This is a PyTorch implementation of the SSD-LT
The code is built with following libraries:
- Python==3.6
- PyTorch==1.4.0
- torchvision
- tqdm
Download the ImageNet_2014. Reorganize the dataset into long-tailed distribution according to image id lists in ./data/
. The directories for the reorganized dataset should look like:
|--data
|--|--train
|--|--|--n01440764
|--|--|--|--n01440764_10027.JPEG
|--|--|--...
|--|--val
|--|--|--...
|--|--test
|--|--|--...
The training procedure is composed of three stages.
-
Stage I: Self-supervised guided feature learning
python ssd_stage_i.py --cos --dist-url 'tcp://localhost:10712' --multiprocessing-distributed --world-size 1 --rank 0 [your imagenet-LT folder]
-
Stage II: Intermediate soft labels generation
python ssd_stage_ii.py --cos --last_stage_ckpt 'weights/stage_i/last_checkpoint.pth.tar' --dist-url 'tcp://localhost:10003' --multiprocessing-distributed --world-size 1 --rank 0 [your imagenet-LT folder]
-
Stage III: Joint training with self-distillation
python ssd_stage_iii.py --cos --dist-url 'tcp://localhost:11712' --multiprocessing-distributed --world-size 1 --teacher_ckpt 'weights/stage_ii/last_checkpoint.pth.tar' --rank 0 [your imagenet-LT folder]
An extra classifier fine-tuning step is optional after stage III using ssd_stage_ii.py
for further improvement.
An evaluation procedure will be automatically executed when the training is finished. Also, we provide the last checkpoint of stage III for evaluation using the following scripts:
python ssd_stage_iii.py --dist-url 'tcp://localhost:10712' --multiprocessing-distributed --world-size 1 --rank 0 --resume [your checkpoint path] --evaluate [your imagenet-LT folder]
The experimental results for stage III on the ImageNet-LT dataset should be like:
Many | Medium | Few | Overall | |
---|---|---|---|---|
hard classifier | 71.1 | 46.2 | 15.3 | 51.6 |
soft classifier | 67.3 | 53.1 | 30.0 | 55.4 |
We especially thank the contributors of the Classifier-Balancing and MoCo for providing helpful code.
If you think our work is helpful, please feel free to cite our paper.
@inproceedings{li2021self,
title={Self supervision to distillation for long-tailed visual recognition},
author={Li, Tianhao and Wang, Limin and Wu, Gangshan},
booktitle={Proceedings of the IEEE/CVF International Conference on Computer Vision},
pages={630--639},
year={2021}
}
For any questions, please feel free to reach [email protected]
.