Skip to content

Commit

Permalink
refactor: centralize the CIFAR10 examples
Browse files Browse the repository at this point in the history
  • Loading branch information
avik-pal committed Dec 28, 2024
1 parent ed08d9e commit 0260eb6
Show file tree
Hide file tree
Showing 8 changed files with 174 additions and 102 deletions.
4 changes: 2 additions & 2 deletions docs/src/.vitepress/config.mts
Original file line number Diff line number Diff line change
Expand Up @@ -243,8 +243,8 @@ export default defineConfig({
link: "https://github.com/LuxDL/Lux.jl/tree/main/examples/DDIM",
},
{
text: "ConvMixer on CIFAR-10",
link: "https://github.com/LuxDL/Lux.jl/tree/main/examples/ConvMixer",
text: "Different Vision Models on CIFAR-10",
link: "https://github.com/LuxDL/Lux.jl/tree/main/examples/CIFAR10",
},
],
},
Expand Down
6 changes: 3 additions & 3 deletions docs/src/tutorials/index.md
Original file line number Diff line number Diff line change
Expand Up @@ -97,10 +97,10 @@ const large_models = [
desc: "Train a Diffusion Model to generate images from Gaussian noises."
},
{
href: "https://github.com/LuxDL/Lux.jl/tree/main/examples/ConvMixer",
href: "https://github.com/LuxDL/Lux.jl/tree/main/examples/CIFAR10",
src: "https://datasets.activeloop.ai/wp-content/uploads/2022/09/CIFAR-10-dataset-Activeloop-Platform-visualization-image-1.webp",
caption: "ConvMixer on CIFAR-10",
desc: "Train ConvMixer on CIFAR-10 to 90% accuracy within 10 minutes."
caption: "Vision Models on CIFAR-10",
desc: "Train differnt vision models on CIFAR-10 to 90% accuracy within 10 minutes."

Check warning on line 103 in docs/src/tutorials/index.md

View workflow job for this annotation

GitHub Actions / Spell Check with Typos

"differnt" should be "different".
}
];
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -12,9 +12,8 @@ MLDatasets = "eb30cadb-4394-5ae3-aed4-317e484a6458"
MLUtils = "f1d291b0-491e-4a28-83b9-f70985020b54"
OneHotArrays = "0b1bfda6-eb8a-41d2-88d8-f5af5cad476f"
Optimisers = "3bd65402-5787-11e9-1adc-39752487f4e2"
PreferenceTools = "ba661fbb-e901-4445-b070-854aec6bfbc5"
Printf = "de0858da-6303-5e67-8744-51eddeeeb8d7"
ProgressBars = "49802e3a-d2f1-5c88-81d8-b72133a6f568"
ProgressTables = "e0b4b9f6-8cc7-451e-9c86-94c5316e9f73"
Random = "9a3f8284-a2c9-5f02-9a11-845980a1fd5c"
Reactant = "3c362404-f566-11ee-1572-e11a4b42c853"
Statistics = "10745b16-79ce-11e8-11f9-7d13ad32a3b2"
Expand All @@ -34,9 +33,7 @@ MLDatasets = "0.7.14"
MLUtils = "0.4.4"
OneHotArrays = "0.2.5"
Optimisers = "0.4.1"
PreferenceTools = "0.1.2"
Printf = "1.10"
ProgressBars = "1.5.1"
Random = "1.10"
Reactant = "0.2.11"
Statistics = "1.10"
Expand Down
65 changes: 33 additions & 32 deletions examples/ConvMixer/README.md → examples/CIFAR10/README.md
Original file line number Diff line number Diff line change
@@ -1,6 +1,35 @@
# Train ConvMixer on CIFAR-10
# Train Vision Models on CIFAR-10

✈️ 🚗 🐦 🐈 🦌 🐕 🐸 🐎 🚢 🚚
✈️ 🚗 🐦 🐈 🦌 🐕 🐸 🐎 🚢 🚚

We have the following scripts to train vision models on CIFAR-10:

1. `simple_cnn.jl`: Simple CNN model with a sequence of convolutional layers.
2. `mlp_mixer.jl`: MLP-Mixer model.
3. `conv_mixer.jl`: ConvMixer model.

To get the options for each script, run the script with the `--help` flag.

> [!NOTE]
> To train the model using Reactant.jl pass in `--backend=reactant` to the script. This is
> the recommended approch to train the models present in this directory.

Check warning on line 15 in examples/CIFAR10/README.md

View workflow job for this annotation

GitHub Actions / Spell Check with Typos

"approch" should be "approach".
## Simple CNN

```bash
julia --startup-file=no \
--project=. \
--threads=auto \
simple_cnn.jl \
--backend=reactant
```

On a RTX 4050 6GB Laptop GPU the training takes approximately 3 mins and the final training
and test accuracies are 97% and 65%, respectively.

## MLP-Mixer

## ConvMixer

> [!NOTE]
> This code has been adapted from https://github.com/locuslab/convmixer-cifar10
Expand All @@ -11,14 +40,11 @@ for new experiments on small datasets.
You can get around **90.0%** accuracy in just **25 epochs** by running the script with the
following arguments, which trains a ConvMixer-256/8 with kernel size 5 and patch size 2.

> [!NOTE]
> To train the model using Reactant.jl pass in `--backend=reactant` to the script.
```bash
julia --startup-file=no \
--project=. \
--threads=auto \
main.jl \
conv_mixer.jl \
--lr-max=0.05 \
--weight-decay=0.0001 \
--backend=reactant
Expand Down Expand Up @@ -54,32 +80,7 @@ Epoch 24: Learning Rate 8.29e-04, Train Acc: 99.99%, Test Acc: 90.79%, Time: 21.
Epoch 25: Learning Rate 4.12e-04, Train Acc: 100.00%, Test Acc: 90.83%, Time: 21.32
```

## Usage

```bash
main [options] [flags]

Options

--batchsize <512::Int>
--hidden-dim <256::Int>
--depth <8::Int>
--patch-size <2::Int>
--kernel-size <5::Int>
--weight-decay <0.01::Float64>
--seed <42::Int>
--epochs <25::Int>
--lr-max <0.01::Float64>
--backend <gpu_if_available::String>

Flags
--clip-norm

-h, --help Print this help message.
--version Print version.
```

## Notes
### Notes

1. To match the results from the original repo, we need more augmentation strategies, that
are currently not implemented in DataAugmentation.jl.
Expand Down
104 changes: 43 additions & 61 deletions examples/ConvMixer/main.jl → examples/CIFAR10/common.jl
Original file line number Diff line number Diff line change
@@ -1,9 +1,6 @@
using Comonicon, ConcreteStructs, DataAugmentation, ImageShow, Interpolations, Lux, LuxCUDA,
MLDatasets, MLUtils, OneHotArrays, Optimisers, Printf, ProgressBars, Random,
Statistics, Zygote
using Reactant, Enzyme

CUDA.allowscalar(false)
using ConcreteStructs, DataAugmentation, ImageShow, Lux, MLDatasets, MLUtils, OneHotArrays,
Printf, ProgressTables, Random
using LuxCUDA, Reactant

@concrete struct TensorDataset
dataset
Expand All @@ -18,7 +15,7 @@ function Base.getindex(ds::TensorDataset, idxs::Union{Vector{<:Integer}, Abstrac
return stack(parent itemdata Base.Fix1(apply, ds.transform), img), y
end

function get_dataloaders(batchsize; kwargs...)
function get_cifar10_dataloaders(batchsize; kwargs...)
cifar10_mean = (0.4914, 0.4822, 0.4465)
cifar10_std = (0.2471, 0.2435, 0.2616)

Expand All @@ -38,35 +35,6 @@ function get_dataloaders(batchsize; kwargs...)
return trainloader, testloader
end

function ConvMixer(; dim, depth, kernel_size=5, patch_size=2)
#! format: off
return Chain(
Conv((patch_size, patch_size), 3 => dim, gelu; stride=patch_size),
BatchNorm(dim),
[
Chain(
SkipConnection(
Chain(
Conv(
(kernel_size, kernel_size), dim => dim, gelu;
groups=dim, pad=SamePad()
),
BatchNorm(dim)
),
+
),
Conv((1, 1), dim => dim, gelu),
BatchNorm(dim)
)
for _ in 1:depth
]...,
GlobalMeanPool(),
FlattenLayer(),
Dense(dim => 10)
)
#! format: on
end

function accuracy(model, ps, st, dataloader)
total_correct, total = 0, 0
cdev = cpu_device()
Expand All @@ -79,41 +47,37 @@ function accuracy(model, ps, st, dataloader)
return total_correct / total
end

Comonicon.@main function main(; batchsize::Int=512, hidden_dim::Int=256, depth::Int=8,
patch_size::Int=2, kernel_size::Int=5, weight_decay::Float64=0.005,
clip_norm::Bool=false, seed::Int=1234, epochs::Int=25, lr_max::Float64=0.05,
backend::String="gpu_if_available")
rng = Random.default_rng()
Random.seed!(rng, seed)

function get_accelerator_device(backend::String)
if backend == "gpu_if_available"
accelerator_device = gpu_device()
return gpu_device()
elseif backend == "gpu"
accelerator_device = gpu_device(; force=true)
return gpu_device(; force=true)
elseif backend == "reactant"
accelerator_device = reactant_device(; force=true)
return reactant_device(; force=true)
elseif backend == "cpu"
accelerator_device = cpu_device()
return cpu_device()
else
error("Invalid backend: $(backend). Valid Options are: `gpu_if_available`, `gpu`, \
`reactant`, and `cpu`.")
end
end

function train_model(
model, opt, scheduler=nothing;
backend::String, batchsize::Int=512, seed::Int=1234, epochs::Int=25
)
rng = Random.default_rng()
Random.seed!(rng, seed)

accelerator_device = get_accelerator_device(backend)
kwargs = accelerator_device isa ReactantDevice ? (; partial=false) : ()
trainloader, testloader = get_dataloaders(batchsize; kwargs...) |> accelerator_device
trainloader, testloader = get_cifar10_dataloaders(batchsize; kwargs...) |>
accelerator_device

model = ConvMixer(; dim=hidden_dim, depth, kernel_size, patch_size)
ps, st = Lux.setup(rng, model) |> accelerator_device

opt = AdamW(; eta=lr_max, lambda=weight_decay)
clip_norm && (opt = OptimiserChain(ClipNorm(), opt))

train_state = Training.TrainState(model, ps, st, opt)

lr_schedule = linear_interpolation(
[0, epochs * 2 ÷ 5, epochs * 4 ÷ 5, epochs + 1], [0, lr_max, lr_max / 20, 0]
)

adtype = backend == "reactant" ? AutoEnzyme() : AutoZygote()

if backend == "reactant"
Expand All @@ -128,16 +92,32 @@ Comonicon.@main function main(; batchsize::Int=512, hidden_dim::Int=256, depth::

loss_fn = CrossEntropyLoss(; logits=Val(true))

pt = ProgressTable(;
header=[
"Epoch", "Learning Rate", "Train Accuracy (%)", "Test Accuracy (%)", "Time (s)"
],
widths=[24, 24, 24, 24, 24],
format=["%3d", "%.6f", "%.6f", "%.6f", "%.6f"],
color=[:normal, :normal, :blue, :blue, :normal],
border=true,
alignment=[:center, :center, :center, :center, :center]
)

@printf "[Info] Training model\n"
initialize(pt)

for epoch in 1:epochs
stime = time()
lr = 0
for (i, (x, y)) in enumerate(trainloader)
lr = lr_schedule((epoch - 1) + (i + 1) / length(trainloader))
train_state = Optimisers.adjust!(train_state, lr)
(_, _, _, train_state) = Training.single_train_step!(
if scheduler !== nothing
lr = scheduler((epoch - 1) + (i + 1) / length(trainloader))
train_state = Optimisers.adjust!(train_state, lr)
end
(_, loss, _, train_state) = Training.single_train_step!(
adtype, loss_fn, (x, y), train_state
)
isnan(loss) && error("NaN loss encountered!")
end
ttime = time() - stime

Expand All @@ -150,8 +130,10 @@ Comonicon.@main function main(; batchsize::Int=512, hidden_dim::Int=256, depth::
Lux.testmode(train_state.states), testloader
) * 100

@printf "[Train] Epoch %2d: Learning Rate %.6f, Train Acc: %.4f%%, Test Acc: \
%.4f%%, Time: %.2f\n" epoch lr train_acc test_acc ttime
scheduler === nothing && (lr = NaN32)
next(pt, [epoch, lr, train_acc, test_acc, ttime])
end

finalize(pt)
@printf "[Info] Finished training\n"
end
50 changes: 50 additions & 0 deletions examples/CIFAR10/conv_mixer.jl
Original file line number Diff line number Diff line change
@@ -0,0 +1,50 @@
using Comonicon, Interpolations, Lux, Optimisers, Printf, Random, Statistics, Zygote, Enzyme

@isdefined(includet) ? includet("common.jl") : include("common.jl")

CUDA.allowscalar(false)

function ConvMixer(; dim, depth, kernel_size=5, patch_size=2)
#! format: off
return Chain(
Conv((patch_size, patch_size), 3 => dim, gelu; stride=patch_size),
BatchNorm(dim),
[
Chain(
SkipConnection(
Chain(
Conv(
(kernel_size, kernel_size), dim => dim, gelu;
groups=dim, pad=SamePad()
),
BatchNorm(dim)
),
+
),
Conv((1, 1), dim => dim, gelu),
BatchNorm(dim)
)
for _ in 1:depth
]...,
GlobalMeanPool(),
FlattenLayer(),
Dense(dim => 10)
)
#! format: on
end

Comonicon.@main function main(; batchsize::Int=512, hidden_dim::Int=256, depth::Int=8,
patch_size::Int=2, kernel_size::Int=5, weight_decay::Float64=0.0001,
clip_norm::Bool=false, seed::Int=1234, epochs::Int=25, lr_max::Float64=0.05,
backend::String="reactant")
model = ConvMixer(; dim=hidden_dim, depth, kernel_size, patch_size)

opt = AdamW(; eta=lr_max, lambda=weight_decay)
clip_norm && (opt = OptimiserChain(ClipNorm(), opt))

lr_schedule = linear_interpolation(
[0, epochs * 2 ÷ 5, epochs * 4 ÷ 5, epochs + 1], [0, lr_max, lr_max / 20, 0]
)

return train_model(model, opt, lr_schedule; backend, batchsize, seed, epochs)
end
6 changes: 6 additions & 0 deletions examples/CIFAR10/mlp_mixer.jl
Original file line number Diff line number Diff line change
@@ -0,0 +1,6 @@
using Comonicon, Lux, Optimisers, Printf, Random, Statistics, Zygote, Enzyme

CUDA.allowscalar(false)

@isdefined(includet) ? includet("common.jl") : include("common.jl")

36 changes: 36 additions & 0 deletions examples/CIFAR10/simple_cnn.jl
Original file line number Diff line number Diff line change
@@ -0,0 +1,36 @@
using Comonicon, Lux, Optimisers, Printf, Random, Statistics, Zygote, Enzyme

@isdefined(includet) ? includet("common.jl") : include("common.jl")

CUDA.allowscalar(false)

function SimpleCNN()
return Chain(
Conv((3, 3), 3 => 16, gelu; stride=2, pad=1),
BatchNorm(16),
Conv((3, 3), 16 => 32, gelu; stride=2, pad=1),
BatchNorm(32),
Conv((3, 3), 32 => 64, gelu; stride=2, pad=1),
BatchNorm(64),
Conv((3, 3), 64 => 128, gelu; stride=2, pad=1),
BatchNorm(128),
GlobalMeanPool(),
FlattenLayer(),
Dense(128 => 64, gelu),
BatchNorm(64),
Dense(64 => 10)
)
end

Comonicon.@main function main(;
batchsize::Int=512, weight_decay::Float64=0.0001,
clip_norm::Bool=false, seed::Int=1234, epochs::Int=50, lr::Float64=0.003,
backend::String="reactant"
)
model = SimpleCNN()

opt = AdamW(; eta=lr, lambda=weight_decay)
clip_norm && (opt = OptimiserChain(ClipNorm(), opt))

return train_model(model, opt, nothing; backend, batchsize, seed, epochs)
end

0 comments on commit 0260eb6

Please sign in to comment.