Skip to content

MC-E/LF-VSN

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

7 Commits
 
 
 
 
 
 

Repository files navigation

Large-capacity and Flexible Video Steganography via Invertible Neural Network (CVPR 2023)

Chong Mou, Youmin Xu, Jiechong Song, Chen Zhao, Bernard Ghanem, Jian Zhang

Official implementation of Large-capacity and Flexible Video Steganography via Invertible Neural Network.

Introduction

Video steganography is the art of unobtrusively concealing secret data in a cover video and then recovering the secret data through a decoding protocol at the receiver end. Although several attempts have been made, most of them are limited to low-capacity and fixed steganography. To rectify these weaknesses, we propose a Large-capacity and Flexible Video Steganography Network (LF-VSN) in this paper. For large-capacity, we present a reversible pipeline to perform multiple videos hiding and recovering through a single invertible neural network (INN). Our method can hide/recover 7 secret videos in/from 1 cover video with promising performance. For flexibility, we propose a key-controllable scheme, enabling different receivers to recover particular secret videos from the same cover video through specific keys. Moreover, we further improve the flexibility by proposing a scalable strategy in multiple videos hiding, which can hide variable numbers of secret videos in a cover video with a single model and a single training session. Extensive experiments demonstrate that with the significant improvement of the video steganography performance, our proposed LF-VSN has high security, large hiding capacity, and flexibility.


🔧 Dependencies and Installation

  • Python 3.6
  • PyTorch >= 1.4.0
  • numpy
  • skimage
  • cv2

Download Models

The pre-trained models are available at:

Mode Download link
One video hiding Google Drive
Two video hiding Google Drive
Three video hiding Google Drive
Four video hiding Google Drive
Five video hiding Google Drive
Six video hiding Google Drive
Seven video hiding Google Drive

Data Preparing

Please download the training and evaluation dataset from Vimeo-90K.

Train

Training the desired model by changing the config file.

python train.py -opt options/train/train_LF-VSN_1video.yml

Test

Testing the desired model by changing the config file.

python test.py -opt options/train/train_LF-VSN_1video.yml

Qualitative Results

🤗 Acknowledgements

This code is built on MIM-VRN (PyTorch). We thank the authors for sharing their codes of MIMO-VRN.

📧 Contact

If you have any question, please email [email protected].

Citation

If you find our work helpful in your resarch or work, please cite the following paper.

@inproceedings{mou2023lfvsn,
  title={Large-capacity and Flexible Video Steganography via Invertible Neural Network},
  author={Chong Mou, Youmin Xu, Jiechong Song, Chen Zhao, Bernard Ghanem, Jian Zhang},
  booktitle={CVPR},
  year={2023}
}

About

Accepted by CVPR 2023

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages