forked from ggerganov/llama.cpp
-
Notifications
You must be signed in to change notification settings - Fork 387
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
some users report that this repo is now being flagged as malicious?
no idea why, but I am removing all prebuilt binaries except libopenblas. windows users can still obtain it from /releases and osx and linux users can rebuild from source code.
- Loading branch information
Showing
6 changed files
with
180 additions
and
1 deletion.
There are no files selected for viewing
Binary file not shown.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Binary file not shown.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,173 @@ | ||
# Convert GPT-J-6B h5 transformer model to ggml format | ||
# | ||
# Load the model using GPTJForCausalLM. | ||
# Iterate over all variables and write them to a binary file. | ||
# | ||
# For each variable, write the following: | ||
# - Number of dimensions (int) | ||
# - Name length (int) | ||
# - Dimensions (int[n_dims]) | ||
# - Name (char[name_length]) | ||
# - Data (float[n_dims]) | ||
# | ||
# By default, the bigger matrices are converted to 16-bit floats. | ||
# This can be disabled by adding the "use-f32" CLI argument. | ||
# | ||
# At the start of the ggml file we write the model parameters | ||
# and vocabulary. | ||
# | ||
|
||
import sys | ||
import struct | ||
import json | ||
import torch | ||
import numpy as np | ||
|
||
from transformers import GPTJForCausalLM | ||
|
||
# ref: https://github.com/openai/gpt-2/blob/master/src/encoder.py | ||
def bytes_to_unicode(): | ||
""" | ||
Returns list of utf-8 byte and a corresponding list of unicode strings. | ||
The reversible bpe codes work on unicode strings. | ||
This means you need a large # of unicode characters in your vocab if you want to avoid UNKs. | ||
When you're at something like a 10B token dataset you end up needing around 5K for decent coverage. | ||
This is a signficant percentage of your normal, say, 32K bpe vocab. | ||
To avoid that, we want lookup tables between utf-8 bytes and unicode strings. | ||
And avoids mapping to whitespace/control characters the bpe code barfs on. | ||
""" | ||
bs = list(range(ord("!"), ord("~")+1))+list(range(ord("¡"), ord("¬")+1))+list(range(ord("®"), ord("ÿ")+1)) | ||
cs = bs[:] | ||
n = 0 | ||
for b in range(2**8): | ||
if b not in bs: | ||
bs.append(b) | ||
cs.append(2**8+n) | ||
n += 1 | ||
cs = [chr(n) for n in cs] | ||
return dict(zip(bs, cs)) | ||
|
||
if len(sys.argv) < 3: | ||
print("Usage: convert-h5-to-ggml.py dir-model [use-f32]\n") | ||
print(" ftype == 0 -> float32") | ||
print(" ftype == 1 -> float16") | ||
sys.exit(1) | ||
|
||
# output in the same directory as the model | ||
dir_model = sys.argv[1] | ||
fname_out = sys.argv[1] + "/ggml-model.bin" | ||
|
||
with open(dir_model + "/vocab.json", "r", encoding="utf-8") as f: | ||
encoder = json.load(f) | ||
|
||
with open(dir_model + "/added_tokens.json", "r", encoding="utf-8") as f: | ||
encoder_added = json.load(f) | ||
|
||
with open(dir_model + "/config.json", "r", encoding="utf-8") as f: | ||
hparams = json.load(f) | ||
|
||
# possible data types | ||
# ftype == 0 -> float32 | ||
# ftype == 1 -> float16 | ||
# | ||
# map from ftype to string | ||
ftype_str = ["f32", "f16"] | ||
|
||
ftype = 1 | ||
if len(sys.argv) > 2: | ||
ftype = int(sys.argv[2]) | ||
if ftype < 0 or ftype > 1: | ||
print("Invalid ftype: " + str(ftype)) | ||
sys.exit(1) | ||
fname_out = sys.argv[1] + "/ggml-model-" + ftype_str[ftype] + ".bin" | ||
|
||
|
||
model = GPTJForCausalLM.from_pretrained(dir_model, low_cpu_mem_usage=True) | ||
#print (model) | ||
|
||
list_vars = model.state_dict() | ||
#print (list_vars) | ||
|
||
fout = open(fname_out, "wb") | ||
|
||
fout.write(struct.pack("i", 0x67676d6c)) # magic: ggml in hex | ||
fout.write(struct.pack("i", hparams["vocab_size"])) | ||
fout.write(struct.pack("i", hparams["n_positions"])) | ||
fout.write(struct.pack("i", hparams["n_embd"])) | ||
fout.write(struct.pack("i", hparams["n_head"])) | ||
fout.write(struct.pack("i", hparams["n_layer"])) | ||
fout.write(struct.pack("i", hparams["rotary_dim"])) | ||
fout.write(struct.pack("i", ftype)) | ||
|
||
byte_encoder = bytes_to_unicode() | ||
byte_decoder = {v:k for k, v in byte_encoder.items()} | ||
|
||
fout.write(struct.pack("i", len(encoder) + len(encoder_added))) | ||
|
||
for key in encoder: | ||
text = bytearray([byte_decoder[c] for c in key]) | ||
fout.write(struct.pack("i", len(text))) | ||
fout.write(text) | ||
|
||
for key in encoder_added: | ||
text = bytearray([byte_decoder[c] for c in key]) | ||
fout.write(struct.pack("i", len(text))) | ||
fout.write(text) | ||
|
||
for name in list_vars.keys(): | ||
data = list_vars[name].squeeze().numpy() | ||
print("Processing variable: " + name + " with shape: ", data.shape) | ||
|
||
# we don't need these | ||
if name.endswith("attn.masked_bias") or name.endswith(".attn.bias"): | ||
print(" Skipping variable: " + name) | ||
continue | ||
|
||
n_dims = len(data.shape); | ||
|
||
# ftype == 0 -> float32, ftype == 1 -> float16 | ||
ftype_cur = 0; | ||
if ftype != 0: | ||
if name[-7:] == ".weight" and n_dims == 2: | ||
print(" Converting to float16") | ||
data = data.astype(np.float16) | ||
ftype_cur = 1 | ||
else: | ||
print(" Converting to float32") | ||
data = data.astype(np.float32) | ||
ftype_cur = 0 | ||
else: | ||
if data.dtype != np.float32: | ||
print(" Converting to float32") | ||
data = data.astype(np.float32) | ||
ftype_cur = 0 | ||
|
||
# for efficiency - transpose these matrices: | ||
# (note - with latest ggml this is no longer more efficient, so disabling it) | ||
# "transformer.h.*.mlp.fc_in.weight" | ||
# "transformer.h.*.attn.out_proj.weight" | ||
# "transformer.h.*.attn.q_proj.weight" | ||
# "transformer.h.*.attn.k_proj.weight" | ||
# "transformer.h.*.attn.v_proj.weight" | ||
#if name.endswith(".mlp.fc_in.weight") or \ | ||
# name.endswith(".attn.out_proj.weight") or \ | ||
# name.endswith(".attn.q_proj.weight") or \ | ||
# name.endswith(".attn.k_proj.weight") or \ | ||
# name.endswith(".attn.v_proj.weight"): | ||
# print(" Transposing") | ||
# data = data.transpose() | ||
|
||
# header | ||
str = name.encode('utf-8') | ||
fout.write(struct.pack("iii", n_dims, len(str), ftype_cur)) | ||
for i in range(n_dims): | ||
fout.write(struct.pack("i", data.shape[n_dims - 1 - i])) | ||
fout.write(str); | ||
|
||
# data | ||
data.tofile(fout) | ||
|
||
fout.close() | ||
|
||
print("Done. Output file: " + fname_out) | ||
print("") |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Binary file not shown.