag_methods.FragmentFinding.time_find_fragments": {
"code": "class FragmentFinding:\n def time_find_fragments(self, universe_type):\n frags = self.u.atoms.fragments\n\n def setup(self, universe_type):\n if universe_type == 'large_fragment_small_solvents':\n univ = (TPR, XTC)\n elif universe_type == 'large_fragment':\n univ = (PSF, DCD)\n else:\n univ = (TRZ_psf, TRZ)\n self.u = MDAnalysis.Universe(*univ)",
"min_run_count": 2,
Expand Down

0 comments on commit 32daf27

Please sign in to comment.